
HAL Id: hal-02287965
https://telecom-paris.hal.science/hal-02287965

Submitted on 12 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenge codes for physically unclonable functions with
Gaussian delays: A maximum entropy problem

Alexander Schaub, Olivier Rioul, Joseph Boutros, Jean-Luc Danger, Sylvain
Guilley

To cite this version:
Alexander Schaub, Olivier Rioul, Joseph Boutros, Jean-Luc Danger, Sylvain Guilley. Challenge codes
for physically unclonable functions with Gaussian delays: A maximum entropy problem. Latin Amer-
ican Workshop on Coding and Information, Jul 2018, Unicamp-Campinas, Brazil. �hal-02287965�

https://telecom-paris.hal.science/hal-02287965
https://hal.archives-ouvertes.fr

Challenge Codes for Physically Unclonable
Functions with Gaussian Delays:
A Maximum Entropy Problem

Alexander Schaub∗, Olivier Rioul∗†, Joseph J. Boutros‡,
∗ LTCI, Telecom ParisTech, 75013 Paris, France

firstname.lastname@telecom-paristech.fr
† CMAP, Ecole Polytechnique, 91120 Palaiseau, France

olivier.rioul@polytechnique.edu

Jean-Luc Danger∗§ and Sylvain Guilley∗§
‡ Texas A&M University, 23874 Doha, Qatar

boutros@tamu.edu
§ Secure-IC S.A.S.

35510 Cesson-Sévigné, France

I. INTRODUCTION AND MOTIVATION

Suppose we are given a (nonlinear) (n,M) code C with M codewords ci ∈ {±1}n and n i.i.d. standard Gaussian
variables X1, X2, . . . , Xn ∼ N (0, 1). Consider the scalar products

ci ·X =

n∑
j=1

ci,jXj (i = 1, 2, . . . ,M)

where X = (X1, X2, . . . , Xn) and the associated sign bits

Bi = sgn(ci ·X) ∈ {±1} (i = 1, 2, . . . ,M).

The question addressed in this paper is the following. What is the joint entropy of the sign bits

HC
def.
= H(B1, B2, . . . , BM) ?

In particular, can we evaluate the maximum entropy Hn = maxC HC attained for the full universe code C = {±1}n?
Despite appearances, this problem turns out to be purely combinatorial as shown below.

The motivation for this problem comes from hardware security. Modern secure integrated circuits make use
of hardware primitives called physically unclonable functions (PUFs) that can generate unique identifiers from
challenges, such as described, for example, by Maes [2]. Having a unique identifier for each physical chip allows
one to authenticate it in a secure way. PUFs exploit small, uncontrollable physical variations of the manufacturing
process that cannot be replicated, hence the name “physically unclonable”. Such small variations are often modeled
by Gaussian random variables.

The PUF is a function that takes several challenges c1, c2, . . . , cM (the so-called challenge code) as inputs
and returns the bitvector identifier (B1, B2, . . . , BM). The definitions above correspond to a particular PUF that
exploits the variability of n distinct delay elements (a so-called delay-PUF referred to as a “Loop PUF”), where
X1, X2, . . . , Xn are independent Gaussian delay differences. This PUF is described in detail by Cherif et al. [1]
while the mathematical model is explored in depth by Rioul et al. [3]. To assess the security of a PUF, it is necessary
that the entropy of the identifier’s distribution HC = H(B1, B2, . . . , BM) is sufficiently high. For a given value of
M , the optimal challenge code C maximizes HC . Since adding more challenges can only increase the entropy, it
is important to evaluate the maximum possible value Hn (for M = 2n) as a function of n. In fact, Hn is achieved
with codes of size M = 2n−1 since {±1}n can be partititioned into two opposite sets where codewords in the
second set bring no entropy.

Rioul et al. [3] showed that the optimal challenge code when M ≤ n is given by a Hadamard code1 C for which
one can attain HC = n bits of identification. In general, we have Hn > n and numerical simulations suggest that
Hn becomes much greater than n (despite a common belief in hardware security that the entropy would be limited

1When such a Hadamard code exists, which implies that n = 1, 2 or a multiple of 4.

by n, the number of elements in a PUF). To assess the security of the PUF, it is important to evaluate how the
entropy Hn grows as the complexity of the PUF, n, increases.

