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ABSTRACT

In distance-based network indices, the distance between two ver-

tices is measured by the length of shortest paths between them. A

shortcoming of this measure is that when it is used in real-world net-

works, a huge number of vertices may have exactly the same close-

ness/eccentricity scores. This restricts the applicability of these in-

dices as they cannot distinguish vertices. Furthermore, in many ap-

plications, the distance between two vertices not only depends on

the length of shortest paths, but also on the number of shortest paths

between them. In this paper, first we develop a new distance mea-

sure, proportional to the length of shortest paths and inversely pro-

portional to the number of shortest paths, that yields discriminative

distance-based centrality indices. We present exact and randomized

algorithms for computation of the proposed discriminative indices.

Then, by performing extensive experiments, we first show that com-

pared to the traditional indices, discriminative indices have usually

much more discriminability. Then, we show that our randomized

algorithms can very precisely estimate average discriminative path

length and average discriminative eccentricity, using only few sam-

ples. Then, we show that real-world networks have usually a tiny

average discriminative path length, bounded by a constant (e.g., 2).

We refer to this property as the tiny-world property. Finally, we

present a novel link prediction method, that uses discriminative dis-

tance to decide which vertices are more likely to form a link in

future, and show its superior performance.

CCS CONCEPTS

•Theory of computation→ Shortest paths;

KEYWORDS

Social network analysis, distance-based network indices, discrimi-

native indices, closeness centrality, eccentricity, average path length,

the tiny-world property, link prediction

ACM Reference format:

Mostafa Haghir Chehreghani, Albert Bifet, and Talel Abdessalem. . Dis-

criminative Distance-Based Network Indices with Application to Link Pre-

diction. In Proceedings of , , , 15 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

,

. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

An important category of network indices is based on the distance

(the length of the shortest paths) between every two vertices in the

network. It includes closeness centrality, average path length, ver-

tex eccentricity, average graph eccentricity, etc. Indices in this

category have many important applications in different areas. For

example, in disease transmission networks, closeness centrality is

used to measure vulnerability to disease and infectivity [5]. In rout-

ing networks, vertex eccentricity is used to determine vertices that

form the periphery of the network and have the largest worst-case

response time to any other device [43, 66]. In biological networks,

vertices with high eccentricity perceive changes in concentration of

their neighbor enzymes or molecules [59].

Using the length of shortest paths as the distance measure has

shortcomings. A well-studied shortcoming is that extending it to

disconnected graphs (and also directed graphs) is controversial [20,

44, 55, 70]. The other –less studied– shortcoming is that by us-

ing this measure, a huge number of vertices may find exactly the

same closeness/eccentricity score. For instance, Shun [65] recently

reported that around 30% of the (connected) vertices of the Yahoo

graph have the same non-zero eccentricity score. Our experiments,

reported in Section 6.1, reveal that this happens in many real-world

graphs. This restricts the applicability of distance-based indices

such as closeness and eccentricity, as they cannot distinguish ver-

tices. For example, when closeness or eccentricity are used for the

facility location problem [34], they may not be able to distinguish

one location among a set of candidate locations. Finally, in many

cases, the distance between two vertices not only depends on the

length of shortest paths, but also on the number of shortest paths

between them. As a simple example, consider a network of loca-

tions where edges are roads connecting the locations. In a facility

location problem, given two (or more) candidate locations, we want

to choose the one which is more accessible from the rest of the net-

work. Then, we may prefer the location which is slightly farther

from the rest of the network but has more connections to the lo-

cation which is closest to the rest of the network. In particular, if

two locations have exactly the same distance from the other loca-

tions, the one connected to the rest of the network by more roads is

preferred.

These observations motivate us to develop a new distance mea-

sure between vertices of a graph that yields more discriminative cen-

trality notions. Furthermore, it considers both shortest path length

and the number of shortest paths. In this paper, our key contribu-

tions are as follows.

http://arxiv.org/abs/1703.06227v3
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• We propose new distance-based network indices, includ-

ing discriminative closeness, discriminative path length,

discriminative vertex eccentricity and average discrimina-

tive graph eccentricity. These indices are proportional to

the length of shortest paths and inversely proportional to

the number of shortest paths. Our empirical evaluation of

these notions reveals an interesting property of real-world

networks. While real-world graphs have the small-world

property which means they have a small average path length

bounded by the logarithm of the number of their vertices,

they usually have a considerably smaller average discrim-

inative path length, bounded by a constant (e.g., 2). We

refer to this property as the tiny-world phenomena.

• We present algorithms for exact computation of the pro-

posed discriminative indices. We then develop a random-

ized algorithm that precisely estimate average discrimina-

tive path length (and average discriminative eccentricity)

and show that it can give an (ϵ, δ )-approximation, where

ϵ ∈ R+ and δ ∈ (0, 1).

• We perform extensive experiments over several real-world

networks from different domains. First, we examine dis-

criminability of our proposed indices and show that com-

pared to the traditional indices, they are usually much more

discriminative1. Second, we evaluate the empirical effi-

ciency of our simple randomized algorithm for estimating

average discriminative path length and show that it can

very precisely estimate average discriminative path length,

using only few samples. Third, we show that our simple

randomized algorithm for estimating average discrimina-

tive eccentricity can generate high quality results, using

only few samples. This has analogy to the case of average

eccentricity where a simple randomized algorithm signifi-

cantly outperforms more advanced techniques [65].

• In order to better motivate the usefulness of our proposed

distance measure in real-world applications, we present a

novel link prediction method, that uses discriminative dis-

tance to indicate which vertices are more likely to form a

link in future. By running extensive experiments over sev-

eral real-world datasets, we show the superior performance

of our method, compared to the well-known existing meth-

ods.

The rest of this paper is organized as follows. In Section 2,

preliminaries and necessary definitions related to distance-based in-

dices are introduced. A brief overview on related work is given in

Section 3. In Section 4, we introduce our discriminative distance-

based indices and discuss their extensions and properties. We present

exact and approximate algorithms for computing discriminative in-

dices in Section 5. In Section 6, we empirically evaluate discrim-

inability of our indices and the efficiency and accuracy of our ran-

domized algorithms. In Section 7, we present our link prediction

method and show its superior performance. Finally, the paper is

concluded in Section 8.

1Note that having a total ordering of the vertices is not always desirable and by discrim-

inative indices, we do not aim to do so. Instead, we want to have a partial ordering over
a huge number of vertices that using traditional distance-based measures, find exactly
the same value.

2 PRELIMINARIES

In this section, we present definitions and notations widely used in

the paper. We assume that the reader is familiar with basic concepts

in graph theory. Throughout the paper, G refers to a graph (net-

work). For simplicity, we assume that G is a connected, undirected

and loop-free graph without multi-edges. Throughout the paper, we

assume that G is an unweighted graph, unless it is explicitly men-

tioned that G is weighted. V (G) and E(G) refer to the set of vertices

and the set of edges of G, respectively. We use n and m to refer to

|V (G)| and |E(G)|, respectively. We denote the set of neighbors of a

vertex v by N(v).

