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This is IT: A Primer on Shannon’s Entropy and
Information

Olivier Rioul

I didn’t like the term ‘information theory’. Claude [Shannon] didn’t like it either. You see, the
term ‘information theory’ suggests that it is a theory about information – but it’s not. It’s the
transmission of information, not information. Lots of people just didn’t understand this. –

Robert Fano, 2001

Abstract. What is Shannon’s information theory (IT)? Despite its continued
impact on our digital society, Claude Shannon’s life and work is still unknown
to numerous people. In this tutorial, we review many aspects of the concept
of entropy and information from a historical and mathematical point of view.
The text is structured into small, mostly independent sections, each covering
a particular topic. For simplicity we restrict our attention to one-dimensional
variables and use logarithm and exponential notations log and exp without
specifying the base. We culminate with a simple exposition of a recent proof
(2017) of the entropy power inequality (EPI), one of the most fascinating
inequalities in the theory.

1. Shannon’s Life as a Child

Claude Elwood Shannon was born in 1916 in Michigan, U.S.A., and grew up in
the small town of Gaylord. He was a curious, inventive, and playful child, and
probably remained that way throughout his life. He built remote-controlled models
and set up his own barbed-wire telegraph system to a friend’s house [48]. He played
horn and clarinet, and was interested in jazz. He was especially passionate about
intellectual puzzles, riddles, cryptograms, gadgets and juggling.

He entered the university of Michigan at age 16, where he studied both
electrical engineering and mathematics. He would later describe his information
theory as “the most mathematical of the engineering sciences”[46].
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2. A Noble Prize Laureate

Shannon graduated in 1936. He found an internship position at MIT as an assistant
programmer for the “differential analyzer” – an analog machine to solve second-
order differential equations – under the supervision of Vannevar Bush, who would
become his mentor. Relay switches control the machine, which brings Shannon
to a systematic study of the relay circuits. Using his mathematical knowledge, he
established the link between circuits and the symbolic formalism of the Boolean
algebra. At only 21, his master thesis [40] revolutionized the use of logic circuits
by founding digital circuit design theory. It was described as “possibly the most
important, and also the most famous, master’s thesis of the century”[22].

For his master’s work, Shannon received the Alfred Noble prize in 1940. This
prize is an award presented by the American Society of Civil Engineers, and has
no connection to the better known Nobel prize established by Alfred Nobel. But
Shannon’s masterpiece was yet to come: Information theory – for which he certainly
would have deserved the genuine Nobel prize.

3. Intelligence or Information?

Shannon’s PhD thesis [41], defended at MIT in 1940, develops an algebra applied
to genetics. But without much contact with practitioners of this discipline, his
thesis was never published and remained relatively unknown. It must be noted
that immediately after receiving his degree he went to work for the Bell telephone
laboratories. At this time, Shannon’s major concern was what he called “the
transmission of intelligence” – what will become later the theory of information. In
a letter to Vannevar Bush dated February 16, 1939, he wrote:

Off and on I have been working on an analysis of some of the
fundamental properties of general systems for the transmission
of intelligence, including telephony, radio, television, telegraphy,
etc. [. . . ] There are several other theorems at the foundation of
communication engineering which have not been thoroughly inves-
tigated. [24]

Shannon read the works of Harry Nyquist [34] and Ralph Hartley [25], published
in the late 1920s in the Bell System Technical Journal, the specialized research
journal of the Bell Laboratories. Nyquist had written about the “transmission of
intelligence by telegraph” and Hartley’s 1928 paper is entitled “transmission of
information.” Their works will have a decisive influence on Shannon’s information
theory.

4. Probabilistic, not Semantic

So what is information? Shannon spent ten years (1939–1948), most of it during
wartime effort at Bell Laboratories, of intense reflexion about this notion. During
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this period, he did not publish a single article on the subject – except for a
classified memorandum on cryptography in 1945 [42]. He actually used the term
‘communication theory’, not ‘information theory’ in most of his work, and first
coined the term ‘uncertainty’ for what would later become Shannon’s ‘entropy’.
The term ‘information’ or rather ‘mutual information’ as a mathematical notion in
the theory appeared only in the early 1950s in Robert Fano’s seminars at MIT [17].

Shannon first deliberately removed the semantic questions from the engineer-
ing task. A famous paragraph at the very beginning of his seminal 1948 paper
reads:

“The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected
at another point. Frequently the messages have meaning; that is
they refer to or are correlated according to some system with
certain physical or conceptual entities. These semantic aspects
of communication are irrelevant to the engineering problem. The
significant aspect is that the actual message is one selected from a
set of possible messages. The system must be designed to operate
for each possible selection, not just the one which will actually be
chosen since this is unknown at the time of design.” [43]

Thus, Shannon models the information source as a probabilistic device that chooses
among possible messages. A message (a sequence of symbols) is a realization of a
stochastic process, like a Markov process. In summary, for Shannon, information is
probabilistic, not semantic.

Of course, Shannon never said that the semantic aspects are not important.
The concept of human intelligence is certainly not purely computational or proba-
bilistic. This perhaps explains why Shannon preferred the term ‘communication
theory’ over ‘information theory’.

5. The Celebrated 1948 Paper

Shannon eventually published A Mathematical Theory of Communication, in two
parts in the July and October issues of Bell System technical journal [43]. As
his Bell Labs colleague John Pierce once put it, this paper “came as a bomb –
something of a delayed-action bomb”[35]. It is one of the most influential scientific
works that was ever published. Few texts have had such an impact in our modern
world.

The paper is at the border between engineering and mathematics. At the
time, it was not immediately understood by all: On the one hand, most engineers
did not have enough mathematical background to understand Shannon’s theorems.
On the other hand, some mathematicians had trouble grasping the context of
communications engineering and found it “suggestive throughout, rather than
mathematical,” according to the probabilist Joe Doob [13].
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The theory is presented in complete form in this single article. It entirely solves
the problems of data compression and transmission, providing the fundamental
limits of performance. For the first time, it is proved that reliable communications
must be essentially digital.
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Figure 1. Shannon’s paradigm, the mother of all models (redrawn from [43]).

Perhaps the most influential part of Shannon’s work in all sciences is sum-
marized in the first figure of his 1948 paper: A schematic diagram of a general
communication system reproduced in Figure 1, which was called “the mother of
all models” in some scientific circles [27]. In this figure, an information source
is transmitted over a noisy channel and then received by a recipient. While this
scheme seems quite natural today, it was revolutionary: For the first time, we clearly
distinguish the roles of source, channel and recipient; transmitter and receiver;
signal and noise.

6. Shannon, not Weaver

At the instigation of Shannon’s employer Warren Weaver, the 1948 article is re-
published as a book [44] the following year, preceded by an introductory exposition
of Weaver. On this occasion, Shannon’s text receives some corrections and some
references are updated. But the change that is both the most innocuous and
the most important concerns the title: A mathematical theory of communication
becomes The mathematical theory of communication.

Weaver’s text, “Recent contributions to the theory of communication,” is
one of the many contributions to the diffusion of the theory to the general public.
A condensed form was published the same year in the popular journal Scientific
American [57]. Driven by great enthusiasm, Weaver attempts to explain how
Shannon’s ideas could extend well beyond his initial goals, to all sciences that
address communication problems in the broad sense – such as linguistics and social
sciences. Weaver’s ideas, precisely because they precede Shannon’s text in the book,
had a tremendous impact: It is likely that many readers came up with the theory
while reading Weaver and stopped at Shannon’s first mathematical statements.
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Even today, the theory is sometimes attributed to Weaver as much as to Shannon,
especially in the social sciences. Weaver is often cited as the first author, if not the
only author of information theory. It is of course a misinterpretation to attribute
the theory to Weaver as well. As Weaver himself declared,

“No one could realize more keenly than I do that my own contribu-
tion to this book is infinitesimal as compared with Shannon’s.” [31]

7. Shannon, not Wiener

Norbert Wiener, the father of cybernetics, has somewhat influenced Shannon.
Shannon took Wiener’s course in Fourier analysis at MIT [47] and read his wartime
classified report “The interpolation, extrapolation and smoothing of stationary
time series”[58]. The report is primarily concerned with the linear prediction and
filtering problems (the celebrated Wiener filter) but also has some formulation of
communication theory as a statistical problem on time series. It was later known
to generations of students as the yellow peril after its yellow wrappers and the fact
that it full of mathematical equations that were difficult to read. Shannon was kind
enough to acknowledge that “communication theory is heavily indebted to Wiener
for much of its basic philosophy” and that his “elegant solution of the problems
of filtering and prediction of stationary ensembles has considerably influenced the
writer’s thinking in this field.”

However, it should be noted that never in Wiener’s writings does any pre-
cise communication problem appear, and that his use of the term ‘information’
remained quite loose and not driven by any practical consideration. In his book
Cybernetics [59], also published in 1948, Wiener deals with the general problems
of communication and control. In the course of one paragraph, he considers “the
information gained by fixing one or more variables in a problem” and concludes that
“the excess of information concerning X when we know Y ” is given by a formula
identical in form to Shannon’s best known formula 1

2 log(1 + P/N) (see § 33).
However, his definition of information is not based on any precise communication
problem.

