On Minimum Entropy and Gaussian Transport
 TELECOM ParisTech

Institut
Mines-Télécom

Entropy 2018: From Physics to Information Sciences and Geometry

Barcelona, Spain, May 16th 2018

Olivier Rioul
olivier.rioul@telecom-paristech.fr

entropy
an Open Access Journal by MDPI

Outline

Introduction
What is Entropy?Max/Min Entropy PrinciplesEquivalence to the Entropy Power InequalityA Proof that Shannon MissedGeneralization to Linear TransformationsShannon vs. RényiA Proof that Shannon Missed (Revisited)Generalization to Rényi Entropies

Outline

Introduction
What is Entropy?
Max/Min Entropy Principles
Equivalence to the Entropy Power InequalityA Proof that Shannon Missed
Generalization to Linear Transformations
Shannon vs Rényi
A Proof that Shannon Missed (Revisited)
Generalization to Rényi Entropies

Shannon's 1948 seminal paper

The Bell System Technical Journal

Vol. XXVII
July, 1948
No. 3

A Mathematical Theory of Communication

By C. E. SHANNON

Introduction

T`HE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist ${ }^{1}$ and Hartley ${ }^{2}$ on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.

Outline

Introduction

What is Entropy?
Max/Min Entropy Principles
Equivalence to the Entropy Power Inequality
A Proof that Shannon Missed
Generalization to Linear Transformations
Shannon vs. Rényi
A Proof that Shannon Missed (Revisited)
Generalization to Rényi Entropies

$$
h(X)=\int f(x) \log \frac{1}{f(x)} \mathrm{d} x \text { where } X \sim f
$$

"You should call it entropy [...] no one really knows what entropy really is, so in a debate you will always have the advantage."

John von Neumann (1903-1957)

$$
h(X)=\int f(x) \log \frac{1}{f(x)} \mathrm{d} x \text { where } X \sim f
$$

"You should call it entropy [...] no one really knows what entropy really is, so in a debate you will always have the advantage."
John von Neumann (1903-1957)
"In the continuous case it is convenient to work not with the entropy H of an ensemble but with a derived quantity which we will call the entropy power." [Shannon'1948]

Entropy-Power

Definition ([Shannon48])

- Power: $P(X)=\mathbb{E}\left(X^{2}\right)$
- Entropy-Power: $N(X)$ power of a Gaussian X^{*} having the same entropy

Entropy-Power

Definition ([Shannon48])

- Power: $P(X)=\mathbb{E}\left(X^{2}\right)$
- Entropy-Power: $N(X)$ power of a Gaussian X^{*} having the same entropy

Entropy-Power

Definition ([Shannon48])

- Power: $P(X)=\mathbb{E}\left(X^{2}\right)$
- Entropy-Power: $N(X)=P\left(X^{*}\right)$ power of a Gaussian X^{*} having the same entropy $h\left(X^{*}\right)=h(X)$
- Since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e P\left(X^{*}\right)\right)$:

$$
N(X)=\frac{e^{2 h(X)}}{2 \pi e}
$$

Entropy-Power

Definition ([Shannon48])

- Power: $P(X)=\mathbb{E}\left(X^{2}\right)$
- Entropy-Power: $N(X)=P\left(X^{*}\right)$ power of a Gaussian X^{*} having the same entropy $h\left(X^{*}\right)=h(X)$
- Since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e P\left(X^{*}\right)\right)$:

$$
N(X)=\frac{e^{2 h(X)}}{2 \pi e} \quad \text { "entropy power" }
$$

Entropy-Power

Definition ([Shannon48])

- Power: $P(X)=\mathbb{E}\left(X^{2}\right)$
- Entropy-Power: $N(X)=P\left(X^{*}\right)$ power of a Gaussian X^{*} having the same entropy $h\left(X^{*}\right)=h(X)$
- Since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e P\left(X^{*}\right)\right)$:

$$
N(X)=\frac{e^{2 h(X)}}{2 \pi e} \quad \text { "entropy power" }
$$

- Scaling Property:

$$
P(a X)=a^{2} P(X) \quad N(a X)=a^{2} N(X)
$$

.

Entropy-Power Inequality (EPI)

for any $X \Perp Y$:

$$
P(X+Y)=P(X)+P(Y)
$$

Entropy-Power Inequality (EPI)

for any $X \Perp Y$:

$$
P(X+Y)=P(X)+P(Y)
$$

Theorem (stated by Shannon, 1948)

$$
N(X+Y) \geq N(X)+N(Y)
$$

with equality iff X, Y are Gaussian.

The following result is derived in Appendix 6.
Theorem 15: Let the average power of two ensembles be N_{1} and N_{2} and let their entropy powers be \bar{N}_{1} and \bar{N}_{2}. Then the entropy power of the sum, \bar{N}_{3}, is bounded by

$$
\bar{N}_{1}+\bar{N}_{2} \leq \bar{N}_{3} \leq N_{1}+N_{2}
$$

White Gaussian noise has the peculiar property that it can

Entropy-Power Inequality (EPI)

for any $X \Perp Y$:

$$
P(X+Y)=P(X)+P(Y)
$$

Theorem (stated by Shannon, 1948)

$$
e^{2 h(X+Y)} \geq e^{2 h(X)}+e^{2 h(Y)}
$$

with equality iff X, Y are Gaussian.

The following result is derived in Appendix 6.
Theorem 15: Let the average power of two ensembles be N_{1} and N_{2} and let their entropy powers be \bar{N}_{1} and \bar{N}_{2}. Then the entropy power of the sum, \bar{N}_{3}, is bounded by

$$
\bar{N}_{1}+\bar{N}_{2} \leq \bar{N}_{3} \leq N_{1}+N_{2}
$$

White Gaussian noise has the peculiar property that it can

Shannon's 1948 "proof" (Appendix 6).

A variational argument: $h(X+Y)$ for fixed $h(X)$ and $h(Y)$ has a stationary point when X, Y are Gaussian.

This does not exclude local minima/maxima/saddle points.

The EPI has a Long History

1948 Stated and "proved" by Shannon in his seminal paper
1959 Stam's proof using Fisher information
1965 Blachman's exposition of Stam's proof in IEEE Trans. IT
1978 Lieb's proof using strengthened Young's inequality
1991 Dembo-Cover-Thomas' review of Stam's \& Lieb's proofs
1991 Carlen-Soffer 1D variation of Stam's proof
2000 Szarek-Voiculescu variant with Brunn-Minkowski inequality
2006 Guo-Shamai-Verdú proof based on the I-MMSE relation
2007 Rioul's proof based on Mutual Information
2014 Wang-Madiman strengthening using Rényi entropies
2016 Courtade's strengthening
2017 Yet another simple proof!