A shortest path (also called a geodesic path) between two ver-

tices v,u ∈ V (G) is a path whose length is minimum, among all

paths betweenv and u. For two verticesv,u ∈ V (G), we use d(v,u),

to denote the length (the number of edges) of a shortest path con-

necting v and u. We denote by σ (v,u) the number of shortest paths

between v and u. By definition, d(v,v) = 0 and σ (v,v) = 0. We

use deд(v) to denote the degree of vertex v . The diameter of G, de-

noted by ∆(G), is defined as maxv,u ∈V (G) d(v,u). The radius of G

is defined as minv ∈V (G)maxu ∈V (G)\{v } d(v,u).

Closeness centrality of a vertex v ∈ V (G) is defined as [32]:2

C(v) =
1

n − 1

∑
u ∈V (G)\{v }

d(v,u). (1)

Average path length of graph G is defined as [49]:

APL(G) =
1

n × (n − 1)

∑
v ∈V (G)

∑
u ∈V (G)\{v }

d(v,u). (2)

Eccentricity of a vertex v ∈ V (G) is defined as [11, 30]:3

E(v) =
1

n − 1
max

u ∈V (G)\{v }
d(v,u). (3)

Average eccentricity of graph G is defined as [11, 30]:

AE(G) =
1

n × (n − 1)

∑
v ∈V (G)

max
u ∈V (G)\{v }

d(v,u). (4)

Center of a graph is defined as the set of vertices that have the min-

imum eccentricity. Periphery of a graph is defined as the set of

vertices that have the maximum eccentricity.

3 RELATED WORK

The widely used distance-based indices are closeness centrality, av-

erage path length, eccentricity and average eccentricity defined in

Section 2. In all these indices, it is required to compute the dis-

tance between every pair of vertices. The best algorithm in the-

ory for solving all-pairs shortest paths is based on matrix multi-

plication [72] and its time complexity is O(n2.3727). However, in

practice breadth first search (for unweighted graphs) and Dijkstra’s

algorithm (for weighted graphs with positive weights) are more

2 The more common definition of closeness centrality is as follows [6]: C (v) =
n−1∑

u∈V (G )\{v } d (v,u )
. In this paper, due to consistency with the definitions of the other

distance-based indices, we use the definition presented in Equation 1. Note that this
change has no effect on the results presented in the paper and they are still valid for the
more common definition of closeness.
3Again, while the common definition of eccentricity does not have the normalization

factor 1
n−1 , here in order to have consistent definitions for all the distance-based in-

dices, we add it to Equation 3.
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efficient. Their time complexities for all vertices are O(nm) and

O(nm + n2 logn), respectively. In the following, we briefly review

exact and inexact algorithms proposed for computing closeness and

eccentricity.

3.1 Closeness centrality and average path length

Eppstein and Wang [24] presented a uniform sampling algorithm

that with high probability approximates the inverse closeness cen-

trality of all vertices in a weighted graph G within an additive er-

ror ϵ∆(G). Their algorithm requires O(
logn

ϵ 2
) samples and spends

O(n logn +m) time to process each one. Brandes and Pich [10] ex-

tended this sampler by considering different non-uniform ways of

sampling. Cohen et.al. [19] combined the sampling method with

the pivoting approach [18] and [68], where pivoting is used for the

vertices that are far from the given vertex. Olsen et.al. [54] sug-

gested storing and re-using the intermediate results that are com-

mon among different vertices. Okamoto et.al. [53] presented an al-

gorithm for ranking top k highest closeness centrality vertices that

runs in O((k + n
2
3 log

1
3 n)(n logn +m)) time. There are several ex-

tensions of closeness centrality for specific networks. Kang et.al.

[32] defined closeness centrality of a vertex v as the (approximate)

average distance from v to all other vertices in the graph and pro-

posed algorithms to compute it in MAPREDUCE. Tarkowski et.al.

[67] developed a game-theoretic extension of closeness centrality

to networks with community structure.

3.2 Eccentricity and average eccentricity

Dankelmann et.al. [61] showed that the average eccentricity of a

graph is at least 9n
4(deдm+1)

+ O(1), where deдm is the minimum

degree of the graph. Roditty and Williams [63] developed an algo-

rithm that gives an estimation Ê(v) of the eccentricity of vertex v in

an undirected and unweighted graph, such that Ê(v) is bounded as

follows: 2
3E(v) ≤ Ê(v) ≤ 3

2E(v). Time complexity of this algorithm

is O(m
√
n logn). Takes and Kosters [66] presented an exact eccen-

tricity computation algorithm, based on lower and upper bounds on

the eccentricity of each vertex of the graph. They also presented

a pruning technique and showed that it can significantly improve

upon the standard algorithms. Chechik et.al. [12] introduced an

O((m logm)3/2) time algorithm that gives an estimate Ê(v) of the

eccentricity of vertex v in an undirected and weighted graph, such

that 3
5E(v) ≤ Ê(v) ≤ E(v). Shun [65] compared shared-memory

parallel implementations of several average eccentricity approxima-

tion algorithms. He showed that in practice a two-pass simple algo-

rithm significantly outperforms more advanced algorithms such as

[63] and [12].

4 DISCRIMINATIVE DISTANCE-BASED

INDICES

In this section, we present the family of discriminative distance-

based indices.

4.1 Indices

The first index is discriminative closeness centrality. Similar to

closeness centrality, discriminative closeness is based on the length

of shortest paths between different vertices in the graph. However,

unlike closeness centrality, discriminative closeness centrality con-

siders the number of shortest paths, too. For a vertex v ∈ V (G),

discriminative closeness of v , denoted with DC(v), is formally de-

fined as follows:

DC(v) =
1

n − 1

∑
u ∈V (G)\{v }

d(v,u)

σ (v,u)
. (5)

If in the definition of average path length, closeness centrality

is replaced by discriminative closeness centrality defined in Equa-

tion 5, we get average discriminative path length of G, defined as

follows:

ADPL(G) =
1

n × (n − 1)

∑
v ∈V (G)

∑
u ∈V (G)\{v }

d(v,u)

σ (v,u)
. (6)

In a similar way, discriminative eccentricity of a vertexv ∈ V (G),

denoted by DE(v), is defined as follows:

DE(v) =
1

n − 1
max

u ∈V (G)\{v }

d(v,u)

σ (v,u)
. (7)

Finally, average discriminative eccentricity of G is defined as

follows:

ADE(G) =
1

n × (n − 1)

∑
v ∈V (G)

max
u ∈V (G)\{v }

d(v,u)

σ (v,u)
. (8)

All these notions are based on replacing distance by discrimi-

native distance, defined as follows. For v,u ∈ V (G), discrimina-

tive distance between v and u, denoted with dd(v,u), is defined as
d (v,u)
σ (v,u)

. We define discriminative diameter and discriminative ra-

dius of G respectively as follows:

DD(G) = max
v ∈V (G)

max
u ∈V (G)\{v }

d(v,u)

σ (v,u)
, (9)

DR(G) = min
v ∈V (G)

max
u ∈V (G)\{v }

d(v,u)

σ (v,u)
. (10)

Finally, we define discriminative center of a graph as the set of

vertices that have the minimum discriminative eccentricity; and dis-

criminative periphery of a graph as the set of vertices that have the

maximum discriminative eccentricity.

