
HAL Id: hal-02287979
https://telecom-paris.hal.science/hal-02287979

Submitted on 28 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Storage, computation, communication: a fundamental
tradeoff in distributed computing

Qifa Yan, Sheng Yang, Michèle Wigger

To cite this version:
Qifa Yan, Sheng Yang, Michèle Wigger. Storage, computation, communication: a fundamental trade-
off in distributed computing. 2018 IEEE Information Theory Workshop (ITW), Nov 2018, Guangzhou,
China. �10.1109/itw.2018.8613519�. �hal-02287979�

https://telecom-paris.hal.science/hal-02287979
https://hal.archives-ouvertes.fr

Storage, Computation, and Communication: A
Fundamental Tradeoff in Distributed Computing

Qifa Yan
LTCI, Télécom ParisTech

75013 Paris, France
Email: qifa.yan@telecom-paristech.fr

Sheng Yang
L2S, CentraleSupélec

91190 Gif-sur-Yvette, France
Email:sheng.yang@centralesupelec.fr

Michèle Wigger
LTCI, Télécom ParisTech

75013 Paris, France
Email: michele.wigger@telecom-paristech.fr

Abstract—We consider a MapReduce-like distributed comput-
ing system. We derive a lower bound on the communication
cost for any given storage and computation costs. This lower
bound matches the achievable bound we proposed recently. As a
result, we completely characterize the optimal tradeoff between
the storage, the computation, and the communication. Our result
generalizes the previous one by Li et al. to also account for the
number of computed intermediate values.

I. INTRODUCTION

Systems like MapReduce [1], Dryad [2] etc. have become
popular platforms for distributed computing to perform data-
parallel computations across distributed computing nodes. In
such systems, the computations are typically decomposed into
“Map” and “Reduce” functions as detailed in the following.
Consider the task of computing K output functions of the form

φk(w1, · · · , wN) = hk(gk,1(w1), · · · , gk,N (wN)), (1)
k = 1, · · · ,K.

Here, each output function φk depends on all N data blocks
w1, · · · , wN , but can be decomposed into:
• N map functions gk,1, · · · , gk,N , each only depending on

one block;
• a reduce function hk that combines the outcomes of the
N map functions.

Computation of such functions can be performed in a
distributed way following 3-phases: In the first map phase,
each node locally stores a subset of the input data Mk ⊆
{w1, · · · , wN}, and calculates all intermediate values (IVAs)
that depend on the stored data:

{gl,n(wn) : l ∈ {1, · · · ,K}, wn ∈Mk}.

In the subsequent shuffle phase, the nodes exchange the IVAs
computed during the map phase, so that each node k is aware
of all the IVAs gk,1(w1), · · · , gk,N (wN) required to calculate
its own output function φk. In the final reduce phase, each
node k combines the IVAs with the reduce function hk as
indicated in (1).

Li et al. [3] proposed a scheme, termed coded distributed
computing (CDC), that in the map phase stores files multiple
times across users so as to enable multicast opportunities for
the shuffle phase. This approach can significantly reduce the
communication load over traditional schemes, and was proved

in [3] to have the smallest communication load among all
the distributed computing schemes with same total storage
requirements. Some extensions have been made in follow-up
works. For example, straggling nodes were investigated in [4];
[5] studied optimal allocation of computation resources; [6]
considered distributed nodes in a wireless network.

It is worth mentioning that Li et al. in [3] used the term
computation-communication tradeoff, because they assumed
that each node calculates all the IVAs that can be obtained
from the data stored at that node, irrespective of whether these
IVAs are used in the sequel or not. In this sense, the total
number of calculated IVAs is actually a measure of the total
storage space consumed across the nodes. This is why we
would rather refer to it as the storage-communication tradeoff.