Applications of the EPI:

- nonGaussian Capacity [Shannon'48]

Gaussian means worst noise / Gaussian means best signal

Applications of the EPI:

■ nonGaussian Capacity [Shannon'48]
Gaussian means worst noise / Gaussian means best signal

- multi-user capacity region outer bounds

Applications of the EPI:

■ nonGaussian Capacity [Shannon'48]
Gaussian means worst noise / Gaussian means best signal

- multi-user capacity region outer bounds

■ strengthening the Central Limit Theorem [Barron86]

Applications of the EPI:

■ nonGaussian Capacity [Shannon'48]
Gaussian means worst noise / Gaussian means best signal

- multi-user capacity region outer bounds

■ strengthening the Central Limit Theorem [Barron86]
■ blind deconvolution / source separation [Donoho81]

Outline

Introduction
What is Entropy?
Max/Min Entropy Principles
Equivalence to the Entropy Power Inequality
A Proof that Shannon Missed
Generalization to Linear Transformations
Shannon vs. Rényi
A Proof that Shannon Missed (Revisited)
Generalization to Rényi Entropies

Ingredients

- random $X=\left(\begin{array}{c}X_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ with independent components X_{i}

Ingredients

- random $X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ with independent components X_{i}

■ a linear transformation: $\quad X \mapsto \mathbf{A X}$

Ingredients

- random $X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ with independent components X_{i}

■ a linear transformation: $\quad X \mapsto \mathbf{A X}$

- consider $h(\mathbf{A} X)$:

Ingredients

- random $X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ with independent components X_{i}

■ a linear transformation: $\quad X \mapsto \mathbf{A X}$

- consider $h(\mathbf{A} X)$:
- assume it is nondegenerate: $h(\mathbf{A} X)>-\infty$

Ingredients

- random $X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ with independent components X_{i}

■ a linear transformation: $\quad X \mapsto \mathbf{A} X$

- consider $h(\mathbf{A} X)$:
- assume it is nondegenerate: $h(\mathbf{A} X)>-\infty$
- $\Longrightarrow \mathbf{A}$ has full row rank

Ingredients

- random $X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ with independent components X_{i}

■ a linear transformation: $\quad X \mapsto \mathbf{A X}$

- consider $h(\mathbf{A} X)$:
- assume it is nondegenerate: $h(\mathbf{A} X)>-\infty$
- $\Longrightarrow \mathbf{A}$ has full row rank
- A is an $m \times n$ matrix with $m \leq n$

Ingredients

- random $X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$ with independent components X_{i}

■ a linear transformation: $\quad X \mapsto \mathbf{A X}$

- consider $h(\mathbf{A} X)$:
- assume it is nondegenerate: $h(\mathbf{A} X)>-\infty$
- $\Longrightarrow \mathbf{A}$ has full row rank
- A is an $m \times n$ matrix with $m \leq n$
$\square \max h(\mathbf{A} X)$ or $\min h(\mathbf{A} X)$?

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same variances: $\operatorname{Var}\left(X_{i}^{*}\right)=\operatorname{Var}\left(X_{i}\right)$.

Theorem (Maximum Entropy Principle)
$h(\mathbf{A} X) \leq h\left(\mathbf{A} X^{*}\right) \quad$ with equality iff X is Gaussian

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same variances: $\operatorname{Var}\left(X_{i}^{*}\right)=\operatorname{Var}\left(X_{i}\right)$.

Theorem (Maximum Entropy Principle)

$$
h(\mathbf{A} X) \leq h\left(\mathbf{A} X^{*}\right) \quad \text { with equality iff } X \text { is Gaussian }
$$

- Proof: $h\left(\mathbf{A} X^{*}\right)-h(\mathbf{A} X)=D_{\mathrm{KL}}\left(\mathbf{A} X \| \mathbf{A} X^{*}\right) \geq 0 \square$

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same variances: $\operatorname{Var}\left(X_{i}^{*}\right)=\operatorname{Var}\left(X_{i}\right)$.

Theorem (Maximum Entropy Principle)

$$
h(\mathbf{A} X) \leq h\left(\mathbf{A} X^{*}\right) \quad \text { with equality iff } X \text { is Gaussian }
$$

- Proof: $h\left(\mathbf{A} X^{*}\right)-h(\mathbf{A} X)=D_{\mathrm{KL}}\left(\mathbf{A} X \| \mathbf{A} X^{*}\right) \geq 0 \square$

■ known in the 19th century (Gibbs' inequality)

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same variances: $\operatorname{Var}\left(X_{i}^{*}\right)=\operatorname{Var}\left(X_{i}\right)$.

Theorem (Maximum Entropy Principle)

$$
h(\mathbf{A} X) \leq h\left(\mathbf{A} X^{*}\right) \quad \text { with equality iff } X \text { is Gaussian }
$$

- Proof: $h\left(\mathbf{A} X^{*}\right)-h(\mathbf{A} X)=D_{\mathrm{KL}}\left(\mathbf{A} X \| \mathbf{A} X^{*}\right) \geq 0 \square$

■ known in the 19th century (Gibbs' inequality)

- components need not be independent

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same variances: $\operatorname{Var}\left(X_{i}^{*}\right)=\operatorname{Var}\left(X_{i}\right)$.

Theorem (Maximum Entropy Principle)

$$
h(\mathbf{A} X) \leq h\left(\mathbf{A} X^{*}\right) \quad \text { with equality iff } X \text { is Gaussian }
$$

- Proof: $h\left(\mathbf{A} X^{*}\right)-h(\mathbf{A} X)=D_{\mathrm{KL}}\left(\mathbf{A} X \| \mathbf{A} X^{*}\right) \geq 0$ \square
■ known in the 19th century (Gibbs' inequality)
- components need not be independent

■ E. T. Jaynes, "Information theory and statistical mechanics," Physical Review, vol. 106, no. 4, pp. 620-630, 1957.

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same variances: $\operatorname{Var}\left(X_{i}^{*}\right)=\operatorname{Var}\left(X_{i}\right)$.

Theorem (Maximum Entropy Principle)

$$
h(\mathbf{A} X) \leq h\left(\mathbf{A} X^{*}\right) \quad \text { with equality iff } X \text { is Gaussian }
$$

- Proof: $h\left(\mathbf{A} X^{*}\right)-h(\mathbf{A} X)=D_{\mathrm{KL}}\left(\mathbf{A} X \| \mathbf{A} X^{*}\right) \geq 0 \square$

■ known in the 19th century (Gibbs’ inequality)
■ components need not be independent
■ E. T. Jaynes, "Information theory and statistical mechanics," Physical Review, vol. 106, no. 4, pp. 620-630, 1957.
■ J. P. Burg, "Maximum entropy spectral analysis," Ph.D., Stanford, Dept. of Geophysics, Stanford, CA, USA, 1975.