Generalizations. We can consider two types of generalizations

of Equations 5-10. In the first generalization, in the denominator

of the equations, instead of using the number of shortest paths, we

may use the number of a restricted class of shortest paths, e.g., ver-

tex disjoint shortest paths, edge disjoint shortest paths etc. In the

second generalization, instead of directly using distances and the

number of shortest paths, we may introduce and use functions f

and д, defined respectively on the length and the number of shortest

paths. Then, by changing the definitions of f and д, we can switch

among different distance-based notions. For example, for any two

vertices v,u ∈ V (G), if f (d(v,u)) and д(σ (v,u)) are respectively

defined as d(v,u) and 1, we will have the traditional distance-based

indices introduced in Section 2. If f (d(v,u)) and д(σ (v,u)) are re-

spectively defined as 1
d (v,u)

and 1, we will have harmonic closeness

centrality [44] defined as follows:

HC(v) =
1

n − 1

∑
u ∈V (G)\{v }

1

d(v,u)
.
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Then, someone may define discriminative harmonic closeness cen-

trality of vertex v as:

DHC(v) =
1

n − 1

∑
u ∈V (G)\{v }

σ (v,u)

d(v,u)
, (11)

where f (d(v,u)) and д(σ (v,u)) are respectively defined as 1
d (v,u)

and 1
σ (v,u)

.

Connection to the other indices. Path-based indices such as be-

tweenness centrality [14, 16] (and its generalizations such as group

betweenness centrality [69] and co-betweenness centrality [13]) con-

sider the number of shortest paths that pass over a vertex. However,

betweenness centrality does not consider the shortest path length

and it is used as an indicator of the amount of control that a vertex

has over shortest paths in the network. Some variations of between-

ness centrality, such as length-scaled betweenness centrality and

linearly scaled betweenness centrality [9], are more similar to our

proposed notions. However, they still measure the amount of con-

trol that a vertex has over shortest paths, but give a weight (which is

a function of distance) to the contribution of each shortest path. In

our proposed notions, the number of shortest paths passing over a

vertex does not always contribute to the centrality of the vertex. In-

dices such as Katz centrality [33] and personalized PageRank [28]

consider both the length and the number of paths between two ver-

tices. However, there are important differences, too. For example,

Katz centrality is proportional to both the length and the number

of paths. Furthermore, it considers all paths. This makes it inap-

propriate for the applications where the concept of shortest paths

is essential. This index is mainly used in the analysis of directed

acyclic graphs. If in the Katz index of two vertices v and u, de-

noted by K(v,u), the paths are limited to shortest paths (and the

bias constant β is set to 0), we can express it using our generaliza-

tion of discriminative indices. If this limitation is applied, K(v,u)

will be defined as αd (v,u)σ (v,u), where α is the attenuation factor

[33]. Then, this index can be seen as a special case of our gener-

alized discriminative index, where f (d(v,u)) is defined as αd (v,u)

and д(σ (v,u)) is defined as 1
σ (v,u)

.

The other index that may have some connection to our discrimi-

native indices is clustering coefficient [71]. Both clustering coeffi-

cient and discriminative indices are sensitive to the local density of

the vertices, however, they have different goals. While clustering

coefficient aims to directly reflect the local density, discriminative

indices aim to take into account the density of different regions of

the graph, when computing distances.

Disconnected or directed graphs. When the graph is disconnected

or directed, it is possible that there is no (shortest) path between

vertices v and u. In this case, d(v,u) = ∞ and σ (v,u) = 0, hence,
d (v,u)
σ (v,u)

is undefined. For closeness centrality, when d(v,u) = ∞, a

first solution is to define d(v,u) as n. The rationale is that in this

case d(v,u) is a number greater than any shortest path length. We

can use a similar technique for discriminative distance: when there

is no path from v to u, we define d(v,u) as n and σ (v,u) as 1. This

discriminative distance will be greater than the discriminative dis-

tance between any two vertices v ′ and u ′ that are connected by a

path from v ′ to u ′. The second solution suggested for closeness

(a) (b)

Figure 1: In 1(a), we have: dd(v,u) < dd(v,w)+dd(w,u) and in

1(b), we have: dd(v,u) = dd(v,w) + dd(w,u).

Figure 2: There are 2(n/2)−1 shortest paths between s and t .

centrality is to use harmonic centrality [44]. As stated in Equa-

tion 11, this can be applied to discriminative closeness, too. When

d(v,u) = ∞, Equation 11 yields 0
∞ , which is conventional to define

as 0.

A property. A nice property of shortest path length is that for

vertices v,u,w ∈ V (G) such that w is on a shortest path between

v and u, the following holds: d(v,u) = d(v,w) + d(w,u). This

property is useful in e.g., designing efficient distance computation

algorithms. This property does not hold for discriminative distance

as dd(v,u) can be less than or equal to dd(v,w) + dd(w,u). An ex-

ample is presented in Figure 1. However, we believe this is not a

serious problem. The reason is that more than shortest path length

that satisfies the above mentioned property, discriminative distance

is based on the number of shortest paths, which satisfies the follow-

ing property: σw (v,u) = σ (v,w) × σ (w,u), where σw (v,u) is the

number of shortest paths between v and u that pass over w. As we

will discuss in Section 5, these two properties can help us to design

efficient algorithms for computing discriminative distance-based in-

dices.

Why our proposed indices are more discriminative. It is very

difficult to theoretically prove that for general graphs, our proposed

indices are always more discriminative than the existing distance-

based indices. However, we can still provide arguments explain-

ing why in practice our proposed indices are more discriminative.

We here focus on unweighted graphs. Let n be the number of ver-

tices. While the maximum possible shortest path length in a graph

is n − 1, for real-world networks it is much smaller and it is logn.

This means the range of all possible values of distance is narrow and

as a result, a vertex may have the same distance from many other

vertices. This yields that many vertices may have the same close-

ness/eccentricity scores. However, the range of all possible values

of the number of shortest paths between two vertices is much wider

and it varies between 1 and an exponential function of n. For exam-

ple, on the one hand, in the graph of Figure 2, there are 2(n/2)−1

shortest paths between s and t and on the other hand, in a tree

there is only one shortest path between any two vertices. This wider

range yields that when the number of shortest paths is involved, the
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probability that two vertices have exactly the same score drastically

decreases.

4.2 Intuitions

In several cases, the distance between two vertices in the graph not

only depends on their shortest path length, but also (inversely) on

the number of shortest paths they have. In the following, we discuss

some of them.

Time and reliability of traveling. A key issue in transportation

and logistics [8, 62] and in vehicular social networks (VSNs) [52]

is to estimate the traveling time and route reliability between two

points A and B. The time and reliability of traveling from A to B de-

pend on the structure of the road network and also on the stochastic

factors such as weather, traffic incidents. One of the factors that de-

pends on the network structure is the number of ways that someone

can travel from A to B. Having several ways to travel from A to B,

on the one hand, increases the reliability of traveling. On the other

hand, it deceases traffic between A and B and as a result, the trav-

eling time. Therefore, taking into account both the length and the

number of shortest paths between A and B (in other words, defining

the distance between A and B in terms of both the length and the

number of shortest paths) can help to better estimate the time and

reliability of traveling between A and B.

Spread of infections. It it known that infection and contact rates

in a network depend on the community structure of the network

and the spread of infections inside a community is faster [3, 41, 60].