Naturally, if an IVA is not used subsequently, there is no
need to compute it, which can save computation resources
(e.g., power) and shorten calculation latency. Therefore, it is
natural to investigate a more general framework, where each
node is allowed to choose to calculate or not the IVA for each
output function from the data stored locally. The number of
IVAs that each node needs to calculate normalized by the total
number of IVAs is then used to measure the real computation
load. In this sense, we extend the storage-communication
tradeoff in [3] to a storage-computation-communication trade-
off. In particular, we wish to characterize the smallest com-
munication load required in the shuffle phase for a given
storage space and a given number of IVAs calculated during
the map phase. Ezzeldin et al. proposed a modification on the
CDC scheme in [7], that compute IVAs only if they are used
subsequently. Recently, we also proposed a new scheme named
distributed computing and coded communication (D3C) [8],
and derived the tradeoff achieved by this scheme. In this paper,
we provide a matching converse, and thereby characterize
completely the optimal storage-computation-communication
tradeoff.

Notations: Let N+ denote the set of positive integers, and
for m,n ∈ N+, let Fn

2m denote the n-dimensional vector space
over the finite field F2m . We also abbreviate {1, · · · , n} by [n].
For scalar quantities we use (upper or lower case) standard
font, for sets calligraphic font, and for collections (sets of
sets) bold font. The cardinality of a set A is denoted |A|. The
indicator function of an event is written as I(·).

ar
X

iv
:1

80
6.

07
56

5v
4

 [
cs

.I
T

]
 2

1
Ja

n
20

20

II. SYSTEM MODEL

Consider a system with K distributed computing nodes and
N files. Specifically, given any N files

W = {w1, · · · , wN}, wi ∈ F2F ,∀ i ∈ [N].

Node k (k ∈ [K]) wishes to compute an output function φk :
FN
2F → F2B , which maps all the files to a bit stream uk =
φk(w1, · · · , wN) ∈ F2B of length B, where B ∈ N+.

Following the MapReduce framework [3], [6], we assume
that the computation of the output functions φk can be
decomposed as in (1), where

• The “Map” function

gk,n : F2F → F2T , k ∈ [K], n ∈ [N]

maps the file wn into a binary intermediate value (IVA)
of length T , i.e., vk,n , gk,n(wn) ∈ F2T , where T ∈ N.

• The “Reduce” function

hk : FN
2T → F2B , k ∈ [K]

maps the intermediate values

Vk , {vk,n : n ∈ [N]}

into the output stream uk = hk(vk,1, · · · , vk,N).

The computations are carried out in three phases.
1) Map Phase: Each node k stores a subset of files Mk ⊆

W , k ∈ [K], and then for each file wn ∈ Mk, computes a
subset of IVAs Ck,n = {vq,n : q ∈ Λk,n}, where Λk,n ⊆ [K].
Denote the set of IVAs computed at node k by Ck, i.e.,

Ck ,
⋃

n:wn∈Mk

Ck,n. (2)

To measure the storage and computation cost of the system,
we introduce the following two definitions.

Definition 1 (Storage Space). We define the storage space r, as
the total number of files stored across the K nodes, normalized
by the total number of files N , i.e.,

r ,

∑K
k=1 |Mk|
N

. (3)

Definition 2 (Computation Load). We define the computation
load c, as the total number of map functions computed across
the K nodes, normalized by the total number of map functions
NK, i.e.,

c ,

∑K
k=1 |Ck|
NK

. (4)

2) Shuffle Phase: To compute the output function φk, node
k needs to collect the IVAs of φk that are not computed locally
in the map phase, i.e., Vk\Ck. After the map phase, the K
nodes exchange the computed IVAs. Particularly, each node k
creates and multicasts a signal Xk ∈ F2lk for some lk ∈ N, as
a function of the IVAs computed in the map phase, namely,

Xk = ϕk (Ck)

to all the other nodes for some encoding function

ϕk : F|Ck|
2T
→ F2lk .

All the nodes receive the signals X1, · · · , XK error-free.

Definition 3 (Communication Load). We define the communi-
cation load L, as the total number of the bits transmitted by
the K nodes during the shuffle phase normalized by the total
length of all intermediate values NKT , i.e.,

L ,

∑K
k=1 lk
NKT

.