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same variances: $\operatorname{Var}\left(X_{i}^{*}\right)=\operatorname{Var}\left(X_{i}\right)$.

Theorem (Maximum Entropy Principle)
$h(\mathbf{A} X) \leq h\left(\mathbf{A} X^{*}\right) \quad$ with equality iff X is Gaussian

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same variances: $\operatorname{Var}\left(X_{i}^{*}\right)=\operatorname{Var}\left(X_{i}\right)$.

Theorem (Maximum Entropy Principle)

$$
h(\mathbf{A} X) \leq h\left(\mathbf{A} X^{*}\right) \quad \text { with equality iff } X \text { is Gaussian }
$$

Let X^{*} be Gaussian with independent components X_{i}^{*} of same entropies: $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$.

Theorem (Minimun Entropy Principle)

$h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right) \quad$ with equality iff X is Gaussian. . .

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same entropies: $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$.

Theorem (Minimun Entropy Principle)

$h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right) \quad$ with equality iff X is Gaussian...

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same entropies: $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$.

Theorem (Minimun Entropy Principle)

$$
h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right) \quad \text { with equality iff } X \text { is Gaussian... }
$$

... or \mathbf{A} is trivial
■ Closeness to normality by linear filtering

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same entropies: $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$.

Theorem (Minimun Entropy Principle)

$$
h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right) \quad \text { with equality iff } X \text { is Gaussian... }
$$

... or \mathbf{A} is trivial
■ Closeness to normality by linear filtering
■ D. Donoho, "On minimum entropy deconvolution," in Applied Time Series Analysis II, Acad. Press, 1981, pp. 565-608.

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same entropies: $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$.

Theorem (Minimun Entropy Principle)

$$
h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right) \quad \text { with equality iff } X \text { is Gaussian... }
$$

... or \mathbf{A} is trivial
■ Closeness to normality by linear filtering
■ D. Donoho, "On minimum entropy deconvolution," in Applied Time Series Analysis II, Acad. Press, 1981, pp. 565-608.

- R. Zamir \& M. Feder, "A generalization of the entropy power inequality," IEEE Trans. IT, 39(5):1723-1728, Sep. 1993.

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same entropies: $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$.

Theorem (Minimun Entropy Principle)

$$
h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right) \quad \text { with equality iff } X \text { is Gaussian... }
$$

... or \mathbf{A} is trivial
■ Closeness to normality by linear filtering
■ D. Donoho, "On minimum entropy deconvolution," in Applied Time Series Analysis II, Acad. Press, 1981, pp. 565-608.

- R. Zamir \& M. Feder, "A generalization of the entropy power inequality," IEEE Trans. IT, 39(5):1723-1728, Sep. 1993.
- Application to deconvolution / blind separation

Max/Min Entropy Principle

Let X^{*} be Gaussian with independent components X_{i}^{*} of same entropies: $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$.

Theorem (Minimun Entropy Principle)

$h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right) \quad$ with equality iff X is Gaussian. ..
... or \mathbf{A} is trivial
■ Closeness to normality by linear filtering
■ D. Donoho, "On minimum entropy deconvolution," in Applied Time Series Analysis II, Acad. Press, 1981, pp. 565-608.

- R. Zamir \& M. Feder, "A generalization of the entropy power inequality," IEEE Trans. IT, 39(5):1723-1728, Sep. 1993.
- Application to deconvolution / blind separation
- Proof: involved!

Outline

Introduction
What is Entropy?
Max/Min Entropy PrinciplesEquivalence to the Entropy Power InequalityA Proof that Shannon MissedGeneralization to Linear TransformationsShannon vs. Rényi
A Proof that Shannon Missed (Revisited)
Generalization to Rényi Entropies

Simplest nontrivial case: $(m, n)=(1,2)$

Take $\mathbf{A}=\left(\begin{array}{ll}a & b\end{array}\right)$ with nonzero a, b (nontrivial mixture).
Theorem (MinEnt for $(m, n)=(1,2))$
For any two independent X, Y, letting X^{*}, Y^{*} independent Gaussian s.t. $h\left(X^{*}\right)=h(X), h(Y)=h\left(Y^{*}\right)$,

$$
h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right) \text { with equality iff } X, Y \text { are Gaussian. }
$$

Simplest nontrivial case: $(m, n)=(1,2)$

Take $\mathbf{A}=\left(\begin{array}{ll}a & b\end{array}\right)$ with nonzero a, b (nontrivial mixture).
Theorem (MinEnt for $(m, n)=(1,2)$)
For any two independent X, Y, letting X^{*}, Y^{*} independent Gaussian s.t. $h\left(X^{*}\right)=h(X), h(Y)=h\left(Y^{*}\right)$,

$$
h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right) \text { with equality iff } X, Y \text { are Gaussian. }
$$

Definition (Entropy Power [Shannon'48])

Entropy Power = Power of a Gaussian noise with the same entropy:

$$
N(X)=\operatorname{Var}\left(X^{*}\right) \quad \text { where } \quad h\left(X^{*}\right)=h(X)
$$

i.e., since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e \operatorname{Var}\left(X^{*}\right)\right)$,

$$
N(X)=\exp (2 h(X)) / 2 \pi e
$$

Simplest nontrivial case: $(m, n)=(1,2)$

Take $\mathbf{A}=\left(\begin{array}{ll}a & b\end{array}\right)$ with nonzero a, b (nontrivial mixture).
Theorem (MinEnt for $(m, n)=(1,2)$)
For any two independent X, Y, letting X^{*}, Y^{*} independent Gaussian s.t. $h\left(X^{*}\right)=h(X), h(Y)=h\left(Y^{*}\right)$,

$$
N(a X+b Y) \geq N\left(a X^{*}+b Y^{*}\right) \text { with equality iff } X, Y \text { are Gaussian. }
$$

Definition (Entropy Power [Shannon'48])

Entropy Power = Power of a Gaussian noise with the same entropy:

$$
N(X)=\operatorname{Var}\left(X^{*}\right) \quad \text { where } \quad h\left(X^{*}\right)=h(X)
$$

i.e., since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e \operatorname{Var}\left(X^{*}\right)\right)$,

$$
N(X)=\exp (2 h(X)) / 2 \pi e
$$

Simplest nontrivial case: $(m, n)=(1,2)$

Take $\mathbf{A}=\left(\begin{array}{ll}a & b\end{array}\right)$ with nonzero a, b (nontrivial mixture).
Theorem (MinEnt for $(m, n)=(1,2)$)
For any two independent X, Y, letting X^{*}, Y^{*} independent Gaussian s.t. $h\left(X^{*}\right)=h(X), h(Y)=h\left(Y^{*}\right)$,

$$
N(a X+b Y) \geq N\left(a X^{*}+b Y^{*}\right) \text { with equality iff } X, Y \text { are Gaussian. }
$$

