

Institut
Mines-Télécom

Confusing Information: How Confusion Improves Side-Channel Analysis for Monobit Leakages

Cryptarchi 2018
June 17-19, 2018
Guidel-Plage, France
Eloi de Chérisey, Sylvain Guilley \& Olivier Rioul

Télécom ParisTech, Université Paris-Saclay, France.

Contents

Introduction
Motivation
Notations and Assumptions
The Confusion Coefficient κ
The Confusion Channel
Computation of Known Distinguishers w.r.t. κ
DoMCPAKSAMIA
Conclusion

Contents

Introduction

Motivation
Notations and Assumptions
The Confusion Coefficient κ
The Confusion Channel
Computation of Known Distinguishers w.r.t. κ
DoM
CPA
KSA
MIA

Conclusion

Motivation

- What is the exact link between side-channel distinguishers and the confusion coefficient for monobit leakages?

Motivation

- What is the exact link between side-channel distinguishers and the confusion coefficient for monobit leakages?
- Re-derive it for DoM, CPA, KSA and derive it for MIA;

Motivation

- What is the exact link between side-channel distinguishers and the confusion coefficient for monobit leakages?
■ Re-derive it for DoM, CPA, KSA and derive it for MIA;
- Is any sound distinguisher a function of the confusion coefficient (and noise)?

Leakage Model

Definition (Leakage Sample)

Observable leakage X can be written as:

$$
X=Y\left(k^{*}\right)+N
$$

where

$$
Y(k)=f(k, T)
$$

is the sensitive variable.
Notations:
■ T : a random plain or ciphertext;

- k^{*} : the secret key;

■ N : some additive noise;

- f : a deterministic function.

Assumptions

W.l.o.g. assume

- $Y(k)= \pm 1$ equiprobable:
- zero mean $\mathbb{E}[Y(k)]=0$ and unit variance $\mathbb{E}\left[Y(k)^{2}\right]=1$
- $\mathbb{P}(Y(k)=-1)=\mathbb{P}(Y(k)=+1)=1 / 2$
- Gaussian noise $N \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Definition (Distinguisher)

Practical distinguisher: $\hat{\mathcal{D}}(k)$,
Theoretical distinguisher: $\mathcal{D}(k)$.

$$
\hat{k}=\arg \max \hat{\mathcal{D}}(k) .
$$

The estimated key maximizes $\mathcal{D}(k)$. If sound, $\arg \max \hat{\mathcal{D}}(k)=k^{*}$.

Fei et al.'s "Confusion Coefficient"

After [Fei et al., 2012].

Definition (Confusion Coefficient)

$$
\kappa\left(k, k^{*}\right)=\kappa(k)=\mathbb{P}\left(Y(k) \neq Y\left(k^{*}\right)\right)
$$

valid only for monobit leakages (DoM).

Confusion and Security

From [Heuser et al., 2014].

Theorem (Differential Uniformity)

The differential uniformity of an S-box is linked with the confusion coefficient by:

$$
2^{-n} \Delta_{S}-\frac{1}{2}=\max _{k \neq k^{*}}\left|\frac{1}{2}-\kappa(k)\right|
$$

\Longrightarrow a "good" S-box should have confusion coefficient near $\frac{1}{2}$.

Illustration Without Permutation

Example with $Y(k)=T \oplus k \bmod 2$

$k^{*}=54$.

Illustration for Random Permutation

Example with $Y(k)=\mathrm{RP}(T \oplus k) \bmod 2$

Illustration for AES S-box

Example with $Y(k)=\mathrm{S}_{\mathrm{box}}(T \oplus k) \bmod 2$

Contents

Introduction
 Motivation
 Notations and Assumptions The Confusion Coefficient κ

The Confusion Channel

Computation of Known Distinguishers w.r.t. к
DoM
CPA
KSA
MIA

Conclusion

A Confusion Channel from $Y(k)$ to $Y\left(k^{*}\right)$

Since $\mathbb{P}\left(Y\left(k^{*}\right)=-1\right)=(1-p) \mathbb{P}(Y(k)=-1)+q \mathbb{P}(Y(k)=1)=$ $P\left(Y\left(k^{*}\right)=1\right)=(1-q) \mathbb{P}(Y(k)=1)+p \mathbb{P}(Y(k)=1)$, we have:

$$
p=q=\kappa(k) \text {. }
$$

This is a binary symmetric channel (BSC).

Confusion Channel's Capacity

Since $Y(k)$ is equiprobable, the mutual information of the BSC equals its capacity:

$$
C(k)=I\left(Y\left(k^{*}\right) ; Y(k)\right)=1-H_{2}(\kappa(k))
$$

A General Result for any Distinguisher

Theorem (Monobit Leakage Distinguisher)

The theoretical distinguisher of any monobit leakage is a function of $\kappa(k)$ and σ.

Proof.

