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I. INTRODUCTION AND MOTIVATION

Suppose we are given a (nonlinear) (n, M ) code C with M codewords c i ∈ {±1} n and n i.i.d. standard Gaussian variables X 1 , X 2 , . . . , X n ∼ N (0, 1). Consider the scalar products

c i • X = n j=1 c i,j X j (i = 1, 2, . . . , M )
where X = (X 1 , X 2 , . . . , X n ) and the associated sign bits

B i = sgn(c i • X) ∈ {±1} (i = 1, 2, . . . , M ).
The question addressed in this paper is the following. What is the joint entropy of the sign bits

H C def. = H(B 1 , B 2 , . . . , B M ) ?
In particular, can we evaluate the maximum entropy H n = max C H C attained for the full universe code C = {±1} n ? Despite appearances, this problem turns out to be purely combinatorial as shown below.

The motivation for this problem comes from hardware security. Modern secure integrated circuits make use of hardware primitives called physically unclonable functions (PUFs) that can generate unique identifiers from challenges, such as described, for example, by Maes [START_REF] Maes | Physically unclonable functions: A study on the state of the art and future research directions[END_REF]. Having a unique identifier for each physical chip allows one to authenticate it in a secure way. PUFs exploit small, uncontrollable physical variations of the manufacturing process that cannot be replicated, hence the name "physically unclonable". Such small variations are often modeled by Gaussian random variables.

The PUF is a function that takes several challenges c 1 , c 2 , . . . , c M (the so-called challenge code) as inputs and returns the bitvector identifier (B 1 , B 2 , . . . , B M ). The definitions above correspond to a particular PUF that exploits the variability of n distinct delay elements (a so-called delay-PUF referred to as a "Loop PUF"), where X 1 , X 2 , . . . , X n are independent Gaussian delay differences. This PUF is described in detail by Cherif et al. [START_REF] Cherif | An easy-to-design PUF based on a single oscillator: the Loop PUF[END_REF] while the mathematical model is explored in depth by Rioul et al. [START_REF] Rioul | On the entropy of physically unclonable functions[END_REF]. To assess the security of a PUF, it is necessary that the entropy of the identifier's distribution H C = H(B 1 , B 2 , . . . , B M ) is sufficiently high. For a given value of M , the optimal challenge code C maximizes H C . Since adding more challenges can only increase the entropy, it is important to evaluate the maximum possible value H n (for M = 2 n ) as a function of n. In fact, H n is achieved with codes of size M = 2 n-1 since {±1} n can be partititioned into two opposite sets where codewords in the second set bring no entropy.

Rioul et al. [START_REF] Rioul | On the entropy of physically unclonable functions[END_REF] showed that the optimal challenge code when M ≤ n is given by a Hadamard code 1 C for which one can attain H C = n bits of identification. In general, we have H n > n and numerical simulations suggest that H n becomes much greater than n (despite a common belief in hardware security that the entropy would be limited by n, the number of elements in a PUF). To assess the security of the PUF, it is important to evaluate how the entropy H n grows as the complexity of the PUF, n, increases.

The exact calculation of H C or H n can be carried out only for very small values of n. Rioul et al. [START_REF] Rioul | On the entropy of physically unclonable functions[END_REF] give the exact values of H C for n, M ≤ 3 using well-known closed-form formulas for orthant probabilities of bi-and tri-variate normals. We give below a combinatorial extension that provides the exact values of H C for n = 3, 4 even though the corresponding closed-form orthant probability formula is not available. For n ≥ 5, the method soon becomes intractable and one has recourse to numerical computations.

The value of the maximum entropy H n can be estimated reliably by defining equivalence classes of challenge codewords corresponding to the same value of joint probabilities

P b = P b1,...,bM = P{B 1 = b 1 B 2 = b 2 , . . . , B M = b M }.
In this paper, we derive a method that determines all such equivalent classes. Perhaps surprisingly, this problem is purely of discrete combinatorial nature. The actual values of the corresponding probabilities (hence that of H n ) are then estimated by Monte Carlo simulation. This method was found to be numerically tractable for n = 5, 6, 7.

We show that for n ≥ 4 the relative number of zero probabilities approaches the total number of probabilities, i.e., |{b : P b > 0}|/2 2 n-1 → 0. We determine the exact number of zero probabilities for n = 4, 5, 6, 7, 8. This provides the exact value of the max-entropy, a reasonably tight upper bound of H n .

For even greater values of n we propose a method inspired by compressed sensing using a randomly chosen sparse matrix S and change the code C to SC. Preliminary results are shown in Section V.