3) Reduce Phase: With the signals {Xi}Ki=1 exchanged
during the shuffle phase and the IVAs Ck computed locally
in map phase, node k restores all the IVAs in Vk, i.e.,

(vk,1, · · · , vk,N) = ψk (X1, · · · , XK , Ck) ,

with the function

ψk : F2l1 × F2l2 × · · ·F2lK × F|Ck|
2T
→ FN

2T .

Finally, it proceeds to compute

uk = hk(vk,1, · · · , vk,N).

Definition 4. A distributed computing system is said to achieve
a storage-computation-communication (SCC) triple (r, c, L),
if for any ε > 0, when N is sufficiently large, there exists
a map-shuffle-reduce procedure such that the storage space,
computation load, and communication load do not exceed r+
ε, c + ε, and L + ε, respectively. In particular, we define the
optimal communication load by

L∗(r, c) , inf
{
L : (r, c, L) is achievable

}
.

Without loss of generality (W.L.O.G), we assume 1 ≤ c ≤
r < K. In fact, |Ck| ≤ |Mk|K is implied by (2), and
thus c ≤ r by (3) and (4). Moreover, since each IVA needs
to be computed at least once somewhere, we have c ≥ 1.
Furthermore, if r ≥ K, each node trivially stores all the
files and locally computes all the IVAs required for its output
function.

III. MAIN RESULT

Define

c∗(r) ,
r

K
+
(

1− r

K

)
· gr,

L∗(r) ,
brc+ dre − r
brcdre

− 1

K
,

where

gr , brc+
(r − brc)(K − dre)

K − r
.

Notice that, L∗(r) is the optimal storage-communication trade-
off derived in [3].

Theorem 1. For any storage space r ∈ [1,K), and

c ∈
{
r

K
+
(

1− r

K

)
g : g = 1, · · · , brc

}
, (5)

the optimal communication load L∗(r, c) is given by

L∗(r, c) =
1

c− r/K
·
(

1− r

K

)2
. (6)

For general 1 ≤ c ≤ c∗(r), the optimal communication load
L∗(r, c) is given by the lower convex envelope of the points
in (5) and (6) and the point (c∗(r), L∗(r)). Moreover,

L∗(r, c) = L∗(r), c∗(r) ≤ c ≤ r. (7)

Proof: The tradeoff in Theorem 1 is achieved by the
D3C scheme, see [8]. Equality (7) has been shown in [8,
Corollary 1]. The converse for the case 0 ≤ c ≤ c∗(r) is
proved in Section IV.

Notice that, L∗(r, c) is piecewise linear in (r, c). In the
storage-computation-communication (r-c-L) space, where the
coordinates are associated with r, c, and L, respectively, Fig. 1
illustrates the surface L∗(r, c) characterized by Theorem 1
when K = 10. In particular,

1) The line (
r, 1, 1− r

K

)
, r ∈ [1,K)

is the optimal computation curve (OCP), and character-
izes the optimal storage-communication tradeoff at the
lowest computation load (c = 1).

2) The curve

(r, c∗(r), L∗(r)) , r ∈ [1,K)

is the optimal communication curve (OCM), and char-
acterizes the optimal storage-computation tradeoff at the
lowest communication load (L = L∗(r)).

3) The pareto-optimal surface is given by the triangles
between the OCP and OCM curves.

Fig. 1: The storage-computation-communication tradeoff surface for a system
with K = 10 nodes. The dashed lines are the projections of OCP and OCM
to the plane c = r.