Definition (Entropy Power [Shannon'48])

Entropy Power = Power of a Gaussian noise with the same entropy:

$$
N(X)=\operatorname{Var}\left(X^{*}\right) \quad \text { where } \quad h\left(X^{*}\right)=h(X)
$$

i.e., since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e \operatorname{Var}\left(X^{*}\right)\right)$,

$$
N(X)=\exp (2 h(X)) / 2 \pi e \quad N\left(X^{*}\right)=\operatorname{Var}\left(X^{*}\right)
$$

Simplest nontrivial case: $(m, n)=(1,2)$

Take $\mathbf{A}=\left(\begin{array}{ll}a & b\end{array}\right)$ with nonzero a, b (nontrivial mixture).
Theorem (MinEnt for $(m, n)=(1,2)$)
For any two independent X, Y, letting X^{*}, Y^{*} independent Gaussian s.t. $h\left(X^{*}\right)=h(X), h(Y)=h\left(Y^{*}\right)$,
$N(a X+b Y) \geq N\left(a X^{*}\right)+N\left(b Y^{*}\right)$ with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon'48])

Entropy Power = Power of a Gaussian noise with the same entropy:

$$
N(X)=\operatorname{Var}\left(X^{*}\right) \quad \text { where } \quad h\left(X^{*}\right)=h(X)
$$

i.e., since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e \operatorname{Var}\left(X^{*}\right)\right)$,

$$
N(X)=\exp (2 h(X)) / 2 \pi e \quad N\left(X^{*}\right)=\operatorname{Var}\left(X^{*}\right)
$$

Simplest nontrivial case: $(m, n)=(1,2)$

Take $\mathbf{A}=\left(\begin{array}{ll}a & b\end{array}\right)$ with nonzero a, b (nontrivial mixture).
Theorem (MinEnt for $(m, n)=(1,2)$)
For any two independent X, Y, letting X^{*}, Y^{*} independent Gaussian s.t. $h\left(X^{*}\right)=h(X), h(Y)=h\left(Y^{*}\right)$,
$N(a X+b Y) \geq N\left(a X^{*}\right)+N\left(b Y^{*}\right)$ with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon'48])

Entropy Power = Power of a Gaussian noise with the same entropy:

$$
N(X)=\operatorname{Var}\left(X^{*}\right) \quad \text { where } \quad N\left(X^{*}\right)=N(X)
$$

i.e., since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e \operatorname{Var}\left(X^{*}\right)\right)$,

$$
N(X)=\exp (2 h(X)) / 2 \pi e \quad N\left(X^{*}\right)=\operatorname{Var}\left(X^{*}\right)
$$

Simplest nontrivial case: $(m, n)=(1,2)$

Take $\mathbf{A}=\left(\begin{array}{ll}a & b\end{array}\right)$ with nonzero a, b (nontrivial mixture).
Theorem (MinEnt for $(m, n)=(1,2)$)
For any two independent X, Y, letting X^{*}, Y^{*} independent Gaussian s.t. $h\left(X^{*}\right)=h(X), h(Y)=h\left(Y^{*}\right)$,

$$
N(a X+b Y) \geq N(a X)+N(b Y) \text { with equality iff } X, Y \text { are Gaussian. }
$$

Definition (Entropy Power [Shannon'48])

Entropy Power = Power of a Gaussian noise with the same entropy:

$$
N(X)=\operatorname{Var}\left(X^{*}\right) \quad \text { where } \quad N\left(X^{*}\right)=N(X)
$$

i.e., since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e \operatorname{Var}\left(X^{*}\right)\right)$,

$$
N(X)=\exp (2 h(X)) / 2 \pi e \quad N\left(X^{*}\right)=\operatorname{Var}\left(X^{*}\right)
$$

Simplest nontrivial case: $(m, n)=(1,2)$

Take $\mathbf{A}=\left(\begin{array}{ll}a & b\end{array}\right)$ with nonzero a, b (nontrivial mixture).
Theorem (MinEnt for $(m, n)=(1,2))$
For any two independent X, Y,
$N(X+Y) \geq N(X)+N(Y)$ with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon'48])

Entropy Power = Power of a Gaussian noise with the same entropy:

$$
N(X)=\operatorname{Var}\left(X^{*}\right) \quad \text { where } \quad N\left(X^{*}\right)=N(X)
$$

i.e., since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e \operatorname{Var}\left(X^{*}\right)\right)$,

$$
N(X)=\exp (2 h(X)) / 2 \pi e \quad N\left(X^{*}\right)=\operatorname{Var}\left(X^{*}\right)
$$

Simplest nontrivial case: $(m, n)=(1,2)$

Take $\mathbf{A}=\left(\begin{array}{ll}a & b\end{array}\right)$ with nonzero a, b (nontrivial mixture).

Theorem (

 [Shannon'48])For any two independent X, Y,

$$
N(X+Y) \geq N(X)+N(Y) \text { with equality iff } X, Y \text { are Gaussian. }
$$

Definition (Entropy Power [Shannon'48])

Entropy Power = Power of a Gaussian noise with the same entropy:

$$
N(X)=\operatorname{Var}\left(X^{*}\right) \quad \text { where } \quad N\left(X^{*}\right)=N(X)
$$

i.e., since $h\left(X^{*}\right)=\frac{1}{2} \log \left(2 \pi e \operatorname{Var}\left(X^{*}\right)\right)$,

$$
N(X)=\exp (2 h(X)) / 2 \pi e \quad N\left(X^{*}\right)=\operatorname{Var}\left(X^{*}\right)
$$

$$
\longrightarrow ـ \rightarrow ـ
$$

Outline

Introduction
What is Entropy?
Max/Min Entropy Principles
Equivalence to the Entrony Power Inequality
A Proof that Shannon Missed
Generalization to Linear Transformations
Shannon vs. Rényi
A Proof that Shannon Missed (Revisited)
Generalization to Rényi Entropies

Ingredients: "Optimal Transport"

Lemma (inverse function sampling method)

If U is uniform in $[0,1]$ and X has c.d.f. $F(x)=\mathbb{P}(X \leq x)$, then $F^{-1}(U)$ has the same distribution as X.