It is interesting to note that other applications of this type of entropy maximization problem can be considered. The PUF itself can be used to generate M -bit cryptographic keys. In another direction, one can think of the design of a true random number generator (TRNG) that combines n noisy measurements X using the code C represented by an M × n matrix C = ((c i,j )) i,j to obtain a M -dimensional vector CX. In this way the resulting M random sign bits are equiprobable and have joint entropy H C much greater than the number of measurements n. Yet another application uses transform source coding with 1-bit scalar quantization (sign bit computation) applied to a transformed Gaussian memoryless source with a linear transformation C (such as a Walsh-Hadamard transform) e.g., for classification purposes.

II. CLOSED-FORM EXPRESSIONS

In the sequel, b = (b 1 b 2 . . . b M ) is called a sign vector.

A. Case n = 3

By considering the challenge matrix

C 3 = 1 1 1 1 1 - 1 -1
, exact probabilities P b can be derived by using the formula for tri-variate Gaussian distributions described by Rioul et al. [START_REF] Rioul | On the entropy of physically unclonable functions[END_REF]. This yields an entropy of

H C3 = - 1 4 -3 arcsin 1 3 2π log 1 8 -3 arcsin 1 3 4π .
For the matrix with four challenges

C 4 = 1 1 1 1 1 - 1 -1 -1 1
and the two sign vectors + ---and -+ ++, we have that

P +---= P -+++ = 0 (see Section III)
By exploiting symmetries, it follows that eight sign vectors satisfy

P ++++ = P ++--= P +-+-= P +--+ = P ----= P --++ = P -+-+ = P -++-= p
and for the six remaining sign vectors P +++-= P ++-+ = P +-++ = P ---+ = P --+-= P -+-- Furthermore, by adding complementary challenges, we have that p = p + 0 = P +--

+ + P +---= P +--• = 1 8 -3 arcsin 1 3 4π
using the generic formula for tri-variate Gaussian distributions. Therefore,

H C4 = H 3 = -1 -6 arcsin 1 3 π log 1 8 -3 arcsin 1 3 4π -6 arcsin 1 3 π log arcsin 1 3 π B. Case n = 4
Similar techniques have been employed in order to compute entropies with n = 4. Because arcsin( 12 ) π is a rational number (it is in fact equal to 1 6 ), the results for n = 4 are much simpler, compared to the case n = 3. We obtain the following results for the entropy while adding up sign vectors from 1 to 2 n-1 : Additional sign vector entropy (bits) 

( 1 1 1 1 ) 1 ( 1 -1 -) 2 ( 1 1 --) 3 ( 1 --1 ) 4 ( 1 1 1 -) 43 8 + log 3 2 -11 24 log 11 ( 1 1 -1 )

III. ZERO PROBABILITIES

A simple method to bound from above the entropy H n is to count the number of sign vectors with non-zero probability. Indeed, the entropy will be smaller than or equal to the logarithm of this count (also called the maxentropy). We found that it is possible to characterize such sign vectors, or more precisely, their complementary set in

{±1} M . Lemma 1. Let b = {b i } i∈[1;M ] a sign vector. Then P b = 0 iff there exists α = (α 1 , ..., α M ) ∈ R M \{0} M such that sgn(α i ) = b i when α i = 0 and M i=1 α i c i = 0.
We call such a vector α an annihilator (for C). Finding an upper bound on the entropy thus amounts to counting the sign vectors that verify this property. In order to compute the number of sign vectors with non-zero probabilities, we used the following property that allows to restrict the set of sign vectors that potentially have a non-zero probability. It assumes that C = C n is the matrix containing the first 2 n-1 challenges in lexicographical order. Interestingly, the Gaussian nature of X is irrelevant to the specific problem of counting sign vectors with non-zero probability. To verify that a sign vector has non-zero probability, one can simulate any continuous distribution, for example a uniform distribution, to speed up computation time. For n > 8 the combinatorial problem soon becomes intractable (complexity ∼ 2 66 for n = 9).

Results for

IV. EQUIVALENT PROBABILITY CLASSES

There is an inherent symmetry in this problem. Indeed, reordering the random variables X 1 , ..., X n does not change the entropy, and neither does replacing X i with -X i because the Gaussian distribution is symmetric. This allows us to find sign vectors with equal probabilities. For the rest of the section, we will suppose that M = 2 n-1 and choose as challenges the first 2 n-1 challenges in lexicographical order, starting with the all 1 challenge vector, up to c 2 n-1 = (1, -1, -1, ..., -1).