Remark 1. We briefly sketch the D3C scheme in [8], which
achieves the optimal tradeoff in Theorem 1. For integers r, g
such that 1 ≤ g ≤ r < K, the files are partitioned into(
K
r

)(
r
g

)
batches. Each batch is associated with a tuple (S, T)

where T ⊆ S ⊂ K, |S| = r, |T | = g. Let WS,T be the
batch associated with (S, T), all nodes in S store WS,T , and
compute their own IVAs from WS,T . Only the nodes in T

compute the IVAs from WS,T that are needed by the nodes
in K\S . In the shuffle phase, for each pair (I,J) such that
I = r + 1,J = g + 1, each node k in J creates a coded
multicast signal useful for all nodes in J \{k}. Based on the
received multicast signals and the IVAs it computed locally,
each node can then compute the desired output function in the
reduce phase.

When g = r, the D3C degrades to the modified CDC (M-
CDC) scheme in [7]. The M-CDC scheme achieves the K cor-
ner points of the optimal tradeoff surface. Time- and memory-
sharing the M-CDC scheme with different parameters can thus
achieve all pareto-optimal points on the tradeoff surface, see
[8] and [9] for details.

One may observe that, in both the D3C and the M-CDC
scheme, the required number of input files increases very fast
with the number of nodes. This may prevent implementation
in practice. In the longer version of this paper [9], we propose
ways to decrease the required number of files via placement
delivery arrays [10].

IV. CONVERSE

Fix r ∈ [1,K), and c ∈ [1, r]. Consider a file allocation
M = {Mk}Kk=1 and its feasible IVA sets C = {Ck}Kk=1, so
that1 ∑K

k=1 |Mk|
N

≤ r, (8)∑K
k=1 |Ck|
NK

≤ c. (9)

For any nonempty set S ⊆ [K], denote XS , {Xk}k∈S ,VS ,
∪k∈SVk, CS , ∪k∈SCk. For any k ∈ S and j ∈ [|S| − 1],
define

BkS,j , {vk,n : vk,n is only computed
by j nodes in S\{k}}.

Let bkS,j be the cardinality of BkS,j . Then the cardinality of

BS,j ,
⋃
k∈S

BkS,j

is given by

bS,j ,
∑
k∈S

bkS,j . (10)

A. Auxiliary Lemmas

To prove the converse, we need the following two lemmas,
where Lemma 1 is proved in Section IV-C.

Lemma 1. For any nonempty set S ⊆ [K],

H(XS |VSc , CSc) ≥ T
|S|−1∑
j=1

bS,j ·
1

j
, (11)

where Sc , [K]\S.

1As ε > 0 can be arbitrarily close to 0 in Definition 4, to derive the lower
bound for L∗(r, c), we need to consider the case ε→ 0.

Lemma 2. Consider set S = [K] and define bj , b[K],j .
Then,

K−1∑
j=1

bj ≥ N(K − r), (12)

K−1∑
j=1

(j − 1)bj ≤ (c− 1)NK. (13)

Proof: For any k ∈ [K], define

Ak , {vk,n : vk,n is computed by node k, n ∈ [N]} .

Set ak = |Ak|. Notice that

A1, · · · ,AK ,B[K],1, · · · ,B[K],K−1

form a partition of all IVAs, and therefore
K∑

k=1

ak +

K−1∑
j=1

bj = NK. (14)

Moreover, since node k must store wn if it has computed vk,n,
it must hold that ak ≤ |Mk|, and thus by (8),

K∑
k=1

ak ≤
K∑

k=1

|Mk| ≤ rN. (15)

Finally, for each k ∈ [K], j ∈ [K − 1], the IVAs in Ak must
be computed at node k and IVAs B[K],j must be computed at
j nodes, and by (9),

K∑
k=1

ak +

K−1∑
j=1

jbj ≤
K∑

k=1

|Ck| ≤ cNK. (16)

From (14)–(16), we obtain (12) and (13).

B. Proof of the Converse to Theorem 1

For each c ∈ [1, r], define

g ,
c− r/K
1− r/K

.