Wiener’s prolix triumphalism contrasts with Shannon’s discretion. It is likely
that the importance of Shannon’s formula 1

2 log(1 + P/N) for which he had made
an independent derivation led him to declare:

Information theory has been identified in the public mind to denote
the theory of information by bits, as developed by C. E. Shannon
and myself. [60]

John Pierce comments:

Wiener’s head was full of his own work and an independent deriva-
tion of [ 12 log(1 + P/N)]. Competent people have told me that
Wiener, under the misapprehension that he already knew what
Shannon had done, never actually found out. [35]
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8. Shannon’s Bandwagon

In the 1950s, Shannon-Weaver’s book made an extraordinary publicity. As a result,
information theory has quickly become a fashionable field like cybernetics or au-
tomation. But, as Shannon himself reckoned, this popularity “carries at the same
time an element of danger”. While its hard core is essentially a branch of mathe-
matics, the use of exciting words like information, entropy, communication, had led
many scientists to apply it indiscriminately to diverse areas such as fundamental
physics, biology, linguistics, psychology, economics and other social sciences. So
much so that Shannon, in a 1956 editorial entitled “The Bandwagon”[45], warns
against the excesses of such popularity:

[Information theory] has perhaps been ballooned to an importance
beyond its actual accomplishments. [. . . ] The subject of information
theory has certainly been sold, if not oversold. We should now turn
our attention to the business of research and development at the
highest scientific plane we can maintain. [45]

So let us now turn our attention to mathematics.

9. An Axiomatic Approach to Entropy

Entropy is perhaps the most emblematic mathematical concept brought by Shan-
non’s theory. A well-known derivation of Shannon’s entropy [43] follows an axiomatic
approach where one first enunciates a few desirable properties and then derives
the corresponding mathematical formulation. This offers some intuition about
a “measure of information”. Several variants are possible based on the following
argument.

Consider any event with probability p. How should behave the corresponding
amount of information i(p) as a function of p? First, the event should bring all the
more information as it is unlikely to occur; second, independent events should not
interfere, the corresponding amounts of information simply add up. Therefore, two
desirables properties are:

(a) i(p) ≥ 0 is a decreasing function of p;
(b) for any two independent events with probabilities p and q, i(pq) = i(p) + i(q).

Here i(p) can also be interpreted as a measure of “surprise”, “unexpectedness”, or
“uncertainty” depending on whether the event has or has not yet occurred.

Let n be a positive integer and r be the rank of the first significant digit of
pn so that 10−r ≥ pn ≥ 10−(r+1). Applying (a) and (b) several times we obtain
r · i(1/10) ≤ n · i(p) ≤ (r + 1) i(1/10), that is,

r

n
≤ c · i(p) ≤ r

n
+

1

n
, (1)
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where c is constant independent of r and n. Now since the function log(1/p) satisfies
the same properties (a), (b) above, it also satifies

r

n
≤ c′ · log 1

p
≤ r

n
+

1

n
, (2)

where c′ is another constant independent of r and n. It follows from (1) and (2)
that ∣∣∣c · i(p)− c′ · log 1

p

∣∣∣ ≤
1

n
. (3)

Letting n → +∞ we obtain that i(p) is proportional to log(1/p), where the constant
of proportionality can be arbitrary. Since the choice of the constant amounts to
specifying the base of the logarithm (see § 10), we can simply write

i(p) = log
1

p
. (4)

Now consider the case of a random variable X with probability distribution
p(x). The amount of information of an elementary event X = x is then log 1

p(x) .
Therefore, the average amount of information about X is given by the expected
value:

H(X) =
∑

x

p(x) log
1

p(x)
. (5)

This is Shannon’s entropy H(X) of the random variable X having distribution
p(x).

The notation H(X) may be a little confusing at first: This is not a function
of X but rather of its probability distribution p(x). Some authors write H(p) in
place of H(X) to stress the dependence on the probability distribution p(x).

One often sees the equivalent formula

H(X) = −
∑

x

p(x) log p(x) (6)

which is essentially a matter of taste. Note, however, that since probabilities p(x)
lie between 0 and 1, the above expression is minus the sum of negative quantities,
whereas (5) is simply the sum of positive quantities.

10. Units of Information

The base of the logarithm in (5) can be chosen freely. Since a change of base
amounts to a multiplication by a constant, it specifies a certain unit of information.

Suppose, e.g., that X takes M equiprobable values x = 0, 1, 2, . . . ,M − 1, so
that p(x) = 1/M in (5). Then Shannon’s entropy is simply the logarithm of the
number of possible values:

H(X) = logM. (7)

If the values x are expressed in base 10, a randomly chosen m-digit number between
0 and 10n − 1 corresponds to M = 10n. With a logarithm to base 10, the entropy
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is simply the number m = log10 M of decimal digits. Similarly, a randomly chosen
m-digit number in base 2 (between 0 and 2n − 1) gives an entropy of m binary
digits. This generalizes to any base.

With the emergence of computers, the base 2 is by far the most used in
today’s technology. Accordingly, the entropy is often expressed with a logarithm to
base 2. The corresponding unit is the bit, a contraction of binary digit. Thus M
possible values correspond to log2 M bits. It was Shannon’s 1948 paper [43] that
introduced the word bit for the very first time – a word widely used today.

While a bit (a binary digit) is either 0 or 1, the entropy H(X), expressed in
bits, can take any positive value. For example, log2 3 = 1.58496 . . . bits. Here the
word bit (as a unit of information) can be thought of as the contraction of “binary
unit” rather than of “binary digit”. Similarly, with base 10, the unit of information
is the dit (decimal unit). For natural logarithms to base e, the unit of information
is the nat (natural unit).

To illustrate the difference between binary digit and binary unit, consider one
random bit X ∈ {0, 1}. This random variable X follows a Bernoulli distribution
with some parameter p. Its entropy, expressed in bits, is then

H(X) = p log2
1

p
+ (1− p) log2

1

1− p
(in bits) (8)

which can take any value between 0 bit and 1 bit. The maximum value 1 bit is
attained in the equiprobable case p = 1/2. Otherwise, the entropy of one bit is
actually less than one bit.

The Système International d’unités [61] recommends the use of the shannon
(Sh) as the information unit in place of the bit to distinguish the amount of
information from the quantity of data that may be used to represent this information.
Thus according to the SI standard, H(X) should actually be expressed in shannons.
The entropy of one bit lies between 0 and 1 Sh.

11. H or Êta?

In information theory, following Shannon, the entropy is always denoted by the
letter H. Where does this letter come from?

Ralph Hartley was perhaps Shannon’s greatest influence, and he had already
used the letter H – arguably his last name initial – as early as 1928 to denote
the “amount of information” [25] with a formula identical to (7). Therefore, since
Shannon generalized Hartley’s measure of information, it seems logical that he
would have adopted Hartley’s letter H. In fact, Shannon did not at first use the
name “entropy” for H but rather “uncertainty”[42]. All this seems to have nothing
to do with the notion of entropy in physics.

Later Shannon adopted the term “entropy” [43] and mentioned that (5) is
formally identical with Boltzmann’s entropy in statistical mechanics, where p(x)
is the probability of a system being in a given cell x of its phase space. In fact,
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the very same letter H is used in Boltzmann’s H-theorem to denote the negative
continuous entropy (see § 15):

H =

∫
f ln f d3v, (9)

where f denotes a distribution of particle velocities v. Boltzmann himself used
the letter E at first [2], and it has been suggested that the first occurrence of the
letter H in a paper by Burbury [4] was for “Heat”[30]. There is some indirect
evidence, however, that in this context, H is in fact the capital greek letter H
(Êta), the upper-case version of η, but the reason for which this choice was made
is mysterious [28]. It does not seem to relate to the etymology of entropy, a term
coined by Clausius [8] from the Greek εντρoπή (“inside transformation”).

12. No One Knows What Entropy Really Is

Since the information-theoretic measure of information H is named entropy with
reference to Boltzmann’s entropy in statistical thermodynamics, the big question is:
Is there a deep-lying connection between information theory and thermodynamics?

It is clear that the Shannon entropy is identical in form with previous ex-
pressions for entropy in statistical mechanics. The celebrated Boltzmann’s entropy
formula S = k logW , where log denotes the natural logarithm and k is Boltz-
mann’s constant equal to 1.3806485 . . . 10−23 joules per kelvin, can be identified
with (7) where M = W is the number of microstates of a system in thermodynamic
equilibrium. The integral version of entropy (with a minus sign) also appears in
Boltzmann’s first entropy formula S = −

∫
ρ ln ρ dx where the probability distribu-

tion ρ represents the fraction of time spent by the system around a given point
x of its space phase. Von Neumann’s 1932 entropy formula S = −Tr(D̂ log D̂) in
quantum statistical mechanics [56] is also formally identical with (5) where p(x)
represent the eigenvalues of the density operator D̂.

It is quite striking that such a strong formal analogy holds. Thus, although
Shannon’s information theory is certainly more mathematical than physical, any
mathematical result derived in information theory could be useful when applied to
physics with the appropriate interpretation.

Beyond the formal analogy, many physicists soon believed that a proper un-
derstanding of the second law of thermodynamics requires the notion of information.
This idea can be traced back to Leó Szilárd [51] who attempted in the 1929 to
solve Maxwell’s demon problem by showing that an entropy decrease of k log 2 per
molecule is created by intelligence (the exactly informed Maxwell’s demon). This
was later recognized as the measure of information acquired by the demon, the
term k log 2 being identified with one “bit” of information. Szilárd was a personal
friend of John von Neumann who derived his entropy formula a few years later. It is
plausible that when von Neumann discovered Shannon’s “information” formula, he
immediately made the link with his entropy. In 1961, Shannon told Myron Tribus
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that von Neumann was the one who told him to call his new formula by the name
‘entropy’ in the early 1940s. According to Tribus, Shannon recalled:

“My greatest concern was what to call it. I thought of calling it
‘information’, but the word was overly used, so I decided to call it
‘uncertainty’. When I discussed it with John von Neumann, he had
a better idea. Von Neumann told me, ‘You should call it entropy,
for two reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name. In the second
place, and more importantly, no one knows what entropy really is,
so in a debate you will always have the advantage.’ ” [53]

When asked twenty years later about this anecdote, however, Shannon did not
remember von Neumann giving him such advice [47].