Proof.

$$
\mathbb{P}\left(F^{-1}(U) \leq x\right)=\mathbb{P}(U \leq F(x))=F(x) .
$$

Ingredients: "Optimal Transport"

Lemma (inverse function sampling method)

If U is uniform in $[0,1]$ and X has c.d.f. $F(x)=\mathbb{P}(X \leq x)$, then $F^{-1}(U)$ has the same distribution as X.

Corollary (monotonic increasing transport $T=F^{-1} \circ G$)
Let F, G be two c.d.f's. Then $X^{*} \sim G \Longrightarrow X=T\left(X^{*}\right) \sim F$.

Proof.

$U=G\left(X^{*}\right) \sim$ uniform; $\quad T\left(X^{*}\right)=F^{-1}\left(G\left(X^{*}\right)\right)=F^{-1}(U) \sim F$.

Ingredients: "Optimal Transport"

Lemma (inverse function sampling method)

If U is uniform in $[0,1]$ and X has c.d.f. $F(x)=\mathbb{P}(X \leq x)$, then $F^{-1}(U)$ has the same distribution as X.

Corollary (monotonic increasing transport $T=F^{-1} \circ G$)
Let F, G be two c.d.f's. Then $X^{*} \sim G \Longrightarrow X=T\left(X^{*}\right) \sim F$.

Proof.

$U=G\left(X^{*}\right) \sim$ uniform; $\quad T\left(X^{*}\right)=F^{-1}\left(G\left(X^{*}\right)\right)=F^{-1}(U) \sim F$.

■ nD generalization: Knöthe map, Brenier map...

Ingredients: "Optimal Transport"

Lemma (inverse function sampling method)

If U is uniform in $[0,1]$ and X has c.d.f. $F(x)=\mathbb{P}(X \leq x)$, then $F^{-1}(U)$ has the same distribution as X.

Corollary (monotonic increasing transport $T=F^{-1} \circ G$)
Let F, G be two c.d.f's. Then $X^{*} \sim G \Longrightarrow X=T\left(X^{*}\right) \sim F$.

Proof.

$U=G\left(X^{*}\right) \sim$ uniform; $\quad T\left(X^{*}\right)=F^{-1}\left(G\left(X^{*}\right)\right)=F^{-1}(U) \sim F$.

■ nD generalization: Knöthe map, Brenier map...
■ Used in optimal transport theory

Ingredients: "Optimal Transport"

Lemma (Change of variable [Shannon'48])

For any continuous X, X^{*}, monotonic increasing transport $T\left(X^{*}\right) \sim X$,

$$
h(X)=h\left(T\left(X^{*}\right)\right)=h\left(X^{*}\right)+\mathbb{E} \log T^{\prime}\left(X^{*}\right)
$$

Ingredients: "Optimal Transport"

Lemma (Change of variable [Shannon'48])

For any continuous X, X^{*}, monotonic increasing transport $T\left(X^{*}\right) \sim X$,

$$
h(X)=h\left(T\left(X^{*}\right)\right)=h\left(X^{*}\right)+\mathbb{E} \log T^{\prime}\left(X^{*}\right)
$$

Proof.

Proof: make the change of variable $x=T\left(x^{*}\right)$ in

$$
h(X)=\int f_{X}(x) \log \frac{1}{f_{X}(x)} \mathrm{d} x=\int \underbrace{f_{X}\left(T\left(x^{*}\right)\right) T^{\prime}\left(x^{*}\right)}_{f_{X^{*}}\left(x^{*}\right)} \log \frac{1}{f_{X}\left(T\left(x^{*}\right)\right)} \mathrm{d} x^{*}
$$

Ingredients: "Optimal Transport"

Lemma (Change of variable [Shannon'48])

For any continuous X, X^{*}, monotonic increasing transport $T\left(X^{*}\right) \sim X$,

$$
h(X)=h\left(T\left(X^{*}\right)\right)=h\left(X^{*}\right)+\mathbb{E} \log T^{\prime}\left(X^{*}\right)
$$

Proof.

Proof: make the change of variable $x=T\left(x^{*}\right)$ in

$$
h(X)=\int f_{X}(x) \log \frac{1}{f_{X}(x)} \mathrm{d} x=\int \underbrace{f_{X}\left(T\left(x^{*}\right)\right) T^{\prime}\left(x^{*}\right)}_{f_{X^{*}}\left(x^{*}\right)} \log \frac{1}{f_{X}\left(T\left(x^{*}\right)\right)} \mathrm{d} x^{*}
$$

■ in particular $h(a X)=h(X)+\log |a| \Longleftrightarrow N(a X)=a^{2} N(X)$;

Ingredients: "Optimal Transport"

Lemma (Change of variable [Shannon'48])

For any continuous X, X^{*}, monotonic increasing transport $T\left(X^{*}\right) \sim X$,

$$
h(X)=h\left(T\left(X^{*}\right)\right)=h\left(X^{*}\right)+\mathbb{E} \log T^{\prime}\left(X^{*}\right)
$$

Proof.

Proof: make the change of variable $x=T\left(x^{*}\right)$ in

$$
h(X)=\int f_{X}(x) \log \frac{1}{f_{X}(x)} \mathrm{d} x=\int \underbrace{f_{X}\left(T\left(x^{*}\right)\right) T^{\prime}\left(x^{*}\right)}_{f_{X^{*}}\left(x^{*}\right)} \log \frac{1}{f_{X}\left(T\left(x^{*}\right)\right)} \mathrm{d} x^{*}
$$

■ in particular $h(a X)=h(X)+\log |a| \Longleftrightarrow N(a X)=a^{2} N(X)$;
■ more generally in $n \mathrm{D}: h\left(T\left(X^{*}\right)\right)=h\left(X^{*}\right)+\mathbb{E} \log \left|\operatorname{det} T^{\prime}\left(X^{*}\right)\right|$

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$
where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X), h(Y)=h\left(Y^{*}\right)$

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$ where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X)=h(Y)=h\left(Y^{*}\right)$

1. We may assume $h(X)=h(Y)$.

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$
where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X)=h(Y)=h\left(Y^{*}\right)$

1. We may assume $h(X)=h(Y)$. Otherwise:

- set $c=e^{-h(X)}$ and $d=e^{-h(Y)}$ so that $h(c X)=h(d Y)$;
- apply the above to $c X$ and $d Y$.

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$
where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X)=h(Y)=h\left(Y^{*}\right)$

1. We may assume $h(X)=h(Y)$. Otherwise:

- set $c=e^{-h(X)}$ and $d=e^{-h(Y)}$ so that $h(c X)=h(d Y)$;
- apply the above to $c X$ and $d Y$.