Consider vertices v1, v2 and v3 such that d(v1,v2) = d(v1,v3), v1
and v2 are in the same community but v1 and v3 are not. An infec-

tion from v1 usually spreads to v2 faster than v3, or the probability

that (after some time steps) v2 becomes infected by v1 is higher

than the probability that v3 becomes infected. Here, to describe the

distances between the vertices, our discriminative distance measure

is a better notion than the shortest path length. Vertices v1 and v2
that are inside a community are heavily connected and as a result,

they usually have many shortest paths between themselves. In con-

trast, v1 and v3 do not belong to the same community and are not

heavily connected, hence, they usually have less shortest paths be-

tween themselves. This means dd(v1,v2) is smaller than dd(v1,v3),

which is consistent with the infection rate.

5 ALGORITHMS

In this section, we discuss how discriminative indices can be com-

puted. First in Section 5.1, we present the exact algorithms and then

in Section 5.2, we present the approximate algorithms.

5.1 Exact Algorithms

In this section, we present the DCC4 algorithm for computing dis-

criminative closeness centrality of all vertices of the network and

show how it can be revised to compute the other discriminative in-

dices.

Algorithm 1 shows the high level pseudo code of the algorithm.

DCC is an iterative algorithm where at each iteration, discrimina-

tive closeness of a vertex v is computed. This is done by calling

the ShortestPathDAG method for v . Inside ShortestPathDAG,

4DCC is an abbreviation for Discriminative Closeness Calculator.

Algorithm 1 High level pseudo code of the algorithm of computing

discriminative closeness scores.

1: DCC

2: Input. A network G.

3: Output. Discriminative closeness centrality of vertices of G.

4: for each vertex v ∈ V (G) do

5: I [v] ← 0.

6: end for

7: for each vertex v ∈ V (G) do

8: D,N ← SHORTESTPATHDAG(G,v).

9: for each vertex u ∈ V (G) \ {v} do

10: I [v] ← I [v] + 1
n−1 ×

D[u]
N [u]

.

11: end for

12: end for

13: return I .

the distances and the number of shortest paths between v and all

other vertices in the graph are computed. If G is unweighted, this

is done by a breadth-first search starting from v . Otherwise, if G

is weighted with positive weights, this is done using Dijkstra’s al-

gorithm [22]. A detailed description of ShortestPathDAG can be

found in several graph theory books, including [21], hence, we here

ignore it.

Computing the other indices. Algorithm 1 can be revised to com-

pute average discriminative path length of G, discriminative eccen-

tricity of vertices of G and average discriminative eccentricity of

G.

• ADPL(G). After Line 12 of Algorithm 1 (where the I [v]

values are already computed), ADPL(G) can be computed

as

∑
v∈V (G ) I [v]

n .

• DE(v). If Line 10 of Algorithm 1 is replaced by the follow-

ing lines:

if 1
n−1 ×

D[u]
N [u]

> I [v] then

I [v] ← 1
n−1 ×

D[u]
N [u]

.

end if

then, the algorithm will compute discriminative eccen-

tricity of the vertices of G and will store them in I .

• ADE(G). After computing discriminative eccentricity of

all vertices of G and storing them in I , ADE(G) can be

computed as

∑
v∈V (G ) I [v]

n .

In a similar way, Algorithm 1 can be revised to compute discrim-

inative diameter and discriminative radius of G.

Complexity analysis. For unweighted graphs, each iteration of

the loop in Lines 7-12 of method DCC takesO(m) time. For weighted

graphs with positive weights, using a Fibonnaci heap, it takesO(m+

n logn) time [21]. This means discriminative closeness central-

ity and discriminative eccentricity of a given vertex can be com-

puted respectively in O(m) time and O(m + n logn) time for un-

weighted and weighted graphs with positive weights. However,

computing average discriminative path length and/or average eccen-

tricity of the graph requires respectively O(nm) time and O(nm +
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n2 logn) time for unweighted graphs and weighted graphs with pos-

itive weights. Space complexity of each iteration (and the whole

algorithm), for both unweighted graphs and weighted graphs with

positive weights, isO(n +m) [21]. Note that these complexities are

the same as complexities of computing traditional distance-based

indices. The reason is that in addition to computing the distances

between v and all other vertices of the graph, ShortestPathDAG

can also compute the number of shortest paths, without having any

increase in the complexity [21].

5.2 Randomized Algorithms

While discriminative closeness and discriminative eccentricity of a

given vertex can be computed efficiently, the algorithms of comput-

ing average discriminative path length and average discriminative

eccentricity of the graph are expensive in practice, even for mid-

size networks. This motivates us to present randomized algorithms

for ADPL and ADE that can be performed much faster, at the ex-

pense of having approximate results.

Algorithm 2 High level pseudo code of the algorithm of estimating

average discriminative path length.

1: RandomADPL

2: Input. A network G and the number of samples T .

3: Output. Estimated average discriminative path length of G.

4: β ← 0.

5: for each t = 1 to T do

6: Select a vertex v ∈ V (G) uniformly at random.

7: D,N ← ShortestPathDAG(G,v).

8: βt ←
1

n−1 ×
∑
u ∈V (G)\{v }

D[u]
N [u]

.

9: β ← β + βt .

10: end for

11: β ←
β
T .

12: return β .

Algorithm 2 shows the high level pseudo code of the Rando-

mADPL algorithm, proposed to estimate average discriminative

path length. The inputs of the algorithm are the graph G and the

number of samples (iterations) T . In each iteration t , the algorithm

first chooses a vertexv uniformly at random and calls the Shortest-

PathDAG method for v and G, to compute distances and the num-

ber of shortest paths between v and any other vertex in G. Then,

it estimates average discriminative path length of G at iteration t

as 1
n−1 ×

∑
u ∈V (G)\{v }

d (v,u)
σ (v,u)

and stores it in βt . The average of

all βt values computed during different iterations gives the final

estimation β of average discriminative path length. Clearly, for un-

weighted graphs, time complexity of Algorithm 2 is O(T ×m) and

for weighted graphs with positive weights, it isO(T×m+T×n logn).

In a way similar to Algorithm 1, Algorithm 2 can be modified to es-

timate discriminative eccentricity of graph G, where the details are

omitted.

In the rest of this section, we provide an error bound for our

estimation of average discriminative path length. First in Proposi-

tion 5.1, we prove that in Algorithm 2 the expected value of β is

ADPL(G). Then in Proposition 5.2, we provide an error bound for

β .

PROPOSITION 5.1. In Algorithm 2, expected value of βt ’s (1 ≤

t ≤ T ) and β is ADPL(G).

PROOF. We have:

E [βt ] =
∑

v ∈V (G)

©
«
1

n
×

∑
u ∈V (G)\{v }

d (v,u)
σ (v,u)

n − 1

ª®¬
= ADPL(G),

where 1
n comes from the uniform distribution used to choose ver-

tices ofG. Then, we have: E [β] =
∑
T

t=1 E[βt ]
T =

T×E[βt ]
T = ADPL(G).

�

PROPOSITION 5.2. In Algorithm 2, let G be a connected and

undirected graph. For a given ϵ ∈ R+, we have:

P [|ADPL(G) − β | > ϵ] ≤ 2 exp

(
−2 ×T ×

(
ϵ

∆(G)

)2)
. (12)

PROOF. The proof is done using Hoeffding’s inequality [29].