Norbert Wiener was also influenced by von Neumann who suggested to him
the entropy formula

∫
f(x) log f(x) dx as a “reasonable” measure of the amount

of information associated with the curve f(x) [59]. Shannon may have first come
across the notion of entropy from Wiener, which was one of Shannon’s teachers
at MIT. Robert Fano, one of Shannon’s colleagues at Bell Labs who worked on
information theory in the early years, reported that when he was a PhD student at
MIT, Wiener would at times enter his office, puffing at a cigar, saying “You know,
information is entropy” [18]. Later the French-American physicist Léon Brillouin,
building on Szilárd’s and Shannon’s works, coined the concept of negentropy to
demonstrate the similarity between entropy and information [3].

Despite many attempts in the literature, it is still not clear why information
theoretic principles should be necessary to understand statistical mechanics. Is
there any physical evidence of a fundamental thermodynamic cost for the physical
implementation of a informational computation, purely because of its logical
properties? This is still a debated topic today [52]. As in the above Neumann-
Shannon anecdote, no one knows what entropy really is.

13. How Does Entropy Arise Naturally?

Going back to mathematics, Shannon’s entropy as a mathematical quantity arises in
a fairly natural way. Shannon proposed the following line of reasoning [43]: Consider
a long sequence of independent and identically distributed (i.i.d.) outcomes

x = (x1, x2, . . . , xn). (10)

To simplify, assume that the symbols xi take a finite number of possibles values.
Let p(x) denote the probability that an outcome equals x. Thus each outcome
follows the same probability distribution p(x), of some random variable X.

By independence, the probability p(x) of the long sequence x is given by the
product

p(x) = p(x1)p(x2) · · · p(xn). (11)
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Re-arrange factors according to the number n(x) of xi equal to x to obtain

p(x) =
∏

x

p(x)n(x), (12)

where the product is over all possible outcome values x. Since n is taken very
large, according to the law of large numbers, the empirical frequency of x can be
identified to its probability:

n(x)

n
≈ p(x). (13)

Pugging this expression into (12) gives

p(x) ≈
(∏

x

p(x)p(x)
)n

= exp
(
−nH(X)

)
(14)

which exponentially decreases as n → +∞. The exponential decay H(X) ≥ 0
is precisely given by Shannon’s entropy (5). It is impressive to observe how this
entropy arises “out of nowhere” in such a simple derivation.

Shannon’s equation (14) is a fundamental result known as the asymptotic
equipartition property : Essentially, this means that for very large (but fixed) n,
the value of the probability of a given “typical” sequence x = (x1, x2, . . . , xn) is
likely to be close to the constant exp(−nH(X)). Moreover, any randomly chosen
sequence is very likely to be “typical” (with probability arbitrarily close to one).
As we have seen in the above derivation, this is essentially a consequence of the
law of large numbers.

The fact that p(x) ≈ exp(−nH(X)) for any typical sequence turns out to
be very useful to solve the problem of information compression and other types
of coding problems. This is perhaps the main mathematical justification of the
usefulness of Shannon’s entropy in science.

14. Shannon’s Source Coding Theorem

The asymptotic equipartition property (14) for typical sequences is used to solve
the information compression problem: How can we reliably encode a source of
information with the smallest possible rate? This corresponds to the model of Fig-
ure 1 where the channel is noiseless and the information source is to be transmitted
reliably at the destination while achieving the maximum possible compression.

Since non-typical sequences have a arbitrarily small probability, an arbitrary
reliable compression is obtained by encoding typical sequences only. The resulting
coding rate is computed from the number N of such typical sequences. Summing (14)
over all the N typical sequences gives the total probability that a randomly chosen
sequence is typical, which we know is arbitrarily close to one if the length n is
taken sufficiently large:

1 ≈ N exp(−nH(X)). (15)



60 O. Rioul

This gives N ≈ exp(nH(X)) typical sequences. The resulting coding rate R is its
logarithm per element in the sequence of length n:

R =
logN

n
≈ H(X). (16)

This is the celebrated Shannon’s first coding theorem [43]: The minimal rate at
which a source X can be encoded reliably is given by its entropy H(X).

This important theorem provides the best possible performance of any data
compression algorithm. In this context, Shannon’s entropy receives a striking
operational significance: It is the minimum rate of informational bits in a source of
information.

15. Continuous Entropy

So far Shannon’s entropy (5) was defined for discrete random variables. How is
the concept generalized to continuous variables? An obvious way is to proceed by
analogy. Definition (5) can be written as an expectation

H(X) = E log
1

p(X)
, (17)

where p(x) is the discrete distribution of X. When X follows a continuous distri-
bution (pdf) p(x), we may define its continuous entropy with formally the same
formula:

h(X) = E log
1

p(X)
(18)

which is

h(X) =

∫
p(x) log

1

p(x)
dx. (19)

The discrete sum in (5) is simply replaced by an integral (a continuous sum).
Notice, however, that p(x) does not refer to a probability anymore in (19),

but to a probability density, which is not the same thing. For example, when the
continuous random variable U is uniformly distributed over the interval (a, b), one
has p(u) = 1/(b− a) so that (18) becomes

h(U) = E log
1

p(U)
= log(b− a). (20)

While the discrete entropy is always nonnegative, the above continuous entropy
expression becomes negative when the interval length is < 1. Moreover, taking the
limit as the interval length tends to zero, we have

h(c) = −∞ (21)

for any deterministic (constant) random variable X = c. This contrasts with the
corresponding discrete entropy which is simply H(c) = 0.

Therefore, contrary to Shannon’s entropy (5) for discrete variables, one cannot
assign an “amount of information” to the continuous entropy h(X) since it could



This is IT: A Primer on Shannon’s Entropy and Information 61

be negative. Even though Shannon himself used the letter H for both discrete
and continuous entropies [43], the capital H was soon degraded by information
theorists to the lowercase letter h to indicate that the continuous entropy does not
deserve the status of the genuine entropy H.

16. Change of Variable in the Entropy

In order to better understand why discrete and continuous entropies behave differ-
ently, consider Y = T (X) with some invertible transformation T . If X is a discrete
random variable, so is Y ; the variables have different values but share the same prob-
ability distribution. Therefore, their discrete entropies coincide: H(X) = H(Y ). It
is obvious, in this case, that X and Y should carry the same amount of information.

When X and Y = T (X) are continuous random variables, however, their
continuous entropies do not coincide. In fact, assuming T satisfies the requirements
for an invertible change of variable (i.e., a diffeomorphism) with dy

dx = T ′(x) > 0,
the relation p(x) dx = p̃(y) dy gives

h(T (X) = h(Y ) =

∫
p̃(y) log

1

p̃(y)
dy (22)

=

∫
p(x) log

dy/ dx

p(x)
dx (23)

=

∫
p(x) log

1

p(x)
dx+

∫
p(x)T ′(x) dx, (24)

hence the change of variable formula [43]:

h(T (X)) = h(X) + E log T ′(X). (25)

The difference h(T (X))−h(X) depends on the transformation T . For T (x) = x+ c
where c is constant, we obtain

h(X + c) = h(X), (26)

so the continuous entropy is invariant under shifts. For a linear transformation
T (x) = sx (s > 0), however, we obtain the following scaling property :

h(sX) = h(X) + log s. (27)

Since s > 0 is arbitrary, the continuous entropy can take arbitrarily large positive or
negative values, depending on the choice of s. For sufficiently small s (or sufficiently
small variance), h(X) becomes negative as we already have seen in the case of the
uniform distribution (20).

17. Discrete vs. Continuous Entropy

Beyond the analogy between the two formulas, what is the precise relation be-
tween discrete entropy H(X) =

∑
p(x) log 1

p(x) and continuous entropy h(X) =∫
p(x) log 1

p(x) dx? To understand this, let us consider a continuous variable X with
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continuous density p(x) and the corresponding discrete variable [X] obtained by
quantizing X with small quantization step δ. This means that we have a relation
of the form

[X] = δ
⌊X
δ

⌋
, (28)

where (·) denotes the integer part. How h(X) can be written in terms of H([X])?
The integral (19) defining h(X) can be approximated as a Riemann sum:

h(X) ≈
∑

k

p(xk) log
( 1

p(xk)

)
δxk, (29)

where xk = kδ, δxk = δ and the approximation holds for small values of δ. Since
the probability of a quantized value [X] = k is

p(k) =

∫ (k+1)δ

kδ
p(x) dx ≈ p(xk)δ, (30)

we obtain

h(X) ≈
∑

k

p(k) log
( δ

p(k)

)
= H([X])− log

1

δ
. (31)

This gives the desired relation between discrete and continuous entropies:

h(X) ≈ H([X])− log
1

δ
. (32)

As δ → 0, [X] converges to X but H([X]) does not converge to h(X): In fact,
H([X])−h(X) = log(1/δ) goes to +∞. This confirms that discrete and continuous
entropies behave very differently.