So w.l.o.g. X^{*}, Y^{*} are i.i.d. Gaussian.
\qquad

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$
where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X)=h(Y)=h\left(Y^{*}\right)$

1. We may assume $h(X)=h(Y)$. Otherwise:

- set $c=e^{-h(X)}$ and $d=e^{-h(Y)}$ so that $h(c X)=h(d Y)$;
- apply the above to $c X$ and $d Y$.

So w.l.o.g. X^{*}, Y^{*} are i.i.d. Gaussian.
2. We may always normalize: $a^{2}+b^{2}=1$.

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$
where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X)=h(Y)=h\left(Y^{*}\right)$

1. We may assume $h(X)=h(Y)$. Otherwise:

- set $c=e^{-h(X)}$ and $d=e^{-h(Y)}$ so that $h(c X)=h(d Y)$;
- apply the above to $c X$ and $d Y$.

So w.l.o.g. X^{*}, Y^{*} are i.i.d. Gaussian.
2. We may always normalize: $a^{2}+b^{2}=1$. Otherwise:

- divide a, b by $\Delta=\sqrt{a^{2}+b^{2}}$;
- the $\log \Delta$ terms cancel.

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$
where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X)=h(Y)=h\left(Y^{*}\right)$

1. We may assume $h(X)=h(Y)$. Otherwise:

- set $c=e^{-h(X)}$ and $d=e^{-h(Y)}$ so that $h(c X)=h(d Y)$;
- apply the above to $c X$ and $d Y$.

So w.l.o.g. X^{*}, Y^{*} are i.i.d. Gaussian.
2. We may always normalize: $a^{2}+b^{2}=1$. Otherwise:

- divide a, b by $\Delta=\sqrt{a^{2}+b^{2}}$;
- the $\log \Delta$ terms cancel.

3. Make the changes of variables $X=T\left(X^{*}\right), Y=U\left(Y^{*}\right)$:

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$
where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X)=h(Y)=h\left(Y^{*}\right)$

1. We may assume $h(X)=h(Y)$. Otherwise:

- set $c=e^{-h(X)}$ and $d=e^{-h(Y)}$ so that $h(c X)=h(d Y)$;
- apply the above to $c X$ and $d Y$.

So w.l.o.g. X^{*}, Y^{*} are i.i.d. Gaussian.
2. We may always normalize: $a^{2}+b^{2}=1$. Otherwise:

- divide a, b by $\Delta=\sqrt{a^{2}+b^{2}}$;
- the $\log \Delta$ terms cancel.

3. Make the changes of variables $X=T\left(X^{*}\right), Y=U\left(Y^{*}\right)$:

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$
where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X)=h(Y)=h\left(Y^{*}\right)$

1. We may assume $h(X)=h(Y)$. Otherwise:

- set $c=e^{-h(X)}$ and $d=e^{-h(Y)}$ so that $h(c X)=h(d Y)$;
- apply the above to $c X$ and $d Y$.

So w.l.o.g. X^{*}, Y^{*} are i.i.d. Gaussian.
2. We may always normalize: $a^{2}+b^{2}=1$. Otherwise:

- divide a, b by $\Delta=\sqrt{a^{2}+b^{2}}$;
- the $\log \Delta$ terms cancel.

3. Make the changes of variables $X=T\left(X^{*}\right), Y=U\left(Y^{*}\right)$:

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
4. Define $\widetilde{X}=a X^{*}+b Y^{*}$.

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$
where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X)=h(Y)=h\left(Y^{*}\right)$

1. We may assume $h(X)=h(Y)$. Otherwise:

- set $c=e^{-h(X)}$ and $d=e^{-h(Y)}$ so that $h(c X)=h(d Y)$;
- apply the above to $c X$ and $d Y$.

So w.l.o.g. X^{*}, Y^{*} are i.i.d. Gaussian.
2. We may always normalize: $a^{2}+b^{2}=1$. Otherwise:

- divide a, b by $\Delta=\sqrt{a^{2}+b^{2}}$;
- the $\log \Delta$ terms cancel.

3. Make the changes of variables $X=T\left(X^{*}\right), Y=U\left(Y^{*}\right)$:

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
4. Define $\widetilde{X}=a X^{*}+b Y^{*}$. Complete the rotation: $\widetilde{Y}=-b X^{*}+a Y^{*}$.entropy so that $\widetilde{X}, \widetilde{Y}$ are i.i.d. Gaussian

A Proof that Shannon Missed

Proceed to prove the inequality $h(a X+b Y) \geq h\left(a X^{*}+b Y^{*}\right)$
where X^{*}, Y^{*} are indep. Gaussian s.t. $h\left(X^{*}\right)=h(X)=h(Y)=h\left(Y^{*}\right)$

1. We may assume $h(X)=h(Y)$. Otherwise:

- set $c=e^{-h(X)}$ and $d=e^{-h(Y)}$ so that $h(c X)=h(d Y)$;
- apply the above to $c X$ and $d Y$.

So w.l.o.g. X^{*}, Y^{*} are i.i.d. Gaussian.
2. We may always normalize: $a^{2}+b^{2}=1$. Otherwise:

- divide a, b by $\Delta=\sqrt{a^{2}+b^{2}}$;
- the $\log \Delta$ terms cancel.

3. Make the changes of variables $X=T\left(X^{*}\right), Y=U\left(Y^{*}\right)$:

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
4. Define $\widetilde{X}=a X^{*}+b Y^{*}$. Complete the rotation: $\widetilde{Y}=-b X^{*}+a Y^{*}$

so that $\widetilde{X}, \widetilde{Y}$ are i.i.d. Gaussian and $X^{*}=a \widetilde{X}-b \widetilde{Y}, Y^{*}=b ;$

A Proof that Shannon Missed

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
$\widetilde{X}, \widetilde{Y}$ are i.i.d. Gaussian and $X^{*}=a \widetilde{X}-b \widetilde{Y}, Y^{*}=b \widetilde{X}+a \widetilde{Y}$.