The exact calculation of HC or Hn can be carried out only for very small values of n. Rioul et al. [3] give
the exact values of HC for n,M ≤ 3 using well-known closed-form formulas for orthant probabilities of bi- and
tri-variate normals. We give below a combinatorial extension that provides the exact values of HC for n = 3, 4
even though the corresponding closed-form orthant probability formula is not available. For n ≥ 5, the method
soon becomes intractable and one has recourse to numerical computations.

The value of the maximum entropy Hn can be estimated reliably by defining equivalence classes of challenge
codewords corresponding to the same value of joint probabilities

Pb = Pb1,...,bM = P{B1 = b1, B2 = b2, . . . , BM = bM}.

In this paper, we derive a method that determines all such equivalent classes. Perhaps surprisingly, this problem
is purely of discrete combinatorial nature. The actual values of the corresponding probabilities (hence that of Hn)
are then estimated by Monte Carlo simulation. This method was found to be numerically tractable for n = 5, 6, 7.

We show that for n ≥ 4 the relative number of zero probabilities approaches the total number of probabilities,
i.e., |{b : Pb > 0}|/22n−1 → 0. We determine the exact number of zero probabilities for n = 4, 5, 6, 7, 8. This
provides the exact value of the max-entropy, a reasonably tight upper bound of Hn.

For even greater values of n we propose a method inspired by compressed sensing using a randomly chosen
sparse matrix S and change the code C to SC. Preliminary results are shown in Section V.

It is interesting to note that other applications of this type of entropy maximization problem can be considered.
The PUF itself can be used to generate M -bit cryptographic keys. In another direction, one can think of the design
of a true random number generator (TRNG) that combines n noisy measurements X using the code C represented
by an M × n matrix C = ((ci,j))i,j to obtain a M -dimensional vector CX . In this way the resulting M random
sign bits are equiprobable and have joint entropy HC much greater than the number of measurements n. Yet
another application uses transform source coding with 1-bit scalar quantization (sign bit computation) applied to
a transformed Gaussian memoryless source with a linear transformation C (such as a Walsh-Hadamard transform)
e.g., for classification purposes.

II. CLOSED-FORM EXPRESSIONS

In the sequel, b = (b1b2 . . . bM) is called a sign vector.

A. Case n = 3

By considering the challenge matrix C3 =
(

1 1 1
1 1 −
1 − 1

)
, exact probabilities Pb can be derived by using the formula

for tri-variate Gaussian distributions described by Rioul et al. [3]. This yields an entropy of

HC3
= −

(1
4
− 3

arcsin 1
3

2π

)
log
(1
8
− 3

arcsin 1
3

4π

)
.

For the matrix with four challenges C4 =

(
1 1 1
1 1 −
1 − 1
− 1 1

)
and the two sign vectors +−−− and −+++, we have that

P+−−− = P−+++ = 0 (see Section III)

By exploiting symmetries, it follows that eight sign vectors satisfy

P++++ = P++−− = P+−+− = P+−−+ = P−−−− = P−−++ = P−+−+ = P−++− = p

and for the six remaining sign vectors

P+++− = P++−+ = P+−++ = P−−−+ = P−−+− = P−+−−
Furthermore, by adding complementary challenges, we have that p = p + 0 = P+−−+ + P+−−− = P+−−· =
1
8 − 3

arcsin 1

3

4π using the generic formula for tri-variate Gaussian distributions. Therefore,

HC4
= H3 = −

(
1− 6

arcsin 1
3

π

)
log

(
1

8
− 3

arcsin 1
3

4π

)
− 6

(
arcsin 1

3

π

)
log

(
arcsin 1

3

π

)

B. Case n = 4

Similar techniques have been employed in order to compute entropies with n = 4. Because arcsin(1

2
)

π is a rational
number (it is in fact equal to 1

6), the results for n = 4 are much simpler, compared to the case n = 3. We obtain
the following results for the entropy while adding up sign vectors from 1 to 2n−1:

Additional sign vector entropy (bits)
(1 1 1 1) 1
(1 − 1 −) 2
(1 1 − −) 3
(1 − − 1) 4
(1 1 1 −) 43

8 + log 3
2 −

11
24 log 11

(1 1 − 1) 16
3 + 1

2 log 3−
5
12 log 5

(1 − 1 1) 71
12 −

log 3
8

(− 1 1 1) 14
3 + log 3

In summary for n = 1, 2, 3, 4:

n 1 2 3 4
Hn 1 2 3.6655... 6.251...