Interestingly, the entropy difference log(1/δ) can be seen as the entropy of
the difference X−[X] (the quantization error). This is a consequence of (20) since
such the quantization error approximately follows a uniform distribution in the
interval [0, δ] of length δ. Thus (32) can be written as

h(X) ≈ H([X])− h(X−[X]). (33)

From (33), the continuous entropy h(X), also known as differential entropy,
is obtained as the limit of a difference of two entropies. In particular, when X is
deterministic, H([X]) = 0 and we recover that h(X) = −∞ in this particular case.
When X is a continuous random variable with finite differential entropy h(X), since
the limit of H([X])−h(X−[X]) is finite as δ → 0 and h(X−[X]) = log(1/δ) → +∞,
it follows that the discrete entropy H([X]) should actually diverge to +∞:

{
h(X) is finite

}
=⇒

{
H([X]) → +∞

}
. (34)

This is not surprising in light of Shannon’s first coding theorem (16): An arbitrarily
fine quantization of a continuous random variable requires a arbitrarily high
precision and therefore, an infinite coding rate.
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18. Most Beautiful Equation

It has long been said that the most beautiful mathematical equation is Euler’s
identity eiπ + 1 = 0, because it combines the most important constants in mathe-
matics like π and e together. Here’s another one that should perhaps be considered
equally beautiful. Let X∗ ∼ N (0, 1) by the standard normal, with density

p(x∗) =
1√
2π

e−
x∗2

2 . (35)

This of course is a fundamental distribution in mathematics and in physics, the limit
of the well-known central limit theorem. Its entropy is easily computed from (18)
as

h(X∗) = E log
(√

2πeX
∗2/2

)
(36)

= log
√
2π + log e · E(X∗2)/2. (37)

Here E(X∗2) = 1 since the standard normal has zero mean and unit variance. We
obtain

h(X∗) = log
√
2πe , (38)

a lovely formula that combines the three most important real constants in math-
ematics:

√
2 (diagonal of a unit square), π (circumference of a circle with unit

diameter), and e (base of natural logarithms).
The more general case where X∗ ∼ N (µ,σ2) follows a Gaussian distribution

with mean µ and variance σ2 is obtained by multiplying the standard variable by
σ and adding µ. From (26) and (27) we obtain

h(X∗) = log
√
2πe+ log σ =

1

2
log(2πeσ2). (39)

19. Entropy Power

Shannon advocated the use of the entropy power rather than the entropy in the
continuous case [43]. Loosely speaking, the entropy power is defined as the power of
the noise having the same entropy. Here the noise considered is the most common
type of noise encountered in engineering, sometimes known as “thermal noise”,
and modeled mathematically as a zero-mean Gaussian random variable X∗. The
(average) noise power N∗ is the mean squared value E(X∗2) which equals the
variance of X∗. By (39) its entropy is

h(X∗) =
1

2
log(2πeN∗) (40)

so that

N∗ =
exp
(
2h(X∗)

)

2πe
. (41)
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The entropy power N(X) of a continuous random variable X is, therefore, the
power N∗ of the noise X∗ having the same entropy h(X∗) = h(X). This gives

N(X) =
exp
(
2h(X)

)

2πe
. (42)

Interestingly, it turns out that the “entropy power” is essentially a constant raised
to the power of the (continuous) entropy. Thus, the physicist’s view of entropy
power uses the notion of power in physics while the mathematician’s view refers to
the notion of power in the mathematical operation of exponentiation.

When X is itself zero-mean Gaussian, its entropy power equals its actual
power E(X2). In general, X is not necessarily Gaussian, but the entropy power
still satisfies some properties that one would expect for a power: It is a positive
quantity, with the following scaling property:

N(aX) = a2N(X) (43)

which is an immediate consequence of (27).

20. A Fundamental Information Inequality

A fundamental inequality, first derived by Gibbs in the 19th century [23], is
sometimes known as the information inequality [9, Thm. 2.6.3]: For any random
variable X with distribution p(x),

E log
1

p(X)
≤ E log

1

q(X)
, (44)

where the expectation is taken with respect to p, and where q(x) is any other
probability distribution. Equality holds if and only if distributions p and q coincide.
The left-hand side of (44) is the discrete or continuous entropy, depending on
whether the variable X is discrete or continuous. Thus

H(X) =
∑

x

p(x) log
1

p(x)
≤
∑

x

p(x) log
1

q(x)
(45)

when X is discrete with probability distribution p(x) and

h(X) =

∫
p(x) log

1

p(x)
dx ≤

∫
p(x) log

1

q(x)
dx (46)

when X is continuous with probability density p(x). Notice that the right-hand
side is always identical to the left-hand side except for the distribution inside de
logarithm.

Gibbs’ inequality (44) is an easy consequence of the concavity of the logarithm.
By Jensen’s inequality, the difference between the two sides of (44) is

E log
q(X)

p(X)
≤ logE q(X)

p(X)
= log 1 = 0. (47)
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Indeed, E q(X)
p(X) =

∑
x

q(x)
p(x)p(x) =

∑
x q(x) = 1 in the discrete case, and E q(X)

p(X) =
∫ q(x)

p(x)p(x) dx =
∫
q(x) dx = 1 in the continuous case. Because the logarithm is

strictly concave, equality in Jensen’s inequality holds if and only if q(x)/p(x) is
constant, which implies that the two distributions p(x) and q(x) coincide.

The fundamental information inequality (44) is perhaps the most important
inequality in information theory because, as seen below, every classical information-
theoretic inequality can be easily derived from it.

21. The MaxEnt Principle

The maximum entropy (MaxEnt) principle first arose in statistical mechanics, where
it was shown that the maximum entropy distribution of velocities in a gas under the
temperature constraint is the Maxwell-Boltzmann distribution. The principle has
been later advocated by Edwin Jaynes for use in a general context as an attempt to
base the laws of thermodynamics on information theory [29]. His “MaxEnt school”
uses Bayesian methods and has been sharply criticized by the orthodox “frequentist”
school [14]. In an attack against the MaxEnt interpretation, French mathematician
Benôıt Mandelbrot once said: “Everyone knows that Shannon’s derivation is in
error”[54]. Of course, as we now show, Shannon’s mathematical derivation is
mathematically correct. Only physical misinterpretations of his calculations could
perhaps be questionable.

Consider the following general maximum entropy problem: Maximize the
(discrete or continuous) entropy over all random variables satisfying a constraint of
the form E{w(X)} = α, where w(x) is a some given weight function. A classical
approach to solving the problem would use the Lagrangian method, but a much
simpler derivation is based on Gibbs’ inequality (44) as follows.

Consider the “exponential” probability distribution

q(x) =
e−λw(x)

Z(λ)
, (48)

where Z(λ) is a normalizing factor, known in physics as the canonical partition
function, and λ is chosen so as to meet the constraint E{w(X)} = α. Plugging (48)
into (44) gives an upper bound on the discrete or continuous entropy:

H(X) or h(X) ≤ E log
(
Z(λ)eλw(X)

)
(49)

= logZ(λ) + (log e)λE{w(X)} (50)

= logZ(λ) + αλ log e. (51)

The entropy’s upper bound has now become constant, independent of the probability
distribution p(x) of X. Since equality (44) holds if and only if p(x) and q(x) coincide,
the upper bound (51) is attained precisely when p(x) is given by (48). Therefore,
logZ(λ) + αλ log e is in fact the desired value of the maximum entropy. The above
method can be easily generalized in the same manner to more than one constraint.
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This general result, sometimes known as the Shannon bound, can be applied
to many important problems. First, what is the maximum entropy of a discrete
random variable that can take at most M values? Set w(x) = 0, α = 0 so that
Z(λ) = M where the actual value of λ is of no importance. Then

maxH(X) = logM (52)

attained for a uniform distribution. Thus (7) is the maximum uncertainty, when
all outcomes are equally probable: One event cannot be expected in preference to
another. This is the classical assumption in the absence of any prior knowledge.

Similarly, what is the maximum entropy of a continuous random variable
having values in a finite-length interval [a, b]? Again set w(x) = 0, α = 0 so that
Z(λ) = b− a, the interval length. Then

max
X∈[a,b]

h(X) = log(b− a). (53)

Thus (20) is the maximum entropy, attained for a uniform distribution on [a, b].
More interestingly, what is the maximum entropy of a continuous variable

with fixed mean µ and variance σ2? Set w(x) = (x− µ)2, then α = σ2, λ = 1/2σ2,
Z(λ) =

√
2π/σ2, hence the maximum entropy is log

√
2πσ2 + (1/2) log e:

max
VarX=σ2

h(X) =
1

2
log(2πeσ2) (54)

attained for a normal N (µ,σ2) distribution. In other words, (39) is the maximum
entropy for fixed variance. When X is zero mean, σ2 = E(X2) is its power, hence
the entropy power (42) cannot exceed the actual power, which is attained if and
only if X is a Gaussian random variable.

The fact that the Gaussian (normal) distribution maximizes the entropy for
fixed first and second moments is of paramount importance in many engineering
methods, such as Burg’s spectral estimation method [5].

22. Relative Entropy or Divergence

The fundamental information inequality (44) gives rise to a new informational
measure which is in many respects even more fundamental than the entropy itself.
Let X be distributed according to the distribution p(x) and let X∗ be distributed
according to another distribution q(x). Then the difference between the two sides
of (44) is the relative entropy

D(X,X∗) = E log
p(X)

q(X)
≥ 0, (55)

often noted D(p, q) to stress the dependence on the two distributions1. This is also
known as the Kullback-Leibler divergence D(p, q) between the two distributions p
and q [33].

1It has now become common practice for information theorists to adopt the notation D(p‖q) with
a double vertical bar. The origin of such an unusual notation seems obscure.
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In contrast to Shannon’s entropy, the relative entropy is positive in both cases
of discrete or continuous distributions:

D(X,X∗) =
∑

x

p(x) log
p(x)

q(x)
≥ 0 (56)

for discrete probability distributions p, q and

D(X,X∗) =

∫
p(x) log

p(x)

q(x)
dx ≥ 0 (57)

for probability density functions p, q. In addition, the relative entropy D(X,X∗) =
D(p, q) vanishes if and only if equality holds in (44), that is, when p and q coincide.
Therefore, D(X,X∗) = D(p, q) can be seen as a measure of “informational distance”
relative to the two distributions p and q. Notice, however, that the above expressions
are not symmetrical in (p, q).