Notice that g ≥ 1 since we assume c ≥ 1. Let g1 , bgc,
g2 , dge, and

c1 =
r

K
+
(

1− r

K

)
g1, (17)

c2 =
r

K
+
(

1− r

K

)
g2. (18)

Notice that by these definitions,

c1 ≤ c ≤ c2. (19)

Choose λ, µ ∈ R so that

λx+ µ|x=c1 =
1

c1 − r/K
·
(

1− r

K

)2
, (20)

λx+ µ|x=c2 =
1

c2 − r/K
·
(

1− r

K

)2
. (21)

Then from (17)–(21), and the fact g2 − g1 = 1, we conclude
that λ and µ satisfy:

λ =
1

g2
− 1

g1
< 0, (22)

µ =
c2
g1
− c1
g2

> 0,

λ+ µ =
c2 − 1

g1
− c1 − 1

g2
> 0. (23)

By the convexity of the function 1
x−r/K

(
1 − r

K

)2
over x ∈

[1,+∞), we then obtain:

1

x− r/K

(
1− r

K

)2
≥ λx+ µ,

∀ x ∈
{ r
K

+
(

1− r

K

)
g : g = 1, · · · ,K − 1

}
.

Therefore,

L ≥
H
(
X[K]

)
NKT

≥
K−1∑
j=1

bj
NK

· 1

j

≥ 1

N(K − r)

K−1∑
j=1

bj(
1− r

K

)
j + r

K −
r
K

(
1− r

K

)2
≥ 1

N(K − r)

K−1∑
j=1

bj

(
λ
((

1− r

K

)
j +

r

K

)
+ µ

)
=

λ

NK
·
K−1∑
j=1

(j − 1)bj +
λ+ µ

N(K − r)
·
K−1∑
j=1

bj

(a)

≥ λ

NK
· (c− 1)NK +

λ+ µ

N(K − r)
·N(K − r)

= λc+ µ, (24)

where (a) follows from (12), (13), (22) and (23). This implies
that for any storage space r ∈ [1,K) and computation load
c ∈ [c1, c2], the optimal communication load L∗(r, c) is lower
bounded by the lower convex envelope of (c1, L

∗(r, c1)) and
(c2, L

∗(r, c2)). Noting that also the point (c∗(r), L∗(r)) is on
the line (24) concludes the converse proof.

C. Proof of Lemma 1

For notational brevity, we denote the tuple (VS , CS) by
YS for any S ⊆ [K]. We prove Lemma 1 by mathematical
induction on the size of S:

When |S| = 1, without loss of generality, assume S = {k},
then (11) becomes H

(
Xk|Y[K]\{k}

)
≥ 0, which is trivial.

Suppose that, the statement is true for all subsets of [K]
with size s, 1 ≤ s < K. Consider a set S ⊆ [K] such that
|S| = s+ 1. Then

H(XS |YSc)

=
1

|S|
∑
k∈S

H(XS , Xk|YSc)

=
1

|S|
∑
k∈S

(
H(Xk|YSc) +H(XS |Xk, YSc)

)
≥ 1

|S|
H(XS |YSc) +

1

|S|
∑
k∈S

H(XS |Xk, YSc). (25)

Then from (25), we have

H(XS |YSc)

≥ 1

|S| − 1

∑
k∈S

H(XS |Xk, YSc)

≥ 1

s

∑
k∈S

H(XS |Xk, Ck, YSc)

(a)
=

1

s

∑
k∈S

H(XS |Ck, YSc)

(b)
=

1

s

∑
k∈S

(
H(XS |Ck, YSc) +H(Vk|XS , Ck, YSc)

)
(c)
=

1

s

∑
k∈S

H(XS ,Vk|Ck, YSc)

(d)
=

1

s

∑
k∈S

(H(Vk|Ck, YSc) +H(XS |Vk, Ck, YSc))

(e)
=

1

s

∑
k∈S

(
H(Vk|C(S\{k})c) +H(XS\{k}|Y(S\{k})c)

)
(f)