III. ZERO PROBABILITIES

A simple method to bound from above the entropy Hn is to count the number of sign vectors with non-zero
probability. Indeed, the entropy will be smaller than or equal to the logarithm of this count (also called the max-
entropy). We found that it is possible to characterize such sign vectors, or more precisely, their complementary set
in {±1}M .

Lemma 1. Let b = {bi}i∈[1;M] a sign vector. Then Pb = 0 iff there exists α = (α1, ..., αM) ∈ RM\{0}M such that
sgn(αi) = bi when αi 6= 0 and

∑M
i=1 αici = 0. We call such a vector α an annihilator (for C).

Finding an upper bound on the entropy thus amounts to counting the sign vectors that verify this property. In
order to compute the number of sign vectors with non-zero probabilities, we used the following property that allows
to restrict the set of sign vectors that potentially have a non-zero probability. It assumes that C = Cn is the matrix
containing the first 2n−1 challenges in lexicographical order.

Lemma 2. Let n > 1 and b a sign vector of size 2n−1. Let bl (resp. br) be the left (resp. right) half of the signs
of b. Then Pb = 0 if Pbl = 0 or Pbr = 0 when considering bl and br as sign vectors for the matrix Cn−1.

Interestingly, the Gaussian nature of X is irrelevant to the specific problem of counting sign vectors with non-zero
probability. To verify that a sign vector has non-zero probability, one can simulate any continuous distribution, for
example a uniform distribution, to speed up computation time.

Results for n = 1 to 8

n Non-zero probabilities Proportion among challenges max-entropy
1 2 1 1
2 4 1 2
3 14 0.875 3.8073
4 104 0.40625 6.7004
5 1882 0.0287 10.8780
6 94572 2.202 · 10−5 16.5291
7 15028134 8.147 · 10−13 23.8411
8 8378070864 2.462 · 10−29 32.9640

For n > 8 the combinatorial problem soon becomes intractable (complexity ∼ 266 for n = 9).

IV. EQUIVALENT PROBABILITY CLASSES

There is an inherent symmetry in this problem. Indeed, reordering the random variables X1, ..., Xn does not
change the entropy, and neither does replacing Xi with −Xi because the Gaussian distribution is symmetric. This
allows us to find sign vectors with equal probabilities. For the rest of the section, we will suppose that M = 2n−1

and choose as challenges the first 2n−1 challenges in lexicographical order, starting with the all 1 challenge vector,
up to c2n−1 = (1,−1,−1, ...,−1).

Let σ ∈ Sn be a permutation, we define Xσ = (Xσ(1), ..., Xσ(n))
T . Firstly consider σ to be a transposition,

σ = (i j) and suppose i 6= 1, j 6= 1. Because of the aforementioned considerations, we have that CX and CXσ

have the same distribution. Let Cσ be the matrix obtained from C by applying σ on the columns (here, by swapping
columns i and j). By definition, we have that CXσ = CσX . Now, because C contains all rows starting with 1,
since 1 /∈ {i, j}, Cσ can also be obtained by permuting certain rows of C. Let π be that row permutation, and
b = (b1, b2, ..., b2n−1) a sign vector. Then, because CX and CσX have same distribution, b and bπ, where bπ is
obtained from b by applying π to the coordinates, have same probability.

If 1 ∈ {i, j}, i.e. σ = (1 j) this cannot be directly applied since the lines of C and Cσ are not the same
anymore. However, we can notice that if we multiply all the columns of Cσ by the j− th column and call the new
matrix C ′σ, then indeed C ′σ is obtained from C by permuting the lines. Thus, if π is the corresponding permutation,
b and (c1,jbπ(1), c2,jbπ(2), ..., c2n−1,jbπ(2n−1)) have the same probability. Since every permutation can be expressed as
a composition of transpositions, composing the aforementioned transformations allows to express any permutation σ.

For the sign changes, take s = (1,±1, ...,±1) a vector of n signs, and consider the vector Xs = (s1X1, s2X2,
· · · , snXn)

T . Since the Gaussian distribution is symmetric, we have that CX and CXs have the same distribution.
Furthermore, let’s denote by Cs the matrix obtained from C where the column i is multiplied by si. By definition,
CsX = CXs. Now, Cs can also be obtained from C by permuting some lines. If π is the corresponding permutation,
b and bπ have the same probability. Now, for a more general vector s = (±1,±1, ...,±1), we can simply consider
−s and then look at the permutation induced by s̃ = (1,−s2,−s3, ...,−sn).