The theoretical distinguisher depends on the joint distribution of X and $Y(k)$:

$$
\begin{aligned}
\mathbb{P}(X, Y(k)) & =\mathbb{P}\left(Y\left(k^{*}\right)+N ; Y(k)\right)=\mathbb{P}(Y(k)) \cdot \mathbb{P}\left(Y\left(k^{*}\right)+N \mid Y(k)\right) \\
& =\mathbb{P}\left(\mathcal{B}_{1 / 2}\right) \cdot \mathbb{P}\left(\mathcal{B}_{\kappa(k)}+N\right)
\end{aligned}
$$

where $N \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

Contents

Introduction
 Motivation
 Notations and Assumptions The Confusion Coefficient κ
 The Confusion Channel
 Computation of Known Distinguishers w.r.t. κ
 DoM
 CPA
 KSA
 MIA

Difference of Means (DoM)

Definition (DoM)

Practical distinguisher:

$$
\hat{\mathcal{D}}(k)=\frac{\sum_{q / Y(k)=+1} X_{q}}{\sum_{q / Y(k)=+1} 1}-\frac{\sum_{q / Y(k)=-1} X_{q}}{\sum_{q / Y(k)=-1} 1} .
$$

Theoretical distinguisher:

$$
\mathcal{D}(k)=\mathbb{E}[X \cdot Y(k)]
$$

DoM Computation

We have:

$$
\begin{aligned}
\mathcal{D}(k) & =\mathbb{E}[X \cdot Y(k)] \\
& =\mathbb{E}\left[\left(Y\left(k^{*}\right)+N\right) \cdot Y(k)\right] \\
& =\mathbb{E}\left[Y(k) \cdot Y\left(k^{*}\right)\right] \\
& =\mathbb{E}\left[2_{Y(k)=Y\left(k^{*}\right)}-1\right] \\
& =2(1-\kappa(k))-1 \\
& =1-2 \kappa(k)
\end{aligned}
$$

Therefore:

$$
\mathcal{D}(k)=2\left(\frac{1}{2}-\kappa(k)\right)
$$

Correlation Power Analysis (CPA)

Definition (CPA)

Practical distinguisher: Pearson coefficient

$$
\hat{\mathcal{D}}(k)=\frac{|\hat{\mathbb{E}}[X \cdot Y(k)]-\hat{\mathbb{E}}[X] \cdot \hat{\mathbb{E}}[Y(k)]|}{\hat{\sigma}_{X} \cdot \hat{\sigma}_{Y(k)}}
$$

Theoretical distinguisher:

$$
\mathcal{D}(k)=\frac{|\mathbb{E}[X \cdot Y(k)]-\mathbb{E}[X] \cdot \mathbb{E}[Y(k)]|}{\sigma_{X} \cdot \sigma_{Y(k)}},
$$

which is the correlation coefficient between X and $Y(k)$.

CPA Computation

Since $\mathbb{E}[Y(k)]=0$ and $\sigma_{Y(k)}=1$, we have:

$$
\mathcal{D}(k)=\frac{\mathbb{E}[X \cdot Y(k)]-\mathbb{E}[X] \cdot \mathbb{E}[Y(k)]}{\sigma_{X} \cdot \sigma_{Y(k)}}=\frac{|\mathbb{E}[X \cdot Y(k)]|}{\sigma_{X}}
$$

From the DoM computation and since $\sigma_{X}^{2}=1+\sigma^{2}$, we have:

$$
\mathcal{D}(k)=\frac{2|1 / 2-\kappa(k)|}{\sqrt{1+\sigma^{2}}} .
$$

Illustration for AES SubBytes w.r.t. Noise

$$
\sigma=8
$$

Illustration for $\sigma=8$ w．r．t．SubBytes

Kolmogorov-Smirnov Analysis (KSA)

Definition (KSA)

Practical Distinguisher:

$$
\hat{\mathcal{D}}(k)=\mathbb{E}_{Y(k)}\|\hat{F}(x \mid Y(k))-\hat{F}(x)\|_{\infty}
$$

Theoretical Distinguisher:

$$
\mathcal{D}(k)=\mathbb{E}_{Y(k)}\|F(x \mid Y(k))-F(x)\|_{\infty}
$$

where:
■ $F(x)$ and $F(x \mid Y(k))$ the cumulative distribution functions of X and $X \mid Y(k)$.
■ $\|f(x)\|_{\infty}=\sup _{x \in \mathbb{R}}|f(x)|$.

KSA Computation

Theorem (KSA and Confusion [Heuser et al., 2014])

With our assumptions, we have:

$$
\mathcal{D}(k)=\operatorname{erf}\left(\sqrt{\frac{\mathrm{SNR}}{2}}\right)\left|\frac{1}{2}-\kappa(k)\right|
$$

where $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-t^{2}} \mathrm{~d} t$.

Mutual Information Analysis (MIA)

Definition (MIA)

Practical Distinguisher: $\hat{\mathcal{D}}(k)=\hat{I}(X ; Y(k))$
Theoretical Distinguisher: $\mathcal{D}(k)=I(X ; Y(k))=h(X)-h(X \mid Y(k))$
Theorem (MIA Computation (Main result))
For a monobit leakage:

$$
\mathcal{D}(k)=2\left(\log _{2} e\right)\left(\frac{1}{2}-\kappa(k)\right)^{2} f(\sigma) .
$$

where f is such that $f(\sigma) \rightarrow 1$ when $\sigma \rightarrow 0$ and $f(\sigma) \sim 1 / \sigma^{2}$ as $\sigma \rightarrow \infty$.