A Proof that Shannon Missed

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
$\widetilde{X}, \widetilde{Y}$ are i.i.d. Gaussian and $X^{*}=a \tilde{X}-b \widetilde{Y}, Y^{*}=b \widetilde{X}+a \tilde{Y}$.
5. Since conditioning reduces entropy:

$$
\begin{aligned}
h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) & =h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})) \\
& \geq h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y}) \mid \widetilde{Y})
\end{aligned}
$$

A Proof that Shannon Missed

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
$\widetilde{X}, \widetilde{Y}$ are i.i.d. Gaussian and $X^{*}=a \tilde{X}-b \widetilde{Y}, Y^{*}=b \widetilde{X}+a \tilde{Y}$.
5. Since conditioning reduces entropy:

$$
\begin{aligned}
h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) & =h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})) \\
& \geq h(\underbrace{a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})}_{T_{\widetilde{r}}(\widetilde{X})} \mid \widetilde{Y})
\end{aligned}
$$

A Proof that Shannon Missed

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
$\widetilde{X}, \widetilde{Y}$ are i.i.d. Gaussian and $X^{*}=a \widetilde{X}-b \widetilde{Y}, Y^{*}=b \widetilde{X}+a \widetilde{Y}$.
5. Since conditioning reduces entropy:

$$
\begin{aligned}
& h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right)=h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})) \\
& \geq h(\underbrace{a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})}_{\left.T_{\widetilde{Y}} \widetilde{X}\right)} \mid \widetilde{Y}) \\
& \text { By the change of variable: }
\end{aligned}
$$

$$
\left.=h(\widetilde{X} \mid \widetilde{Y})+\mathbb{E} \log T_{\widetilde{Y}}^{\prime} \widetilde{X}\right)
$$

A Proof that Shannon Missed

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
$\widetilde{X}, \widetilde{Y}$ are i.i.d. Gaussian and $X^{*}=a \widetilde{X}-b \widetilde{Y}, Y^{*}=b \widetilde{X}+a \widetilde{Y}$.
5. Since conditioning reduces entropy:

$$
\begin{aligned}
& h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right)=h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})) \\
& \geq h(\underbrace{a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})}_{T_{\widetilde{Y}}(\widetilde{X})} \mid \widetilde{Y}) \\
& \text { By the change of variable: }
\end{aligned}
$$

$$
=h(\widetilde{X})+\mathbb{E} \log T_{\widetilde{Y}}^{\prime}(\widetilde{x})
$$

A Proof that Shannon Missed

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
$\widetilde{X}, \widetilde{Y}$ are i.i.d. Gaussian and $X^{*}=a \tilde{X}-b \widetilde{Y}, Y^{*}=b \widetilde{X}+a \tilde{Y}$.
5. Since conditioning reduces entropy:

$$
\begin{aligned}
& h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right)=h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})) \\
& \geq h(\underbrace{a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})}_{T_{\widetilde{Y}}(\widetilde{X})} \mid \widetilde{Y}) \\
& \text { By the change of variable: }
\end{aligned}
$$

$$
\begin{aligned}
& =h(\widetilde{X})+\mathbb{E} \log T_{\widetilde{Y}}^{\prime}(\widetilde{X}) \\
& =h(\widetilde{X})+\mathbb{E} \log \left(a^{2} T^{\prime}(a \widetilde{X}-b \widetilde{Y})+b^{2} U^{\prime}(b \widetilde{X}+a \widetilde{Y})\right)
\end{aligned}
$$

A Proof that Shannon Missed

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
$\widetilde{x}, \widetilde{Y}$ are i.i.d. Gaussian and $X^{*}=a \tilde{X}-b \widetilde{Y}, Y^{*}=b \tilde{X}+a \tilde{Y}$.
5. Since conditioning reduces entropy:

$$
\begin{aligned}
& h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right)=h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})) \\
& \geq h(\underbrace{a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})}_{T_{\widetilde{Y}}(\widetilde{X})} \mid \widetilde{Y}) \\
& \text { By the change of variale: }
\end{aligned}
$$

$$
\begin{aligned}
& =h(\widetilde{X})+\mathbb{E} \log T_{\widetilde{r}}^{\prime}(\widetilde{X}) \\
& =h(\widetilde{X})+\mathbb{E} \log \left(a^{2} T^{\prime}(a \widetilde{X}-b \widetilde{Y})+b^{2} U^{\prime}(b \widetilde{X}+a \widetilde{Y})\right) \\
& =h\left(a X^{*}+b Y^{*}\right)+\mathbb{E} \log \left(a^{2} T^{\prime}\left(X^{*}\right)+b^{2} U^{\prime}\left(Y^{*}\right)\right)
\end{aligned}
$$

A Proof that Shannon Missed

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
$\widetilde{X}, \widetilde{Y}$ are i.i.d. Gaussian and $X^{*}=a \widetilde{X}-b \widetilde{Y}, Y^{*}=b \widetilde{X}+a \widetilde{Y}$.
5. Since conditioning reduces entropy:

$$
\begin{aligned}
h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) & =h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})) \\
& \geq h(\underbrace{a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})}_{T_{\widetilde{Y}}(\widetilde{X})} \mid \widetilde{Y})
\end{aligned}
$$

$$
\begin{aligned}
& =h(\widetilde{X})+\mathbb{E} \log T_{\widetilde{r}}^{\prime}(\widetilde{X}) \\
& =h(\widetilde{X})+\mathbb{E} \log \left(a^{2} T^{\prime}(a \widetilde{X}-b \widetilde{Y})+b^{2} U^{\prime}(b \widetilde{X}+a \widetilde{Y})\right) \\
& =h\left(a X^{*}+b Y^{*}\right)+\mathbb{E} \log \left(a^{2} T^{\prime}\left(X^{*}\right)+b^{2} U^{\prime}\left(Y^{*}\right)\right)
\end{aligned}
$$

7. By concavity of the log:

$$
\geq h\left(a X^{*}+b Y^{*}\right)+a^{2} \mathbb{E} \log T^{\prime}\left(X^{*}\right)+b^{2} \mathbb{E} \operatorname{loc}_{\substack{ \\I^{\prime}\left(V^{*} \\ V^{*}\right.}}
$$

A Proof that Shannon Missed

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
\widetilde{X}, \tilde{Y} are i.i.d. Gaussian and $X^{*}=a \tilde{X}-b \widetilde{Y}, Y^{*}=b \tilde{X}+a \tilde{Y}$.
5. Since conditioning reduces entropy:

$$
\begin{aligned}
h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) & =h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})) \\
& \geq h(\underbrace{a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})}_{T_{\widetilde{Y}}(\widetilde{X})} \mid \widetilde{Y})
\end{aligned}
$$

$$
\begin{aligned}
& =h(\widetilde{X})+\mathbb{E} \log T_{\widetilde{r}}^{\prime}(\widetilde{X}) \\
& =h(\widetilde{X})+\mathbb{E} \log \left(a^{2} T^{\prime}(a \widetilde{X}-b \widetilde{Y})+b^{2} U^{\prime}(b \widetilde{X}+a \widetilde{Y})\right) \\
& =h\left(a X^{*}+b Y^{*}\right)+\mathbb{E} \log \left(a^{2} T^{\prime}\left(X^{*}\right)+b^{2} U^{\prime}\left(Y^{*}\right)\right)
\end{aligned}
$$