Furthermore, if we consider continuous random variables X,X∗ and quantize
them as in (28) with small quantization step δ to obtain discrete random variables
[X], [X∗], then the log 1

δ term present in § 17 cancels out on both sides of (46) and
we obtain

D([X], [X∗]) → D(X,X∗) as δ → 0. (58)

Thus, as the discrete random variables [X], [X∗] converge to the continuous ones
X,X∗, their relative entropy D([X], [X∗]) similarly converge to D(X,X∗). This
important feature of divergence allows one to deduce properties for continuous
variables from similar properties derived for discrete variables.

Finally, in the MaxEnt principle described in § 21, letting q(x) (the distribution
of X∗) be the entropy-maximizing distribution (48), we see that the right-hand side
of Gibbs’ inequality (44) equals the maximum entropy of X∗. Therefore, in this
case, the divergence is simply the difference between the entropy and its maximum
value:

D(X,X∗) =

{
H(X∗)−H(X) in the discrete case,

h (X∗) − h(X) in the continuous case.
(59)

For example, for M -ary variables, D(X,X∗) = H(X∗)−H(X) = logM−H(X) can
be seen as a measure of redundancy: It is the amount of rate reduction performed
by an optimal coding scheme according to Shannon’s source coding theorem (§ 14).
When X and X∗ are continuous variables with the same variance σ2, X∗ is normally
distributed and D(X,X∗) = h(X∗) − h(X) represents the “non-Gaussianity” of
the random variable X, which vanishes if and only if X is Gaussian.

23. Generalized Entropies and Divergences

There exist numerous generalizations of Shannon’s entropy and relative entropy. In
1960, Alfréd Rényi looked for the most general definition of information measures
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that would preserve the additivity of independent events [37]. The Rényi entropy
is defined for discrete random variables as

Hα(X) =
1

1− α
log
∑

x

p(x)α (60)

and the continuous version is accordingly hα(X) = 1
1−α log

∫
p(x)α dx. One recovers

Shannon’s entropy by letting α → 1. The most interesting special cases are α = 0
(the max-entropy), α = ∞ (the min-entropy) and α = 2 (the collision entropy).
There is also a Rényi α-divergence Dα(p, q) =

1
α−1 log

∑
x p(x)

α/q(x)α−1. Rényi
entropies have found many applications such as source coding, hypothesis testing,
channel coding, guessing, quantum information theory, and computer science.

The Tsallis entropy, first introduced by Havrda and Charvát [26], was proposed
as a basis for generalizing the standard Boltzmann-Gibbs statistical mechanics [55].
Since then its physical relevance has been debated [7]. It is defined as

1

α− 1

(
1−

∑

x

p(x)α
)
=

1− exp
(
(1− α)Hα(X)

)

α− 1
(61)

with the continuous version 1
α−1

(
1 −

∫
p(x)α dx

)
. Again Shannon’s entropy is

recovered by letting α → 1.
All these entropies and relative entropies have been further extensively gener-

alized as f -divergences [11] for some convex function f . Instances of f -divergences
are: relative entropy (Kullback-Leibler divergence), Rényi and Tsallis divergences,
the Hellinger distance, the Jensen-Shannon divergence, Vajda divergences including
the total variation distance and the Pearson (χ2) divergence, etc. There is abundant
literature on such generalized concepts and their applications in signal processing,
statistics and information theory.

24. How Does Relative Entropy Arise Naturally?

Similarly as in § 13, the relative entropy receives a useful operational justifica-
tion. Going back to the expression (12) for the probability of a sequence x of n
independent outcomes, and letting

q(x) =
n(x)

n
(62)

be the empirical probability of the sequence x (also referred to as its type), we can
rewrite (14) as an exact expression

p(x) =
(∏

x

p(x)q(x)
)n

= exp
(
−nH(X,X∗)

)
, (63)

where H(X,X∗) is the so-called cross-entropy

H(X,X∗) =
∑

x

q(x) log
1

p(x)
. (64)
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Since a typical sequence is characterized by its type q, the probability that a
randomly chosen sequence is typical is exactly N exp(−nH(X,X∗)), where N is
the number of typical sequences. Thus in particular N exp(−nH(X,X∗)) ≤ 1 for
any choice of p, and in particular for p = q we have N exp(−nH(X∗, X∗)) ≤ 1,
that is, N ≤ exp(−nH(X∗)). Since

H(X∗, X∗)−H(X∗) =
∑

x

q(x) log
1

p(x)
−
∑

x

q(x) log
1

q(x)
= D(q, p), (65)

the probability that a randomly chosen sequence is typical (according to the actual
probability distribution p) is bounded by

N exp(−nH(X,X∗)) ≤ exp(−nD(q, p)), (66)

where D(q, p) = D(X∗, X) ≥ 0 is the relative entropy or divergence. Therefore, if
q(x) diverges from p(x), the exponent D(q, p) is strictly positive and the probabil-
ity (66) can be made exponentially small.

Juste like the asymptotic equipartition property (14) is used to solve the
information compression problem (Shannon’s source coding theorem in § 14), the
above asymptotic “large deviation” bound (66) will be used in § 32 to solve the
information transmission problem (Shannon’s channel coding theorem).

25. Chernoff Information

Derivations similar to the above in the preceding section (§ 24) form the basis of
the method of types, a powerful technique in large deviations theory. More generally,
there is a strong relationship between information theory and statistics, and the
Kullback-Leibler divergence (55) has become a fundamental tool for solving many
problems in statistics.

For example, in the problem of testing hypotheses, the Kullback-Leibler
divergence is used to derive the best possible error exponents for tests to decide
between two alternative i.i.d. distributions p and q. In a Bayesian approach where we
assign prior probabilities to both hypotheses, the exponent of the overall probability
error is given by

D(Xλ, X) = D(Xλ, X
∗), (67)

where X follows p, X∗ follows q, and Xλ follows a distribution rλ proportional
to pλq1−λ. Here λ ∈ [0, 1] is chosen such that equality (67) holds, which gives the
maximum error exponent.

The common value (67) is known as the Chernoff information C(X,X∗). Just
as for the Kullback-Leibler divergence, it was derived in the early 1950s [6]. An
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easy calculation shows that

C(X,X∗) = max
λ

(
λD(Xλ, X) + (1− λ)D(Xλ, X

∗)
)

(68)

= max
λ

E log
rλ(Xλ)

pλ(Xλ)q1−λ(Xλ)
(69)

= −min
λ

log
∑

x

pλ(x)q1−λ(x). (70)

Such an information measure is symmetric in (p, q), positive and vanishes if and
only if the two distributions p and q coincide. Today, Chernoff information plays
an important role as a statistical distance for various data processing applications.

26. Fisher Information

In statistical parametric estimation, the concept of information was already explored
by Ronald Fisher in the 1920s [20], following an early work of Edgeworth [15] forty
years before Shannon. Loosely speaking, Fisher’s information measures the amount
of information about a parameter θ in an observed random variable X, where X is
modeled by a probability density pθ(x) that depends on θ.

To understand the significance of the Fisher information, consider an estimator
of θ, that is, some function θ̂(X) of the observed random variable X that is used
to estimate the value of θ. An optimal estimator would minimize the mean-squared
error (MSE), given by

MSE = E
(
(θ̂(X)− θ)2

)
=

∫
(θ̂(x)− θ)2 pθ(x) dx. (71)

Suppose, for simplicity, that the estimator is unbiased, i.e., its bias is zero for any
value of θ:

Bias = E(θ̂(X)− θ) =

∫
(θ̂(x)− θ) pθ(x) dx = 0. (72)

Taking the derivative with respect to θ, we obtain

1 =

∫
(θ̂(x)− θ)

∂pθ
∂θ

(x) dx (73)

=

∫
(θ̂(x)− θ)Sθ(x)pθ(x) dx (74)

= E
(
(θ̂(X)− θ)Sθ(X)

)
, (75)

where

Sθ(x) =
∂pθ

∂θ (x)

pθ(x)
=

∂ log pθ
∂θ

(x) (76)

is known as the score or informant, the derivative of the log-likelihood with respect
to θ. Now, by the Cauchy-Schwarz inequality,

1 =
{
E
(
(θ̂(X)− θ)Sθ(X)

)}2 ≤ E
(
(θ̂(X)− θ)2

)
· E
(
Sθ(X)2

)
, (77)
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where

Jθ(X) = E
(
Sθ(X)2

)
= E

((∂ log pθ
∂θ

(X)
)2)

(78)

is the Fisher information. The above inequality now writes

MSE ≥ 1

Jθ(X)
. (79)

This is the celebrated Cramér-Rao inequality derived by Fréchet, Darmois, Rao and
Cramér in the early 1940s [21, 12, 36, 10]. This inequality states that a universal
lower bound on the mean-squared error of any unbiased estimator is given by
the reciprocal of the Fisher information. In other words, the larger amount of
information Jθ(X) about θ, the more reliable its (unbiased) estimation can be.

Despite appearances, there is a strong relationship between Fisher’s and
Shannon’s concepts of information. In fact, Fisher’s information can be expressed
in terms of the relative entropy (divergence)

D(pθ, pθ′) = E log
pθ(X)

pθ′(X)
=

∫
pθ(x) log

pθ(x)

pθ′(x)
dx. (80)

By the fundamental information inequality (44), we know that D(pθ, pθ′) is positive
and vanishes when θ′ = θ (since in this case the two distributions pθ and pθ′

coincide). Therefore, the derivative with respect to θ′ vanishes at θ′ = θ, and the
second derivative is positive and represents its curvature at θ′ = θ.