Definition 1. We say that two sign vectors b and b′ are equivalent if Pb and Pb′ are found to be equal using the
transformations described above. Note that this indeed defines an equivalence relation on the sign vectors. The
equivalence class of b is then the set of vectors equivalent to b.

We were able to determine equivalence classes up to n = 7. For example, for n = 5, there are 7 equivalence
classes, as described below:

Class size Probability per vector Sign vector in class
10 0.0145269 + +++++++++++++++
160 0.0006334 −+++++++++++++++
320 0.0007351 −−++++++++++++++
960 0.0002285 −−−+++++++++++++
80 0.0022002 −−−−++++++++++++
320 0.0002961 −−−+−+++++++++++
32 0.0008077 −−−+−+++−+++++++

Probabilities have been obtained via Monte Carlo simulations. In order to estimate Hn, n Gaussian variables
are sampled and the corresponding sign vector is determined. Then we evaluate which equivalence class this sign
vector belongs to, and count the number of occurrences per sign vector. The probability for each sign vector is
then estimated as the number of occurrences of the equivalence class, divided by the number of simulations and
the number of elements in that class. This allows us to estimate the entropy up to n = 7.

Results for n = 1 to 7

n Equivalence classes Estimated entropy
1 1 1
2 1 2
3 2 3.6655
4 3 6.251
5 7 9.97
6 21 15.24
7 135 21.9

V. PERSPECTIVE: COMPRESSED SENSING

Computing the exact number of non-zero probabilities seems to become intractable for n ≥ 9. Indeed, given the
number of non-zero probabilities for n = 8, about 266 sign vectors need to be checked in order to filter out those
with zero probability. Finding clusters of sign vectors with identical probably also becomes a daunting task for
n ≥ 8. Therefore, it might be interesting to consider other methods to determine the maximum PUF entropy.

One such way could be a method inspired by compressed sensing. Let S be a sparse h × M matrix with
coefficients in GF (2), and h < M . If we multiply the bitvector B with S (here, B is seen as a random variable
taking values in GF (2)M), we obtain a new bitvector with entropy at much h. However, this entropy might be
higher than the entropy of h challenges. We can hope to obtain a tight lower bound of Hn in this fashion. However,
we would still need much more than 2Hn simulations in order to obtain a good lower bound for Hn, which might
also quickly become untractable.

We performed a certain number of compressed sensing simulations. Figure 1 shows the results for n = 8, with
h varying between 1 and 21, and various weights per line for S. For large enough weights, the entropy seems to
remain close to h in this domain. Thus, the bitvector obtained via compressed sensing has almost full entropy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
h

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

en
tro

py

Entropy as a function of h and weight per line (n=8)
weight

1
2
3
4
5

Fig. 1. Compressed sensing results for n = 8

VI. CONCLUSION

Despite the relatively simple formulation, the problem of computing the maximal entropy of all possible sign
vectors generated by n Gaussian variables has very high a complexity, at the order of 22

n−1

. Thanks to a careful
analysis of that problem, we were able to obtain exact expressions up to n = 4, very good approximations up to
n = 7, and preliminary results for n = 8. However, an exact solution for larger values seems out of reach. Even
determining the asymptotic behavior remains a difficult, open problem. The results we obtained so far seem to
suggest a superlinear behavior for Hn, maybe even a quadratic growth, as shown in Figure 2. While the quadratic
fit seems quite good for the results obtained so far, obtaining additional data points would increase our confidence
in an asymptotically quadratic growth for Hn.

1 2 3 4 5 6 7 8
n

0

5

10

15

20

25

30

En
tro

py
 (i

n
bi

ts
)

Quadratic fit (Entropy)
Entropy

Quadratic fit (Max-entropy)
Max-entropy

Fig. 2. Entropy and max-entropy, with the best-fit quadratic polynomial function.

REFERENCES

[1] Z. Cherif, J.-L. Danger, S. Guilley, and L. Bossuet, “An easy-to-design PUF based on a single oscillator: the Loop PUF,” in 15th
Euromicro Conference on Digital System Design (DSD). IEEE, 2012, pp. 156–162.

[2] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study on the state of the art and future research directions,” in Towards
Hardware-Intrinsic Security. Springer, 2010, pp. 3–37.

[3] O. Rioul, P. Solé, S. Guilley, and J.-L. Danger, “On the entropy of physically unclonable functions,” in IEEE International Symposium
on Information Theory (ISIT). IEEE, 2016, pp. 2928–2932.