Let X1, . . . ,Xn be independent random variables bounded by the

interval [a,b], i.e., a ≤ Xi ≤ b (1 ≤ i ≤ n). Let also X̄ =
1
n (X1 + . . . + Xn). Hoeffding [29] showed that:

P
[��E [

X̄
]
− X̄

�� > ϵ
]
≤ 2 exp

(
−2n

( ϵ

b − a

)2)
. (13)

On the one hand, for any two distinct vertices v,u ∈ V (G), we

have: d(v,u) ≤ ∆(G) and σ (v,u) ≥ 1. Therefore,
d (v,u)
σ (v,u)

≤ ∆(G)

and as a result, βt ≤ ∆(G) (1 ≤ t ≤ T ). On the other hand, for any

two distinct vertices v,u ∈ V (G), we have:
d (v,u)
σ (v,u)

> 0. Therefore,

βt > 0, for 1 ≤ t ≤ T . Note that in Algorithm 2 vertices u are

chosen independently and therefore, variables βt are independent.

Hence, we can use Hoeffding’s inequality, where Xi ’s are βt ’s, X̄ is

β , n isT , a is 0 and b is ∆(G). Putting these values into Inequality 13

yields Inequality 12. �

Real-world networks have a small diameter, bounded by the log-

arithm of the number of vertices in the network [71]. This, along

with Inequality 12, yields5:

P [|ADPL(G) − β | > ϵ] ≤ 2 exp

(
−2 ×T ×

(
ϵ

logn

)2)
. (14)

Inequality 14 says that for given values ϵ ∈ R+ and δ ∈ (0, 1),

if T is chosen such that T ≥
ln( 2

δ
)(logn)2

2ϵ 2
, Algorithm 2 estimates

average discriminative path length of G within an additive error ϵ

with a probability at least δ . Our extensive experiments reported in

Table 1 of Section 6 (the rightmost column) show that many real-

world networks have a very small discriminative diameter, much

smaller than the logarithm of the number of vertices they have. So,

we may assume that their discriminative diameter is bounded by a

constant c. For such networks, using only
c2×ln( 2

δ
)

2ϵ 2
samples, Algo-

rithm 2 can estimate average discriminative path length within an

additive error ϵ with a probability at least δ .

5Note that in Inequality 14, both β and ϵ are in R+ and since β and its expected value
are not bounded by (0, 1) and they are considerably larger than 0 (and they can be
larger than 1), ϵ is usually set to a value much larger than 0 (and even larger than 1,
such as logn).



Discriminative Distance-Based Network Indices with Application to Link Prediction , ,

Table 1: Specifications of the largest component of the real-world datasets.

Dataset Link # vertices # edges Discriminative

diameter

dblp0305 http://www-kdd.isti.cnr.it/GERM/ 109,045 233,962 2

dblp0507 http://www-kdd.isti.cnr.it/GERM/ 135,116 290,364 2

dblp9202 http://www-kdd.isti.cnr.it/GERM/ 129,074 277,082 2

facebook-uniform http://odysseas.calit2.uci.edu/doku.php/public:online social networks134,304 135,532 2

flickr http://konect.uni-koblenz.de/networks/flickrEdges 73,342 2,619,711 5

gottron-reuters http://konect.uni-koblenz.de/networks/gottron-reuters 38,677 978,461 5

petster-friendships http://konect.uni-koblenz.de/networks/petster-friendships-cat 148,826 5,449,508 8

pics ut http://konect.uni-koblenz.de/networks/pics ut 82,035 2,300,296 5

web-Stanford http://snap.stanford.edu/data/web-Stanford.html 255,265 2,234,572 16

web-NotreDame http://snap.stanford.edu/data/web-NotreDame.html 325,729 1,524,589 28

citeulike-ut http://konect.uni-koblenz.de/networks/citeulike-ut 153,277 2,411,940 7

epinions http://konect.uni-koblenz.de/networks/epinions 119,130 834,000 15

wordnet http://konect.uni-koblenz.de/networks/wordnet-words 145,145 656,230 15

Table 2: Comparison of discriminability of the centrality notions over different real-world networks. For each dataset, the most

discriminative index is highlighted in bold.

Database Discriminative

closeness

Closeness Betweenness Length scaled be-

tweenness

Linearly scaled

betweenness

Katz

dblp0305 2.7805 0.0201 0.0403 0.0403 0.0403 0.4447

dblp0507 2.7013 0.0155 0.0325 0.0325 0.0325 0.3804

dblp9202 3.2973 0.0147 0.0263 0.0263 0.0263 0.3091

facebook-uniform 5.6178 0.0446 0.0528 0.0528 0.0528 0.9039

flickr 92.7694 4.4435 84.8381 85.0835 85.0835 90.4365

gottron-reuters 88.9934 25.8810 74.3956 74.3956 74.3956 88.9753

petster-friendships 70.0764 39.2176 65.7049 65.7317 65.7317 70.0260

pics ut 50.5113 36.3552 33.4028 33.5210 33.5210 42.6196

web-Stanford 97.3376 18.9258 26.6542 27.2861 27.2861 31.6122

web-NotreDame 29.9819 18.5230 18.1245 19.2402 19.2402 19.0277

citeulike-ut 45.2540 30.4546 28.6135 28.7185 28.7185 34.3032

epinions 70.0218 57.0679 42.1220 45.5745 45.5745 60.1922

wordnet 58.8907 51.8770 38.8838 40.5187 40.5187 52.8340

6 EXPERIMENTAL RESULTS

We perform extensive experiments on real-world networks to assess

the quantitative and qualitative behavior of our proposed algorithms.

The programs are compiled by the GNU C++ compiler 5.4.0 us-

ing optimization level 3. We do our tests over (largest connected

components of) several real-world datasets from different domains,

including the dblp0305, dblp0507 and dblp9202 co-authorship net-

works [7], the facebook-uniform social network [26], the flickr net-

work [47], the gottron-reuters network [39], the petster-friendships

network [35], the pics ut network [35], the web-Stanford network

[38], the web-NotreDame network [2], the citeulike-ut network [23],

the epinions network [46] and the wordnet network [25]. All the

networks are treated as undirected graphs. When a graph is discon-

nected, we consider only its largest component. Table 1 summarizes

specifications of the largest components of our real-world networks.

6.1 Empirical Evaluation of Discriminability

We measure discriminability of a centrality notion in terms of its

power in assigning distinguished values to the vertices. Hence, for

each centrality notion and over each network G, we define discrim-

inability as:

#distinct centrality scores

#vertices of G
× 100.

Among different distance-based notions studied in this paper, we

investigate discriminability of discriminative closeness centrality.

The reason is that on the one hand, notions such as average dis-

criminative path length and average discriminative eccentricity are

graph characteristics, rather than vertex properties. Hence, it does

not make sense to measure their discriminability. On the other hand,

closeness centrality is a much more common distance-based no-

tion to rank vertices than the other distance-based notions such ec-

centricity. We compare discriminative closeness centrality against

closeness centrality, as well as a number of centrality notions that

are not based on distance, including betweenness centrality [14],

http://www-kdd.isti.cnr.it/GERM/
http://www-kdd.isti.cnr.it/GERM/
http://www-kdd.isti.cnr.it/GERM/
http://odysseas.calit2.uci.edu/doku.php/public:online_social_networks
http://konect.uni-koblenz.de/networks/flickrEdges
http://konect.uni-koblenz.de/networks/gottron-reuters
http://konect.uni-koblenz.de/networks/petster-friendships-cat
http://konect.uni-koblenz.de/networks/pics_ut
http://snap.stanford.edu/data/web-Stanford.html
http://snap.stanford.edu/data/web-NotreDame.html
http://konect.uni-koblenz.de/networks/citeulike-ut
http://konect.uni-koblenz.de/networks/epinions
http://konect.uni-koblenz.de/networks/wordnet-words
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Figure 3: Running time of computing discriminative closeness centrality, closeness centrality and betweenness centrality (and its

variations). The vertical axis is in logarithmic scale.

length-scaled betweenness centrality [9] linearly scaled between-

ness centrality [9] and Katz centrality [33]6. Katz centrality has

three parameters to adjust: the damping factor α , the bias constant

β and the convergence tolerance tol . Similar to e.g., [73], we set β

to 1. In order to guarantee convergence, α must be less than the in-

verse of the largest eigenvalue of the graph. Here we set it to 0.001,

which is one of the values used in the experiments of [73]. We set

tol to 1e − 10.