For the first derivative, we have

∂

∂θ′
D(pθ, pθ′)

∣∣∣
θ′=θ

= −E ∂

∂θ′
log pθ′(X)

∣∣∣
θ′=θ

= −E
(
Sθ(X)

)
= 0 (81)

which simply means that the score has zero mean – hence the Fisher information (78)
also equals the variance of the score. That E

(
Sθ(X)

)
= 0 can easily be checked

directly since
∫
pθ(x)

∂pθ(x)
∂θ

pθ(x)
dx =

∫ ∂pθ(x)
∂θ dx = ∂

∂θ

∫
pθ(x) dx = ∂1

∂θ = 0.

For the second derivative, we have

∂2

∂θ′2
D(pθ, pθ′)

∣∣∣
θ′=θ

= −E ∂2

∂θ2
log pθ(X) (82)

which is the expected value of − ∂2

∂θ2 log pθ(X), sometimes referred to as the ob-

served information. Expanding ∂2

∂θ2 log pθ(x) =
∂
∂θ

∂pθ
∂θ (x)
pθ(x)

=
∂2pθ
∂θ2

(x)

pθ(x)
−
( ∂pθ

∂θ (x)
pθ(x)

)2
=

∂2pθ
∂θ2

(x)

pθ(x)
− Sθ(x)2, one finds that E

∂2pθ
∂θ2

(X)

pθ(X) =
∫
pθ(x)

∂2pθ(x)

∂θ2

pθ(x)
dx =

∫ ∂2pθ(x)
∂θ2 dx =

∂2

∂θ2

∫
pθ(x) dx = ∂21

∂θ2 = 0. Therefore,

∂2

∂θ′2
D(pθ, pθ′)

∣∣∣
θ′=θ

= Jθ(X). (83)
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Thus, the Fisher information also equals the expected “observed information” (82)
and can be identified to the curvature of the relative entropy. In fact, the second-
order Taylor expansion of relative entropy about θ is

D(pθ, pθ′) =
1

2
Jθ(X) · (θ′ − θ)2 + o(θ′ − θ)2. (84)

Thus, the more information about θ, the more “sharply peaked” is the relative
entropy about its minimum at θ. This means that θ is all more sharply localized as
its Fisher information is large.

27. Kolmogorov Information

We have seen in § 9 that when X is a random variable with probability distribu-
tion p(x), the amount of information associated to the event X = x can be defined
as log 1

p(x) . From Shannon’s source coding theorem (§ 14), log 1
p(x) represents the

minimal bit length required to describe x by an optimal code. Thus, the original
approach of Shannon is to base information theory on probability theory, which inci-
dentally was axiomatized as a rigorous mathematical theory by Andrëı Kolmogorov
in the 1930s.

Kolmogorov was an ardent supporter of Shannon’s information theory in the
1950s and 1960s. He went further than Shannon by defining the algorithmic com-
plexity of x as the length of the shortest binary computer program that describes x.
Kolmogorov proved that not only his definition of complexity is essentially computer
independent, but also that the average algorithmic complexity of a random variable
is roughly equal to its entropy. In this way, the Kolmogorov complexity extends
Shannon’s entropy while dispensing with the notion of probability distribution. In
a summary of his work on complexity theory, Kolmogorov wrote:

“Information theory must precede probability theory, and not be
based on it. By the very essence of this discipline, the foundations
of information theory have a finite combinatorial character.” [32]

The concept of Kolmogorov’s information or complexity is perhaps more philosoph-
ical than practical, closely related to Turing machines, Church’s thesis, universal
codes, the Occam’s razor principle, and Chaitin’s mystical number Ω – a well-known
“philosopher’s stone”. The reader is referred to [9, Chap. 14] for a more detailed
introduction.

28. Shannon’s Mutual Information

As we already have noted, Claude Shannon used the term ‘communication theory’
in his seminal 1948 work, not ‘information theory’. However, his most important
results rely on the notion of transmitted information over a communication channel.
This was soon formalized by Robert Fano who coined the term ‘mutual information’.
Fano recalled:
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I didn’t like the term ‘information theory’. Claude didn’t like it
either. You see, the term ‘information theory’ suggests that it is a
theory about information – but it’s not. It’s the transmission of
information, not information. Lots of people just didn’t understand
this. I coined the term ‘mutual information’ to avoid such nonsense:
making the point that information is always about something. It is
information provided by something, about something. [19]

Thanks to the notion of divergence D(p, q) (§ 22), Shannon’s mutual information
can be easily defined as a measure of mutual dependence between two random
variables X and Y . Let p(x, y) be the joint distribution of X and Y . If X and
Y were independent, the joint distribution would equal the product of marginals:
p(x, y) = p(x)p(y). In general, however, the two distributions p(x, y) and q(x, y) =
p(x)p(y) do not coincide. The mutual information I(X;Y ) is simply the divergence

D(p, q) = E log p(X,Y )
q(X,Y ) :

I(X;Y ) = E log
p(X,Y )

p(X)p(Y )
. (85)

It is a measure of mutual dependence as expected: By the fundamental information
inequality (44), I(X;Y ) ≥ 0 with equality I(X;Y ) = 0 if and only if p = q, that is,
X and Y are independent.

The same definition and properties hold for both discrete or continuous
random variables, thanks to the property (58) of divergence. Thus, if [X] and [Y ]
are quantized versions of continuous variables X,Y then I([X]; [Y ]) → I(X;Y ) as
the quantization step δ → 0.

Notice that although divergence D(p, q) is not symmetric in (p, q), mutual
information is symmetric in (X,Y ): I(X;Y ) = I(Y ;X), hence the term mutual.
It was found convenient by information theorists to use the semi colon ‘;’ as the
argument separator in the mutual information with lower precedence over the
comma ‘,’ e.g., to make the distinction between mutual informations I(X,Y ;Z)
(between (X,Y ) and Z) and I(X;Y, Z) (between X and (Y,Z)).

As usual for informational measures, mutual information I(X;Y ) does not
actually depend on the real values taken by the variables X,Y , but only on
their probability distributions. Thus, mutual information is well defined even for
categorical variables. This can be seen as an advantage over other dependence
measures like linear (or nonlinear) correlation.

As in Fano’s quote above, mutual information I(X;Y ) can be interpreted as
a measure of information provided by Y about X. To see this, rewrite (85) as

I(X;Y ) = E log
p(X|Y )

p(X)
, (86)

where p(x|y) = p(x, y)/p(y) is the conditional distribution of X knowing Y = y.
The (unconditional) distribution p(x) of X (not knowing Y ) is affected by the
knowledge of Y and the corresponding average relative entropy is precisely the
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mutual information (86). By symmetry, I(X;Y ) is also a measure of information
provided by X about Y .

The concept of mutual information has been generalized to more than two vari-
ables although the corresponding multivariate mutual information can sometimes
be negative [17].

29. Conditional Entropy or Equivocation

As seen below, mutual information (86) is a central concept in Shannon’s information
theory. It can be easily related to the concept of entropy by simply rewriting (86)
as

I(X;Y ) = E log
1

p(X)
− E log

1

p(X|Y )
. (87)

Thus mutual information is the difference between Shannon’s entropy of X and a
“conditional” entropy of X given Y :

I(X;Y ) =

{
H(X)−H(X|Y ) in the discrete case,

h(X) − h(X|Y ) in the continuous case,
(88)

where the conditional entropy, also known as equivocation, is defined by

H(X|Y ) =
∑

x

∑

y

p(x, y) log
1

p(x|y) (89)

in the discrete case, and

h(X|Y ) =

∫∫
p(x, y) log

1

p(x|y) dx dy (90)

in the continuous case. Notice that in contrast to the entropy of one variable,
the above definitions of conditional entropy involve averaging over both variables
X and Y . By symmetry of mutual information the variables X and Y can be
interchanged in the above expressions. There is also a notion of conditional mutual
information, e.g., I(X;Y |Z) = H(X|Z)−H(X|Y,Z).

30. Knowledge Reduces Uncertainty – Mixing Increases Entropy

The conditional entropy can be written as an average value of entropies, e.g.,

H(X|Y ) =
∑

y

p(y)
∑

x

p(x|y) log 1

p(x|y) =
∑

y

p(y)H(X|Y = y). (91)

Thus, for discrete variables, while H(X) measures the uncertainty about X,H(X|Y )
is a measure of the average uncertainty about X when Y is known. By (88),
I(X;Y ) = H(X)−H(X|Y ) ≥ 0, hence knowledge reduces uncertainty (on average):

H(X|Y ) ≤ H(X). (92)
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The difference between the two uncertainties is precisely I(X;Y ), the amount of
information provided by Y about X.

Similarly for continuous variables, since I(X;Y ) = h(X)− h(X|Y ) ≥ 0, we
still observe that conditioning reduces entropy :

h(X|Y ) ≤ h(X), (93)

even though we have seen that these differential entropies cannot be interpreted as
uncertainty measures.

As an interesting application of (92) consider two systems with probability
distributions p1 and p2 and their linear mixture pλ = λ1p1 + λ2p2 where λ1 ≥ 0
and λ2 ≥ 0 are such that λ1 + λ2 = 1. If X1 follows p1 and X2 follows p2, then
pλ = λ1p1 +λ2p2 can be seen as the distribution of the random variable Xλ, where
λ ∈ {1, 2} is itself random with respective probabilities λ1,λ2. Then by (92), the
entropy of the mixture satisfies

H(Xλ) ≥ H(Xλ|λ) = λ1H(X1) + λ2H(X2). (94)

In other words, mixing increases entropy : the entropy of the mixture is not less than
the corresponding mixture of entropies. This can also be seen as a concavity property
of entropy (with respect to the probability distribution), a classical statement in
information theory.

It is quite fascinating to see how such exciting expressions such as “knowledge
reduces uncertainty” or “mixing increases entropy” receive a rigorous treatment in
information theory. This perhaps explains the extraordinary wave of popularity
that Shannon’s theory has experienced in the past. More suggestive results are
derived in the next section.