Let σ ∈ S n be a permutation, we define X σ = (X σ(1) , ..., X σ(n) ) T . Firstly consider σ to be a transposition, σ = (i j) and suppose i = 1, j = 1. Because of the aforementioned considerations, we have that CX and CX σ have the same distribution. Let C σ be the matrix obtained from C by applying σ on the columns (here, by swapping columns i and j). By definition, we have that CX σ = C σ X. Now, because C contains all rows starting with 1, since 1 / ∈ {i, j}, C σ can also be obtained by permuting certain rows of C. Let π be that row permutation If 1 ∈ {i, j}, i.e. σ = (1 j) this cannot be directly applied since the lines of C and C σ are not the same anymore. However, we can notice that if we multiply all the columns of C σ by the j -th column and call the new matrix C σ , then indeed C σ is obtained from C by permuting the lines. Thus, if π is the corresponding permutation, b and (c 1,j b π(1) , c 2,j b π(2) , ..., c 2 n-1 ,j b π(2 n-1 ) ) have the same probability. Since every permutation can be expressed as a composition of transpositions, composing the aforementioned transformations allows to express any permutation σ.

For the sign changes, take s = (1, ±1, ..., ±1) a vector of n signs, and consider the vector

X s = (s 1 X 1 , s 2 X 2 , • • • , s n X n ) T .
Since the Gaussian distribution is symmetric, we have that CX and CX s have the same distribution. Furthermore, let's denote by C s the matrix obtained from C where the column i is multiplied by s i . By definition, C s X = CX s . Now, C s can also be obtained from C by permuting some lines. If π is the corresponding permutation, b and b π have the same probability. Now, for a more general vector s = (±1, ±1, ..., ±1), we can simply consider -s and then look at the permutation induced by s = (1, -s 2 , -s 3 , ..., -s n ). Definition 1. We say that two sign vectors b and b are equivalent if P b and P b are found to be equal using the transformations described above. Note that this indeed defines an equivalence relation on the sign vectors. The equivalence class of b is then the set of vectors equivalent to b.

We were able to determine equivalence classes up to n = 7. For example, for n = 5, there are 7 equivalence classes, as described below: Probabilities have been obtained via Monte Carlo simulations. In order to estimate H n , n Gaussian variables are sampled and the corresponding sign vector is determined. Then we evaluate which equivalence class this sign vector belongs to, and count the number of occurrences per sign vector. The probability for each sign vector is then estimated as the number of occurrences of the equivalence class, divided by the number of simulations and the number of elements in that class. This allows us to estimate the entropy up to n = 7. Computing the exact number of non-zero probabilities seems to become intractable for n ≥ 9. Indeed, given the number of non-zero probabilities for n = 8, about 2 66 sign vectors need to be checked in order to filter out those with zero probability. Finding clusters of sign vectors with identical probably also becomes a daunting task for n ≥ 8. Therefore, it might be interesting to consider other methods to determine the maximum PUF entropy.

Results for

One such way could be a method inspired by compressed sensing. Let S be a sparse h × M matrix with coefficients in GF (2), and h < M . If we multiply the bitvector B with S (here, B is seen as a random variable taking values in GF (2) M ), we obtain a new bitvector with entropy at much h. However, this entropy might be higher than the entropy of h challenges. We can hope to obtain a tight lower bound of H n in this fashion. However, we would still need much more than 2 Hn simulations in order to obtain a good lower bound for H n , which also quickly become untractable.

We performed a certain number of compressed sensing simulations. Figure 1 shows the results for n = 8, with h varying between 1 and 21, and various weights per line for S. For large enough weights, the entropy seems to remain close to h in this domain. Thus, the bitvector obtained via compressed sensing has almost full entropy. VI. CONCLUSION Despite the relatively simple formulation, the problem of computing the maximal entropy of all possible sign vectors generated by n Gaussian variables has very high a complexity, at the order of 2 2 n-1 . Thanks to a careful analysis of that problem, we were able to obtain exact expressions up to n = 4, very good approximations up to n = 7, and preliminary results for n = 8. However, an exact solution for larger values seems out of reach. Even determining the asymptotic behavior remains a difficult, open problem. The results we obtained so far seem to suggest a superlinear behavior for H n , maybe even a quadratic growth, as shown in Figure 2. While the quadratic fit seems quite good for the results obtained so far, obtaining additional data points would increase our confidence in an asymptotically quadratic growth for H n . 
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  n = 1 to 8

	n Non-zero probabilities Proportion among challenges max-entropy
	1	2	1	1
	2	4	1	2
	3	14	0.875	3.8073
	4	104	0.40625	6.7004
	5	1882	0.0287	10.8780
	6	94572	2.202 • 10 -5	16.5291
	7	15028134	8.147 • 10 -13	23.8411
	8	8378070864	2.462 • 10 -29	32.9640

  n = 1 to 7

	n Equivalence classes Estimated entropy
	1	1	1
	2	1	2
	3	2	3.6655
	4	3	6.251
	5	7	9.97
	6	21	15.24
	7	135	21.9
	V. PERSPECTIVE: COMPRESSED SENSING

When such a Hadamard code exists, which implies that n = 1,

or a multiple of 4.