Table 2 reports the discriminability results. In the table, a ’higher

percentage’ means a ’higher discriminability’ of the centrality no-

tion. The followings can be seen in the table. First, discriminative

closeness centrality is always more discriminative than the other in-

dices. Second, over datasets such as dblp0305, dblp0507, dblp9202,

facebook-uniform and web-Stanford, discriminability of discrimina-

tive closeness centrality is significantly larger than discriminability

of the other indices. In fact, when over a network discriminability

of the other indices is very low, discriminative closeness central-

ity becomes significantly more discriminative than them. However,

when the other indices are discriminative enough, the difference be-

tween discriminability of the indices is less considerable. Third,

Katz centrality is usually more discriminative than closeness cen-

trality, betweenness centrality, length scaled betweenness centrality

and linearly scaled betweenness centrality. The only exception is

web-NotreDame, where length scaled betweenness centrality and

linearly scaled betweenness centrality are more discriminative than

Katz centrality. However, unlike the other indices, Katz centrality

uses all paths, which makes it improper for the applications where

the concept of shortest paths is essential. Fourth, while in most

cases betweenness centrality and its variations are more discrimina-

tive than closeness centrality, in a few cases, e.g., over pics ut, epin-

ions and wordnet, closeness centrality is more discriminative than

betweenness centrality and its variations. Fifth, while length scaled

6To compute betweenness centrality and its variations, we use boost graph library
(http://www.boost.org/doc/libs/1 66 0/libs/graph/doc/index.html) and to compute Katz
centrality, we use NetworKit (https://networkit.iti.kit.edu/), where all these algorithms
are implemented in C++.

and linearly scaled betweenness centrality always show the same

discriminability, they slightly improve discriminability of between-

ness centrality. However, this improvement is not considerable.

Figure 3 compares running times of computing different indices.

Since betweenness centrality, length scaled betweenness centrality

and linearly scaled betweenness centrality follow exactly the same

procedure and differ only in the way of aggregating the computed

scores, we report only one time for all of them. As can be seen in

the figure, since Katz centrality does not find shortest paths and at

each vertex, simply follows all its neighbors, it is computed much

faster than the other indices. Closeness centrality is computed faster

than discriminative closeness and discriminative closeness is com-

puted faster betweenness centrality and its variations. Note that

the algorithms of computing closeness centrality and discriminative

closeness centrality have the same time complexity. However, to

compute discriminative closeness centrality, compared to closeness

centrality we require to perform extra operations (e.g., counting the

number of shortest paths). This makes it in practice slower than

closeness centrality.

6.2 Empirical Evaluation of Randomized

Algorithms

Table 3 presents the results of the empirical evaluation of our pro-

posed randomized algorithm for estimating average discriminative

path length. When estimating average discriminative path length or

average discriminative eccentricity, we define relative error of the

approximation algorithm as:

|exact score − approximate score|

exact score
× 100,

where exact score and approximate score are respectively the values

computed by the exact and approximate algorithms. Sample sizes

are expressed in terms of the percentages of the number of vertices

of the graph. We examine the algorithm for three sample sizes: 10%

of the number of vertices, 1% of the number of vertices and 0.1%

of the number of vertices. As can be seen in the table, only a very

http://www.boost.org/doc/libs/1_66_0/libs/graph/doc/index.html
https://networkit.iti.kit.edu/
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Table 3: Relative error of our randomized average discriminative path length estimation algorithm.

Database
Exact values Approximate algorithm

APL ADPL Sample size (%) Relative error (%)

dblp0305 1.99997 1.99995 10 0.0016

1 0.0016

0.1 0.0016

dblp0507 1.99997 1.99996 10 0.0008

1 0.0008

0.1 0.0008

dblp9202 1.99997 1.99996 10 0.0015

1 0.0015

0.1 0.0012

facebook-uniform 1.99998 1.99997 10 0.0097

1 0.0099

0.1 0.0102

flickr 2.3078 0.2787 10 2.5639

1 0.2887

0.1 2.7859

gottron-reuters 2.9555 0.6860 10 0.5827

1 3.6259

0.1 19.3603

petster-friendships 2.7028 0.2220 10 0.8221

1 0.4389

0.1 2.4948

pics ut 3.6961 0.2953 10 0.4478

1 1.8667

0.1 2.9500

web-Stanford 6.8152 0.9509 10 0.6261

1 1.4910

0.1 2.7938

web-NotreDame 7.1731 1.5856 10 0.0618

1 0.6948

0.1 2.9328

citeulike-ut 3.9376 0.2361 10 0.0355

1 1.6612

0.1 2.3498

epinions 4.1814 0.9098 10 0.0240

1 0.7403

0.1 0.7527

wordnet 5.5320 1.1141 10 0.1610

1 0.6710

0.1 2.7228

small sample size, e.g., 0.1% of the number of vertices, is sufficient

to have an accurate estimation of average discriminative path length.

Over all the datasets, except gottron-reuters, this sample size gives a

relative error less than 3%. In particular, relative error in the datasets

dblp0305, dblp0507, dblp9202 and facebook-uniform is very low.

This is consistent with our analysis presented in Section 5.2 and is

due to very small discriminative diameter of these networks.

Table 3 also compares average discriminative path length of the

networks with their average path length. For all the datasets, ex-

cept dblp0305, dblp0507, dblp9202 and facebook-uniform, aver-

age discriminative path length is considerably smaller than average

path length. It may seem surprising that despite very high discrim-

inability of discriminative closeness compared to closeness over

dblp0305, dblp0507, dblp9202 and facebook-uniform, the differ-

ences between average discriminative path length and average path

length are tiny. The reason is that over these datasets, on the one

hand, between a huge number of pairs of vertices there is only one

shortest path; a few pairs have two shortest paths and only a very

tiny percentage of pairs have three or more shortest paths. There-

fore, those pairs that have more than one shortest paths do not have

a considerable contribution to ADPL, hence, ADPL and APL find

very close values. However, on the other hand, for each vertex v
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there are a different number of vertices to which v is connected

by two or more shortest paths. This is sufficient to distinguish its

discriminative closeness from the other vertices.