31. A Suggestive Venn Diagram

The relationship between entropies, conditional entropies and mutual information
is summarized for discrete variables in the Venn diagram of Figure 2. Using the
diagram, we recover the relations I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).
In addition, many useful properties of information measures can be derived from it.

If, for example,X = Y (or ifX and Y are in bijection) then the two uncertainty
sets coincide in Figure 2, H(X|Y ) = H(Y |X) = 0, and

H(X) = I(X;X). (95)

This means that self-information is entropy : H(X) can be seen as the measure of
information provided by X about X itself. In particular, we recover that H(X) ≥ 0,
with equality H(X) = 0 if and only if X is independent of itself (!) which simply
means that p(x) = 0 or 1, i.e., X is deterministic or certain. This confirms the
intuition that H(X) is measure of randomness or uncertainty. For a continuous
random variable, we would have I(X;X) = H(X) = +∞ as explained in § 17.

For independent variables X and Y , I(X;Y ) = 0 and the two sets in Figure 2
are disjoint. In this case the joint entropy is H(X,Y ) = H(X)+H(Y ), the individual
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H(X|Y )

H(Y |X)

I(X;Y )

H(X)

H(Y )

H(X,Y )

Figure 2. Venn diagram illustrating relationships among Shan-
non’s measures of information. The mutual information I(X;Y )
corresponds to the intersection of the two “uncertainty sets”, while
the joint entropy H(X,Y ) corresponds to their union.

uncertainties simply add up. In the general case of dependent variables we would
have H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ): the joint uncertainty is the
sum of the uncertainty of one variable and the uncertainty of the other knowing
the first.

At the other extreme, suppose Y is fully dependent on X so that Y = f(X)
where f is some deterministic function. Then H(Y |X) = 0 and the uncertainty Y
set is contained inside the uncertainty X set in Figure 2. Therefore,

H
(
f(X)

)
≤ H(X). (96)

This means that processing reduces entropy : any function of a random variable has
the effect of decreasing its entropy.

Similarly, for any two random variables X and Y , both uncertainty sets in
the Venn diagram become smaller for f(X) and g(Y ) for any functions f and g.
Therefore, we have

I
(
f(X); g(Y )

)
≤ I(X;Y ). (97)

In words, data processing can only reduce information. This is a particular instance of
an important result in information theory known as the data processing inequality [9,
Thm. 2.8.1] for Markov chains.

32. Shannon’s Channel Coding Theorem

The mutual information, along with the asymptotic large deviation bound (66),
can be used to solve the information transmission problem: How can we reliably
transmit a source of information at the highest possible speed? This corresponds to
the model of Figure 1 in which the information source is to be transmitted though
the noisy channel at the maximum possible transmission rate while achieving an
arbitrarily reliable communication.
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A discrete sequence x = (x1, x2, . . . , xn) input to the channel normally corre-
sponds to a chosen channel code and is not random. But Shannon had the brilliant
idea to consider the whole set of all possible codes that may be used in the commu-
nication, and assign an (albeit artificial) probability to each code in such a way that
x can be considered as a realization of an i.i.d. sequence, as if the code were chosen
at random with independent code sequences. This is certainly the first application
of the famous “probabilistic method” later attributed to Paul Erdős [16]. In this
non-constructive method, known as random coding, Shannon considers the average
performance over all “random” codes and deduces the existence of at least one
“good” code. Roughly sketched, his argument is as follows.

Assume that the sequence x = (x1, x2, . . . , xn) is input to a memoryless
noisy channel. Then the corresponding channel output y = (y1, y2, . . . , yn) has the
property that it is jointly typical with the channel input x with high probability, in
the sense of the law of large numbers (see § 13). Therefore, to achieve an arbitrarily
reliable communication, it would be sufficient in theory to decode the received
signal y by selecting the code sequence x that is jointly typical with it, provided
that the actual transmitted code x is the only sequence having this property.

Now if another code sequence x′ happens to be jointly typical with y, since the
code sequences are chosen to be independent, the actual probability distribution p
of the corresponding bivariate random variable (X ′, Y ) is p(x)p(y) while its type q
is roughly equal to the joint distribution p(x, y). From § 24 and the asymptotic
large deviation bound (66), the probability that this happens is bounded by
exp
(
−nD(q, p)

)
where D(q, p) = D(p(x, y), p(x)p(y)) = I(X;Y ) by definition of

mutual information (85). For a channel with N code sequences, the total decoding
error probability Pe (averaged over all possible codes) is then bounded by

Pe ≤ N exp
(
−nI(X;Y )

)
. (98)

For this error probability to be exponentially small as n → +∞, it is sufficient that
the transmission rate R per symbol be strictly less than the mutual information:

R =
logN

n
< I(X;Y ). (99)

In order to maximize the transmission rate, the probability distribution p(x) of code
sequences can be chosen so as to maximize I(X;Y ). Shannon’s channel capacity

C = max
p(x)

I(X;Y ) (100)

is the maximum possible amount of information transmitted over the communication
channel. Thus, there exists a code achieving arbitrarily small probability of decoding
error, provided that

R < C. (101)

This is the celebrated Shannon’s second coding theorem [43] which provides the
best possible performance of any data transmission scheme over a noisy channel:
An arbitrarily reliable communication can be achieved so long as the transmission
rate does not exceed the channel’s capacity.
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This revolutionary theorem did change our world. For the first time, it was
realized that the transmission noise does not limit the reliability of the communi-
cation, only the speed of transmission. Thus, digital communications can achieve
almost perfect quality. That alone justifies that Shannon is considered as the father
of the digital information age.

Somewhat paradoxically, even though Shannon’s channel coding theorem is
non-constructive, it suggest that any code picked at random would be very likely
to be almost optimal. However, since n → +∞ in Shannon’s argument, such a code
would be impossible to implement in practice. Intensive research is still undertaken
today to derive good channel codes, sufficiently complex (that appear ‘random’) to
perform well and at the same time sufficiently simple to be efficiently implemented.

33. Shannon’s Capacity Formula

Perhaps the most emblematic classical expression of information theory is Shannon’s
capacity formula for a communication channel with additive white Gaussian noise
(AWGN). The AWGN model is the basic noise model used to mimic the effect of
many random processes that occur in nature, and a very good model for many
practical communication links. The capacity is given by (100) where in the AWGN
model,

Y = X + Z∗, (102)

where Z∗ ∼ N (0, N) is a Gaussian random variable with zero mean and power N ,
independent of the transmitted signal X. The maximum in (100) is to be taken over
distributions p(x) such that X has limited power P . Here the quantity SNR = P/N
is known as the signal-to-noise ratio (SNR). We have

I(X;Y ) = h(Y )− h(Y |X) by (88) (103)

= h(Y )− h(Z∗) by (102) (104)

≤ h(Y ∗)− h(Z∗) by (54), (105)

where Y ∗ is a Gaussian random variable having the same power as Y = X + Z∗,
that is, P +N . The upper bound (105) is attained when X = X∗ is itself Gaussian,
since then Y = X∗+Z∗ = Y ∗ is also Gaussian (as the sum of independent Gaussian
variables). Therefore, (105) is the required capacity. From (39) we obtain

C =
1

2
log
(
2πe(P +N)

)
− 1

2
log(2πeN) =

1

2
log(1 + P/N). (106)

This is the celebrated Shannon’s capacity formula C = (1/2) log(1 + SNR) that
appears in Shannon’s 1948 paper. It is often said that Hartley derived a similar
rule twenty years before Shannon, but in fact this is a historical misstatement [38].
However, this formula was discovered independently by at least seven other re-
searchers in the same year 1948! [38] An illustration of a concept whose time has
come.
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34. The Entropy Power Inequality and a Saddle Point Property

It is well known that the power of the sum of independent zero-mean random
variables equals the sum of the individual powers. For the entropy power (42),
however, with have the inequality

N(X + Y ) ≥ N(X) +N(Y ) (107)

for any independent variables X and Y . This is known as the entropy power
inequality (EPI): The entropy power of the sum of independent random variables
is not less than the sum of the individual entropy powers.

The EPI was first stated by Shannon in his 1948 paper and is perhaps the
most difficult and fascinating inequality in the theory. Shannon’s 1948 proof [43]
was incomplete; the first rigorous proof was given ten years later by Stam [50],
with a quite involved argument based on the Fisher information. In the last section
of this paper I will present a simple and recent (2017) proof from [39].

The EPI was initially used by Shannon to evaluate the channel capacity for
non-Gaussian channels. It now finds many applications in information theory (to
bound performance regions for multi-user source or channel coding problems) and
in mathematics (e.g., to prove strong versions of the central limit theorem).

It is particularly interesting to review how Shannon used the EPI to specify the
role of the Gaussian distribution for communication problems. From the preceding
section (§ 33), we know that the Gaussian X∗ maximizes the mutual information
I(X;Y ) transmitted over a channel with additive Gaussian noise Z∗, i.e.,

I(X;X + Z∗) ≤ I(X∗;X∗ + Z∗) = C. (108)

where C = 1
2 log(1+P/N). On the other hand, when the additive noise Z of power

N is not necessarily Gaussian and the channel input X∗ is Gaussian of power P ,
we have

I(X∗;X∗ + Z) = h(X∗ + Z)− h(Z) (109)

=
1

2
log
(
2πeN(X∗ + Z)

)
− 1

2
log
(
2πeN(Z)

)
, (110)

where by the EPI (107), N(X∗ + Z) ≥ N(X∗) +N(Z) = P +N(Z). Therefore,

I(X∗;X∗ + Z) ≥ 1

2
log
(
1 + P/N(Z)

)
≥ 1

2
log
(
1 + P/N

)
, (111)

where we have used that the entropy power N(Z) does not exceed the actual
power N . Combining this with (108) we obtain a saddle point property of mutual
information:

I(X;X + Z∗) ≤ I(X∗;X∗ + Z∗)︸ ︷︷ ︸
C= 1

2 log(1+P/N)

≤ I(X∗;X∗ + Z). (112)

This shows that the Gaussian is at the same time the best signal X∗ (which
maximizes information) and the worst noise Z∗ (which minimizes information).
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From this result, one can define a two-person (signal X and noise Z) zero-sum
game with mutual information as the payoff function for which a Nash equilibrium
holds with the Gaussian saddle point (X∗, Z∗) [1]. Similar considerations can be
used to establish a certain duality between source and channel coding.