≥ T

s

∑
k∈S

s∑
j=1

bkS,j +
T

s

∑
k∈S

s−1∑
j=1

bS\{k},j ·
1

j

=
T

s

s∑
j=1

∑
k∈S

bkS,j +
T

s

s−1∑
j=1

∑
k∈S

bS\{k},j ·
1

j

(g)
=

T

s

s∑
j=1

bS,j +
T

s

s−1∑
j=1

∑
k∈S

∑
l∈S\{k}

blS\{k},j ·
1

j

=
T

s

s∑
j=1

bS,j +
T

s

s−1∑
j=1

∑
l∈S

∑
k∈S\{l}

blS\{k},j ·
1

j
, (26)

where (a) holds because Xk is a function of Ck; (b) holds
because by H(Vk|XS , Ck, YSc) = 0, since Vk can be de-
coded using Ck, XS and XSc , which is a function of YSc ;
(c) and (d) follow from the chain rule; (e) holds because
YSc = (VSc , CSc) and by the independence between Vk and
VSc ; (f) holds by the definition of bkS,j and the induction
assumption; and (g) holds by (10).

Notice that, in (26),∑
k∈S\{l}

blS\{k},j

(a)
=

∑
k∈S\{l}

N∑
n=1

I(vl,n is only computed by j nodes in

S\{l}) · I(vl,n is not computed by node k)

=

N∑
n=1

I(vl,n is only computed by j nodes in S\{l})

·
∑

k∈S\{l}

I(vl,n is not computed by node k)

=

N∑
n=1

I(vl,n is only computed by j nodes in S\{l})

· (s− j)
(b)
= blS,j(s− j),

where (a) and (b) follow from the definition of blS,j . Thus,
with (26),

H(XS |YSc) ≥ T

s

s∑
j=1

bS,j +
T

s

s−1∑
j=1

∑
l∈S

blS,j ·
s− j
j

(a)
=

T

s

s∑
j=1

bS,j +
T

s

s−1∑
j=1

bS,j ·
s− j
j

= T

|S|−1∑
j=1

bS,j
j
.

where (a) follows from (10).
Notice that, we have proved that (11) holds for all S ⊆ [K]

with |S| = s + 1. By induction, we conclude that (11) holds
for all nonempty subsets S ⊆ [K].

V. CONLUSION

We proved a converse matching the performance of our
recently proposed D3C [8]. As a result, the pareto-optimal
storage-computation-communication tradeoff surface of all
achievable storage-computation-communication triples is char-
acterized.

ACKNOWLEDGEMENT

The work of Q. Yan and M. Wigger has been supported by
the ERC under grant agreement 715111.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Sixth USENIX OSDI, Dec. 2004.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed
data-parallel programs from sequential building blocks,” in Proc. the 2nd
ACM SIGOPS/EuroSys’07, Mar. 2007.

[3] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

[4] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans. Inf.
Theory. vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[5] Q. Yu, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “How to optimally
allocate resources for coded distributed computing,” in Proc. IEEE Int.
Conf. Commun. (ICC), 2017, Paris, France, 21–25, May. 2017.

[6] S. Li, Q. Yu, M. A. Maddah-Ali, A. S. Avestimehr, “A scalable framework
for wireless distributed computing,” IEEE/ACM Trans. Netw.,vol. 25, no.
5, pp. 2643–2653, Oct. 2017.

[7] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs
distributed computation: An alternative trade-off curve,” in Proc. IEEE
Inf. Theory Workshop (ITW), Kaohsiung, Taiwan, pp. 279–283, Nov.
2017.

[8] Q. Yan, S. Yang, and M. Wigger, “A storage-computation-communication
tradeoff for distributed computing,” in Proc. Int. Symp. Wireless Commun.
Systems, Lisbon, Portugal, Aug. 2018.

[9] Q. Yan, S. Sheng, and M. Wigger, “Storage, computation, and com-
munication: A fundamental tradeoff in distributed computing,” arXiv:
1806:07565.

[10] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

	I Introduction
	II System Model
	III Main Result
	IV Converse
	IV-A Auxiliary Lemmas
	IV-B Proof of the Converse to Theorem ??
	IV-C Proof of Lemma ??

	V Conlusion
	References