Table 4 reports the results of the empirical evaluation of our ran-

domized algorithm for estimating average discriminative eccentric-

ity. Similar to the case of average discriminative path length, we

test the algorithm for three different sample sizes and our experi-

ments show that only a small sample size, e.g., 0.1% of the number

of vertices, can yield a very accurate estimation of average discrim-

inative eccentricity. In our experiments, for the sample size 0.1%,

relative error is always less than 5%. This high accuracy is due to

very small discriminative diameter of the networks. Similar to the

case of average eccentricity where a simple randomized algorithm

significantly outperforms advanced techniques [65], our simple al-

gorithms show very good efficiency and accuracy for estimating av-

erage discriminative path length and average discriminative eccen-

tricity. Table 4 also shows that similar to ADPL, while the datasets

dblp0305, dblp0507, dblp9202 and facebook-uniform have (almost)

the same values for AE and ADE, over the rest of the datasets ADE

is less than AE.

6.3 The Tiny-World Property

It is well-known that in real-world networks, average path length

is proportional to the logarithm of the number of vertices in the

graph and it is considerably smaller than the largest distance that

two vertices may have in a graph [71]. Our extensive experiments

presented in Table 3 reveal that in real-world networks average dis-

criminative path length is much more smaller than the largest dis-

criminative distance7 that two vertices may have in a graph and it is

bounded by a constant (i.e., 2). This also implies that average dis-

criminative path length of a network is usually considerably smaller

than its average path length.

This property means that in real-world networks, not only most

vertices can be reached from every other vertex by a small number

of steps, but also there are many different ways to do so. We call this

property the tiny-world property. A consequence of this property is

that removing several vertices from a real-world network does not

have a considerable effect on its average path length. Note that this

property does not contradict the high discriminability of discrimina-

tive closeness; while this property implies that vertices in average

have a tiny discriminative distance from each other, the high dis-

criminability of discriminative closeness implies that the discrimi-

native closeness scores of different vertices are less identical than

their closeness scores. In Table 3, it can be seen that networks such

as flickr, petster-friendships, pics ut and citeulike-ut have an aver-

age discriminative path length considerably smaller than the others.

This is due to the high density of these networks, which yields that

any two vertices may have a shorter distance or more shortest paths.

7 LINK PREDICTION

In order to better motivate the applicability and usefulness of our

proposed distance measure, in this section we present a novel link

prediction method, which is based on our new distance measure.

7Both the largest distance and the largest discriminative distance that two vertices may
have in a graph are equal to the number of vertices in the graph minus 1.

We empirically evaluate our method and show that it outperforms

the well-known existing link prediction methods.

In the link prediction problem studied in this paper, we are given

an unweighted and undirected graph G in which each edge e =

{u,v} has a timestamp. For a time t , let G[t] denote the subgraph

of G consisting of all edges with a timestamp less than or equal

to t . Then the link prediction task is defined as follows. Given

networkG[t] and a time t ′ > t , (partially) sort the list of all pairs of

vertices that are not connected inG[t], according to their probability

(likelihood) of being connected during the interval (t , t ′]. We refer

to the intervals [0, t] and (t , t ′] as the training interval and the test

interval, respectively.

To generate this (decreasingly) sorted list, existing methods dur-

ing the training interval compute a similarity matrix S whose entry

Suv is the score (probability/likelihood) of having an edge between

vertices u and v . Generally, S is symmetric, i.e., Suv = Svu . The

pairs of the vertices that are at the top of the ordered list are most

likely to be connected during the test interval [45]. To compute

Su,v , several methods have been proposed in the literature, includ-

ing the number of common neighbors [48], negative of shortest path

length [40] and its variations [36], the Jaccard’s coefficient [64], the

preferential attachment index [4], hitting time [40], SimRank [31],

Katz index [33], the Adamic/Adar index [1] and resource alloca-

tion based on common neighbor interactions [74]. In the literature,

there are also many algorithms that exploit a classification algo-

rithm, with these indices as the features, and try to predict whether

a pair of unconnected vertices will be connected during the test in-

terval or not [27, 42, 45].

In this section, we propose a new method, called LIDIN8, for

sorting the list of pairs of unconnected vertices, which is a combi-

nation of shortest path length and discriminative distance. For two

pairs of unconnected vertices {u1,v1} and {u2,v2}, using LIDIN we

say vertices u2 and v2 are more likely to form a link during the test

interval than vertices u1 and v1 if:

• d(u1,v1) > d(u2,v2), or

• d(u1,v1) = d(u2,v2) and dd(u1,v1) > dd(u2,v2).

The rationale behind LIDIN is that when comparing a pair of ver-

tices u1,v1 with another pair u2,v2, if d(u1,v1) = d(u2,v2) but u2
and v2 are connected to each other by more shortest paths than u1
and v1, then they are more likely to form a link during the test inter-

val. As a special case, for a fixed k , consider the list L(k) consisting

of all pairs of unconnected vertices u and v such that d(u,v) = k . A

network may have many such pairs. It is known that compared to

the pairs of unconnected vertices that have distance k + 1, members

of L(k) are more likely to form a link during the test interval [17, 58].

However, the question remaining open is what elements of L(k) are

more likely to be connected than the other members? Using LIDIN,

we argue that by increasing the number of shortest paths between

the two vertices, the probability of forming a link increases, too.

In order to empirically evaluate this argument, we perform tests

over several temporal real-world networks, including sx-stackoverflow

[57], sx-mathoverflow [57], sx-superuser [57], sx-askubuntu [57],

wiki-talk-temporal [37, 57] and CollegeMsg [56]. Table 5 sum-

marizes the specifications of the used temporal real-world datasets.

8LIDIN is an abbreviation for LInk prediction based on DIstance and the Nmber of
shortest paths.



Discriminative Distance-Based Network Indices with Application to Link Prediction , ,

Table 4: Relative error of our randomized average discriminative eccentricity estimation algorithm.

Database
Exact values Approximate algorithm

AE (×1000) ADE (×1000) Sample size (%) Relative error (%)

dblp0305 0.0183 0.0183 10 0.0013

1 0.0013

0.1 0.0013

dblp0507 0.0148 0.0148 10 0.0007

1 0.0007

0.1 0.0007

dblp9202 0.0154 0.0154 10 0.0015

1 0.0015

0.1 0.0015

facebook-uniform 0.0148 0.0148 10 0.0096

1 0.0096

0.1 0.0096

flickr 0.0566 0.0323 10 0.2627

1 1.1411

0.1 1.6568

gottron-reuters 0.1159 0.0898 10 0.2327

1 0.4596

0.1 4.4685

petster-friendships 0.0432 0.0293 10 0.0749

1 0.04465

0.1 2.3459

pics ut 0.0636 0.0450 10 0.0604

1 0.7933

0.1 0.8762

web-Stanford 0.4171 0.0314 10 0.3697

1 1.0153

0.1 2.4259

web-NotreDame 0.0852 0.0399 10 0.0235

1 0.4150

0.1 0.4150

citeulike-ut 0.0406 0.0262 10 0.3076

1 0.2016

0.1 3.2315

epinions 0.0894 0.0676 10 0.0780

1 0.2170

0.1 0.3784

wordnet 0.0780 0.0589 10 0.0724

1 0.4879

0.1 0.5011

Table 5: Specifications of the temporal real-world datasets used in our experiments for link prediction.