Main Result: Sketch of the Proof

$$
\begin{aligned}
I(X ; Y(k)) & =h(X)-h(X \mid Y(k)) \\
& =h\left(\mathcal{B}_{1 / 2}^{\prime}+N\right)-H\left(\mathcal{B}_{\kappa(k)}^{\prime}+N\right)
\end{aligned}
$$

Case 1: Very high SNR $(\sigma \rightarrow 0)$

$$
\begin{gathered}
h\left(\mathcal{B}_{1 / 2}^{\prime}+N\right) \approx H\left(\mathcal{B}_{1 / 2}^{\prime}\right)+h(N) \\
H\left(\mathcal{B}_{\kappa(k)}^{\prime}+N\right) \approx H\left(\mathcal{B}_{\kappa(k)}^{\prime}\right)+h(N) \\
\mathcal{D}(k) \approx 1-H\left(\mathcal{B}_{\kappa(k)}^{\prime}\right)=1-H_{2}(\kappa(k))
\end{gathered}
$$

Second order Taylor expansion about 1/2:

$$
\mathcal{D}(k) \approx 2\left(\log _{2} e\right)(1 / 2-\kappa(k))^{2}
$$

Main Result: Sketch of the Proof (Cont'd)

Case 2: Very low SNR $(\sigma \rightarrow+\infty)$
All signals behaves like Gaussian.

$$
\begin{aligned}
\mathcal{D}(k) & =h\left(\mathcal{B}_{1 / 2}^{\prime}+N\right)-h\left(\mathcal{B}_{\kappa(k)}^{\prime}+N\right) \\
& \approx \frac{1}{2} \log _{2}\left(2 \pi e\left(\sigma^{2}+1\right)\right)-\frac{1}{2} \log _{2}\left(2 \pi e\left(\sigma^{2}+4 \kappa(k)(1-\kappa(k))\right)\right. \\
& =\frac{1}{2} \log _{2} \frac{\sigma^{2}+1}{\sigma^{2}+4 \kappa(k)(1-\kappa(k))} \\
& =-\frac{1}{2} \log _{2} \frac{\sigma^{2}+1+4 \kappa(k)(1-\kappa(k))-1}{\sigma^{2}+1} \\
& \approx \frac{\left(\log _{2} e\right)}{2} \frac{4 \kappa(k)(1-\kappa(k))-1}{\sigma^{2}+1}=2\left(\log _{2} e\right) \frac{(1 / 2-\kappa(k))^{2}}{\sigma^{2}}
\end{aligned}
$$

Main Result: Sketch of the Proof (Cont'd)

General Case: any SNR, first order in $1 / 2-\kappa$

Theorem

$$
\mathcal{D}(k)=2\left(\log _{2} e\right)\left(\frac{1}{2}-\kappa(k)\right)^{2} \frac{1}{2} \mathbb{E}_{X}\left[\tanh ^{2}\left(\frac{\sigma X+1}{\sigma^{2}}\right)+\tanh ^{2}\left(\frac{\sigma X-1}{\sigma^{2}}\right)\right]
$$

where $X \sim \mathcal{N}(0,1)$ is standard normal.

Contents

IntroductionMotivation
Notations and AssumptionsThe Confusion Coefficient κ
The Confusion Channel
Computation of Known Distinguishers w.r.t. ioDoMCPAKSAMIA
Conclusion

Conclusion

A unified view of side-channel distinguishers on monobit leakages:

- DoM: $\frac{1}{2}(1 / 2-\kappa(k))$;
- CPA: $\frac{|1 / 2-\kappa(k)|}{1+\sigma^{2}}$;
- KSA: $|1 / 2-\kappa(k)| \operatorname{erf}\left(\sqrt{\frac{\text { SNR }}{2}}\right)$;
- MIA: $2\left(\log _{2} e\right)(1 / 2-\kappa(k))^{2} f(\sigma)$.

Institut
Mines-Télécom

Confusing Information: How Confusion Improves Side-Channel Analysis for Monobit Leakages

Cryptarchi 2018
June 17-19, 2018
Guidel-Plage, France
Eloi de Chérisey, Sylvain Guilley \& Olivier Rioul

Télécom ParisTech, Université Paris-Saclay, France.

References I

最
Fei, Y., Luo, Q., and Ding, A. A. (2012).
A Statistical Model for DPA with Novel Algorithmic Confusion Analysis.
In Prouff, E. and Schaumont, P., editors, CHES, volume 7428 of LNCS, pages 233-250.
Springer.
Heuser, A., Rioul, O., and Guilley, S. (2014).
A Theoretical Study of Kolmogorov-Smirnov Distinguishers - Side-Channel Analysis vs.
Differential Cryptanalysis.
In Prouff, E., editor, Constructive Side-Channel Analysis and Secure Design - 5th
International Workshop, COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected Papers, volume 8622 of Lecture Notes in Computer Science, pages 9-28. Springer.