35. MaxEnt vs. MinEnt Principles

Before going through the proof the EPI (107), it is convenient to rewrite it as an
extremum property of the differential entropy. Let X and Y be any two independent
continuous random variables and let X∗ and Y ∗ be zero-mean Gaussian independent
variables.

From the maximum entropy (MaxEnt) principle (see (54) in § 21) we know
that under a fixed variance constraint, the differential entropy is maximized for a
Gaussian variable. Thus under the condition of identical individual variances :

Var(X∗) = Var(X) and Var(Y ∗) = Var(Y ), (113)

the entropy of the linear combination aX + bY is maximized for Gaussian variables:

h(aX + bY ) ≤ h(aX∗ + bY ∗). (114)

This is simply a consequence of the fact that aX∗ + bY ∗ is Gaussian (as the sum
of independent Gaussian variables) of the same variance as aX + bY .

Interestingly, the EPI (107) can be rewritten as a minimum entropy (MinEnt)
principle: Under the condition of identical individual entropies :

h(X∗) = h(X) and h(Y ∗) = h(Y ), (115)

the entropy of the linear combination aX + bY is now minimized for Gaussian
variables:

h(aX + bY ) ≥ h(aX∗ + bY ∗). (116)

To see this, notice that from the scaling property of the entropy power (43), the
EPI (107) can be rewritten as N(aX+bY ) ≥ N(aX)+N(bY ) = a2N(X)+b2N(Y ).
But from (115) we have N(X) = N(X∗) and N(Y ) = N(Y ∗). Since the entropy
power of a Gaussian variable is the same as its power, a2N(X) + b2N(Y ) =
a2N(X∗) + b2N(Y ∗) = N(aX∗ + bY ∗). Thus the EPI can be rewritten as N(aX +
bY ) ≥ N(aX∗ + bY ∗) which taking logarithms is the same as (116).

In addition, we shall see that the minimum is achieved only for Gaussian
variables provided the linear combination is not trivial (a, b are non-zero scalars).
This MinEnt form (116) of the EPI finds application in signal processing for blind
source separation and deconvolution.

36. A Simple Proof of the Entropy Power Inequality [39]

Lastly, proceed to prove the EPI in the form (116). First, by the scaling property
of entropy (27), we can always modify the constants a, b in such a way that X and
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Y can be assumed to have equal entropies. Then condition (115) writes

h(X) = h(Y ) = h(X∗) = h(Y ∗). (117)

In particular, the zero-mean Gaussian variables X∗ and Y ∗ have equal entropies,
equal variances, and, therefore, identical normal distributions.

Next, applying by the scaling property of entropy (27) if necessary in (116),
we can always assume that a, b have been further normalized such that a2 + b2 = 1.
Then X̃ = aX∗ + bY ∗ in the right-hand side of (116) is also identically distributed
as X∗ and Y ∗. In fact, the rotation

(
X̃

Ỹ

)
=

(
a b

−b a

)(
X∗

Y ∗

)
(118)

transform i.i.d. Gaussian variables X∗, Y ∗ into i.i.d. Gaussian variables X̃, Ỹ .
We now use the classical inverse transform sampling method: Let Φ be the

cumulative distribution function (c.d.f.) of X∗ and F be the c.d.f. of X. Then

F (x) = Φ
(
Φ−1

(
F (x)

))
(119)

= P
(
X∗ ≤ Φ−1

(
F (x)

))
(120)

= P
(
Φ(X∗) ≤ F (x)

)
(121)

= P
(
F−1

(
Φ(X∗)

)
≤ x

)
. (122)

Thus letting T = F−1 ◦ Φ, the variable T (X∗) has the same distribution as X,
and we can write X = T (X∗) in the above expressions. This so-called transport
argument can also be applied to Y . Thus, we can always assume that

X = T (X∗) and Y = U(Y ∗) (123)

for some “transportation” functions T and U . The EPI (116) now writes

h
(
aT (X∗) + bU(Y ∗)

)
≥ h(aX∗ + bY ∗), (124)

where the right-hand side equals h(X̃). By the inverse of rotation (118)

(
X∗

Y ∗

)
=

(
a −b
b a

)(
X̃

Ỹ

)
, (125)

the EPI (116) is equivalent to the inequality:

h
(
a T (aX̃ − bỸ ) + b U(bX̃ + aỸ )

)
≥ h(X̃). (126)

We now proceed to prove (126). Since conditioning reduces entropy (93),

h
(
a T (aX̃ − bỸ ) + b U(bX̃ + aỸ )

)
≥ h

(
a T (aX̃ − bỸ ) + b U(bX̃ + aỸ )

∣∣Ỹ
)
. (127)

Apply the change of variable formula (25) in the right-hand side, where Ỹ is fixed
so that TỸ (X̃) = a T (aX̃ − bỸ ) + b U(bX̃ + aỸ ) is a function of X̃ alone with
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derivative a2T ′(aX̃ − bỸ ) + b2U ′(bX̃ + aỸ ). Then

h
(
a T (aX̃ − bỸ ) + b U(bX̃ + aỸ )

∣∣Ỹ
)

= h(X̃ | Ỹ ) + E log
(
a2T ′(aX̃ − bỸ ) + b2U ′(bX̃ + aỸ )

)
(128)

= h(X̃) + E log
(
a2T ′(X∗) + b2U ′(Y ∗)

)
. (129)

It remains to prove that the second term E log
(
a2T ′(X∗)+b2U ′(Y ∗)

)
is nonnegative.

By the concavity property of the logarithm,

E log
(
a2T ′(X∗) + b2U ′(Y ∗)

)
≥ E

(
a2 log T ′(X∗) + b2 logU ′(Y ∗)

)
(130)

= a2 E log T ′(X∗) + b2 E logU ′(Y ∗), (131)

where from (25) and (117),

a2 E log T ′(X∗) + b2 E logU ′(Y ∗) = a2
(
h(T (X∗))−h(X∗)

)
+b2

(
h(U(Y ∗))−h(Y ∗)

)

= a2
(
h(X)− h(X∗)

)
+ b2

(
h(Y )− h(Y ∗)

)

(132)

= 0. (133)

This ends the proof of the EPI.
The equality case in (116) can be easily settled in this proof. If the linear

combination is not trivial (that is, if both a and b are nonzero scalars), equality
holds in the concavity inequality (130) if and only if T ′(X∗) = U ′(Y ∗). Since X∗

and Y ∗ are independent Gaussian variables, this implies that the derivatives T ′ and
U ′ are constant and equal, hence X and Y in (123) are Gaussian. Thus equality
holds in (116) only for Gaussian variables.

37. Conclusion

Who else but Shannon himself can conclude on his life’s work in information theory?

“I didn’t think in the first stages that it was going to have a great
deal of impact. I enjoyed working on this kind of a problem, as I
have enjoyed working on many other problems, without any notion
of either financial gain or in the sense of being famous; and I think
indeed that most scientists are oriented that way, that they are
working because they like the game.” [49]
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[51] Leó Szilárd, “Über die Entropieverminderung in einem thermodynamischen System
bei Eingriffen intelligenter Wesen.” [On the Decrease of Entropy in a Thermodynamic
System by the Intervention of Intelligent Beings], Zeitchrift für Physik, Vol. 53, 1929,
840–856.

[52] Libb Thims, “Thermodynamics != Information Theory: Science’s Greatest Sokal
Affair,” Journal of Human Thermodynamics, Vol. 8, No. 1, Dec. 2012, pp. 1–120.

[53] Myron Tribus and Edward C. McIrvine, “Energy and Information,” Scientific Amer-
ican, Vol. 225, 1971, pp. 179–188.

[54] Myron Tribus, “A Tribute to Edwin T. Jaynes,” in Proceedings of the 18th Interna-
tional Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis,
Garching, Germany, 1998, pp. 11–20.



86 O. Rioul

[55] Constantino Tsallis, “Possible Generalization of Boltzmann-Gibbs Statistics,” Journal
of Statistical Physics, Vol. 52, Nos. 1/2, 1988, pp. 479–487.

[56] Johann von Neumann, Mathematische Grundlagen der Quantenmechanik, Verlag Von
Julius Springer: Berlin, Germany, 1932.

[57] Warren Weaver, “The Mathematics of Communication,” Scientific American, vol.
181, no. 1, July 1949, pp. 11–15.

[58] Norbert Wiener, “The Extrapolation, Interpolation, and Smoothing of Stationary
Time Series (with Engineering Applications),” M.I.T., Feb. 1, 1942. Published by
Technology Press and John Wiley & Sons, 1949.

[59] ———, Cybernetics, Chapter III: Time series, Information and Communication, John
Wiley & Sons: New York, NY, U.S.A., 1948, pp. 10–11.

[60] ———, “What is Information Theory?” IRE Transactions on Information Theory,
Editorial, Vol. 2, No. 2, July 1956, p. 48.

[61] IEC 80000-13:2008, Quantities and units – Part 13: Information science and technology,
International Organization for Standardization.

Olivier Rioul
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