Dataset Link #vertices #temporal

edges

Time span

sx-stackoverflow https://snap.stanford.edu/data/sx-stackoverflow.html 2,601,977 63,497,050 2774 days

sx-mathoverflow http://snap.stanford.edu/data/sx-mathoverflow.html 24,818 506,550 2350 days

sx-superuser https://snap.stanford.edu/data/sx-superuser.html 194,085 1,443,339 2773 days

sx-askubuntu http://snap.stanford.edu/data/sx-askubuntu.html 159,316 964,437 2613 days

wiki-talk-temporal https://snap.stanford.edu/data/wiki-talk-temporal.html 1,140,149 7,833,140 2320 days

CollegeMsg http://snap.stanford.edu/data/CollegeMsg.html 1,899 20,296 193 days

https://snap.stanford.edu/data/sx-stackoverflow.html
http://snap.stanford.edu/data/sx-mathoverflow.html
https://snap.stanford.edu/data/sx-superuser.html
http://snap.stanford.edu/data/sx-askubuntu.html
https://snap.stanford.edu/data/wiki-talk-temporal.html
http://snap.stanford.edu/data/CollegeMsg.html
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We consider all these networks as simple and undirected graphs,

where multi-edges and self-loops are ignored. Since the networks

sx-stackoverflow, sx-superuser, sx-askubuntu and wiki-talk-temporal

are too large to load their unconnected pairs of vertices in the mem-

ory, after sorting their edges based on timestamp, we only consider

the subgraphs generated by their first 300,000 edges.

We compare LIDIN with negative of shortest path length [40] and

the Adamic/Adar index [1], denoted respectively by -SPL and AA.

We choose -SPL because LIDIN is inherently an improvement of

-SPL, furthermore, the experiments reported in [27] show that this

index outperforms the other topological (global) indices studied in

that paper. We choose AA because the experiments reported in [40]

show that among 11 studied indices, the Adamic/Adar index has the

best relative performance ratio versus random predictions, the best

relative performance ratio versus negative of shortest path length

predictor and the best relative performance ratio versus common

neighbors predictor9.

For the graph formed during training interval, we sort (increas-

ingly when LIDIN is used and decreasingly when -SPL and AA are

used) the list L of all pairs of unconnected vertices, based on each

of the indices10. Then, during the test interval, for each edge that

connects a pair in L, we examine its rank in L. In order to evalu-

ate the accuracy of a link prediction method, we use two measures

area under the ROC curve (AUC) and ranking error (Q). In AUC ,

we measure the probability that a randomly chosen pair of vertices

that find a link during the test interval have a higher score than a

randomly chosen pair of vertices that do not find a link during the

test interval. Formally, AUC of a method ind is defined as [75]:

AUC(ind) =
nд + 0.5ne

nt
,

where nt is the number of times that we randomly choose two pairs

of vertices; one from those that form a link during the test interval

and the other from those that do not; nд is the number of times that

the one that forms a link gets a higher score than the other, and

ne is the number of times that the scores of the two chosen pairs

are equal. A higher value of AUC implies a better link prediction

method. In our experiments, we set nt to the number of edges in

the test interval divided by 10. However, similar results can be seen

for other values of nt .

We define the ranking error of a method ind as:

Q(ind) =
∑

{u,v }∈T E

rank({u,v},Lind )

|TE |
,

where Lind is the list L sorted according to ind , TE contains those

edges of the test interval that connect a pair in L, and rank({u,v},Lind )

returns the rank of {u,v} in Lind . For two given indices ind1 and

ind2, Q(ind1) < Q(ind2) means that compared to ind2, ind1 gives

more priority (i.e., a better rank) to the pairs that form a link during

the test interval, hence, ind1 is a better method than ind2.

9We can use these indices either as the features of a classification algorithm (like e.g.,
[27]), or as the criteria of sorting the list of unconnected pairs of vertices (like e.g.,
[40]). Here, since we want to omit the effect of the classification algorithm and study
only the effect of our new notion, we follow the second option.
10 When any of these indices is used, there might exist two or more pairs that are not
sorted by the index. In this case, these pairs are sorted according to the identifiers of
the end-points of the edges.

We sort the edges of each network according to their timestamps

and form the training and test intervals based on the timestamps, i.e.,

for some given value τ , training interval contains those edges that

have a timestamp at most τ and test interval contains those edges

that have a timestamp larger than τ . A factor that may affect the

empirical behavior of the indices is the value of τ . Therefore and

to examine this, we consider 4 different settings for each network,

and choose the values of τ in such a way that training interval in-

cludes 60%, 70%, 80% and 90% of the edges. In each case, the rest of

the edges which are between a pair of vertices unconnected in the

training interval, belong to the test interval.

Figure 4 comparesAUC of different methods. Over all the datasets

and in all the settings, LIDIN has the highest AUC , therefore, it has

the best performance. Figure 5 reports the Q of the studied meth-

ods over different datasets. As can be seen in the figure, in all the

cases, LIDIN has the lowest Q and hence, the best performance.

These tests empirically verify our above mentioned argument that

among all the pairs of unconnected vertices in L(k), those that have

a smaller discriminative distance (and hence, are closer!), are more

likely to form a link. While in most cases -SPL outperforms AA,

over sx-mathoverflow and for all values of ratio, AA has a higher

AUC and a lower Q than -SPL. The superior performance of our

proposed link prediction method suggests that the inverse of dis-

criminative distance might be useful in determining similarity be-

tween vertices of a network. This means, for example, more than

using the fixed criteria for determining the similarity of objects in a

Social Internet of Vehicle (SIoV) [50] or friendship of User Equip-

ments [51], someone may also use the inverse of discriminative dis-

tance.

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new distance measure between ver-

tices of a graph, which is proportional to the length of shortest paths

and inversely proportional to the number of shortest paths. We pre-

sented exact and randomized algorithms for computation of the pro-

posed discriminative indices and analyzed them. Then, by perform-

ing extensive experiments over several real-world networks, we first

showed that compared to the traditional indices, discriminative in-

dices have usually much more discriminability. We then showed

that our randomized algorithms can very precisely estimate average

discriminative path length and average discriminative eccentricity,

using only a few samples. In the end, we presented a novel link pre-

diction method, that uses discriminative distance to decide which

vertices are more likely to form a link in future, and showed its su-

perior performance compared to the well-known existing measures.

The current work can be extended in several directions. An inter-

esting direction is to investigate distribution of discriminative close-

ness and discriminative vertex eccentricity in large networks. In

particular, it is useful to see whether there exist correlations among

discriminative indices on the one hand and other centrality indices

such as betweenness and degree on the other hand. The other direc-

tion for future work is to develop efficient randomized algorithms

for estimating discriminative closeness and discriminative eccen-

tricity of one vertex or a set of vertices and discriminative diame-

ter of the graph. For example, it is interesting to develop algorithms

similar to [6] that estimate k highest discriminative closeness scores
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(a) sx-stackoverflow (b) sx-mathoverflow (c) sx-superuser

(d) sx-askubuntu (e) wiki-talk-temporal (f) CollegeMsg

Figure 4: AUC of different link prediction algorithms. Ratio shows the percentage of the edges that form the training interval.

(a) sx-stackoverflow (b) sx-mathoverflow (c) sx-superuser

(d) sx-askubuntu (e) wiki-talk-temporal (f) CollegeMsg

Figure 5: The value of Q for different link prediction algorithms. Ratio shows the percentage of the edges that form the training

interval.

in the graph. The other extension of the current work is the empir-

ical evaluation of the generalizations of the discriminative indices

presented in Section 4. Finally, another extension of the current

work is to study discriminative indices of different network models

[15].
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