7. By concavity of the log:

A Proof that Shannon Missed

One is led to prove $h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) \geq h\left(a X^{*}+b Y^{*}\right)$
\widetilde{X}, \tilde{Y} are i.i.d. Gaussian and $X^{*}=a \tilde{X}-b \widetilde{Y}, Y^{*}=b \tilde{X}+a \tilde{Y}$.
5. Since conditioning reduces entropy:

$$
\begin{aligned}
h\left(a T\left(X^{*}\right)+b U\left(Y^{*}\right)\right) & =h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})) \\
& \geq h(\underbrace{a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y})}_{T_{\widetilde{Y}}(\widetilde{X})} \mid \widetilde{Y})
\end{aligned}
$$

$$
\begin{aligned}
& =h(\widetilde{X})+\mathbb{E} \log T_{\widetilde{r}}^{\prime}(\widetilde{X}) \\
& =h(\widetilde{X})+\mathbb{E} \log \left(a^{2} T^{\prime}(a \widetilde{X}-b \widetilde{Y})+b^{2} U^{\prime}(b \widetilde{X}+a \widetilde{Y})\right) \\
& =h\left(a X^{*}+b Y^{*}\right)+\mathbb{E} \log \left(a^{2} T^{\prime}\left(X^{*}\right)+b^{2} U^{\prime}\left(Y^{*}\right)\right)
\end{aligned}
$$

7. By concavity of the log:

$$
\begin{aligned}
& \geq h\left(a X^{*}+b Y^{*}\right)+a^{2} \mathbb{E} \log T^{\prime}\left(X^{*}\right)+b^{2} \mathbb{E} \operatorname{loc} I^{\prime} I^{\prime} \text { entropy }_{*}^{*} \\
& \geq h\left(a X^{*}+b Y^{*}\right) \\
& \text { On Minimum Entropy and Gaussian Transport } \\
& \text { TELECOM } \\
& \text { ParisTech }
\end{aligned}
$$

Equality Case

For nonzero a, b :
■ in log concavity inequality:
$\mathbb{E} \log \left(a^{2} T^{\prime}\left(X^{*}\right)+b^{2} U^{\prime}\left(Y^{*}\right)\right)=a^{2} \mathbb{E} \log T^{\prime}\left(X^{*}\right)+b^{2} \mathbb{E} \log U^{\prime}\left(Y^{*}\right)$
$\Longrightarrow T^{\prime}\left(X^{*}\right)=U^{\prime}\left(X^{*}\right)=c>0$ constant a.e.

Equality Case

For nonzero a, b :
■ in log concavity inequality:
$\mathbb{E} \log \left(a^{2} T^{\prime}\left(X^{*}\right)+b^{2} U^{\prime}\left(Y^{*}\right)\right)=a^{2} \mathbb{E} \log T^{\prime}\left(X^{*}\right)+b^{2} \mathbb{E} \log U^{\prime}\left(Y^{*}\right)$
$\Longrightarrow T^{\prime}\left(X^{*}\right)=U^{\prime}\left(X^{*}\right)=c>0$ constant a.e.
$\Longrightarrow T, U$ are linear: $X=T\left(X^{*}\right)=c X^{*}, Y=U\left(Y^{*}\right)=c Y^{*}$ Gaussian.

Equality Case

For nonzero a, b :
■ in log concavity inequality:
$\mathbb{E} \log \left(a^{2} T^{\prime}\left(X^{*}\right)+b^{2} U^{\prime}\left(Y^{*}\right)\right)=a^{2} \mathbb{E} \log T^{\prime}\left(X^{*}\right)+b^{2} \mathbb{E} \log U^{\prime}\left(Y^{*}\right)$
$\Longrightarrow T^{\prime}\left(X^{*}\right)=U^{\prime}\left(X^{*}\right)=c>0$ constant a.e.
$\Longrightarrow T, U$ are linear: $X=T\left(X^{*}\right)=c X^{*}, Y=U\left(Y^{*}\right)=c Y^{*}$ Gaussian.
$\Longrightarrow c=1$ since $h(X)=h\left(X^{*}\right), h(Y)=h\left(Y^{*}\right)$.

Equality Case

For nonzero a, b :
■ in log concavity inequality:
$\mathbb{E} \log \left(a^{2} T^{\prime}\left(X^{*}\right)+b^{2} U^{\prime}\left(Y^{*}\right)\right)=a^{2} \mathbb{E} \log T^{\prime}\left(X^{*}\right)+b^{2} \mathbb{E} \log U^{\prime}\left(Y^{*}\right)$
$\Longrightarrow T^{\prime}\left(X^{*}\right)=U^{\prime}\left(X^{*}\right)=c>0$ constant a.e.
$\Longrightarrow T, U$ are linear: $X=T\left(X^{*}\right)=c X^{*}, Y=U\left(Y^{*}\right)=c Y^{*}$ Gaussian.
$\Longrightarrow c=1$ since $h(X)=h\left(X^{*}\right), h(Y)=h\left(Y^{*}\right)$.

- in information inequality:
$h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y}))=h(a T(a \widetilde{X}-b \widetilde{Y})+b U(b \widetilde{X}+a \widetilde{Y}) \mid \widetilde{Y})$
comes for free since $a(a \widetilde{X}-b \widetilde{Y})+b(b \widetilde{X}+a \widetilde{Y})=\widetilde{X}$ is indep of \widetilde{Y}.

Outline

Introduction
What is Entropy?
Max/Min Entropy Principles
Equivalence to the Entropy Power Inequality
A Proof that Shannon Missed
Generalization to Linear TransformationsShannon vs. Rényi
A Proof that Shannon Missed (Revisited)
Generalization to Rényi Entropies

Generalization to Linear Transformations

Proceed to prove $h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right)$.

Generalization to Linear Transformations

Proceed to prove $h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right)$.

- We may assume all X_{i} have the same entropy: Otherwise, introduce $c_{i}=e^{-h\left(X_{i}\right)}$ and apply the result to the $c_{i} X_{i}$.

Generalization to Linear Transformations

Proceed to prove $h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right)$.

- We may assume all X_{i} have the same entropy: Otherwise, introduce $c_{i}=e^{-h\left(X_{i}\right)}$ and apply the result to the $c_{i} X_{i}$.
- Since $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$, all X_{i}^{*} have the same variance, hence are i.i.d.

Generalization to Linear Transformations

Proceed to prove $h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right)$.
■ We may assume all X_{i} have the same entropy: Otherwise, introduce $c_{i}=e^{-h\left(X_{i}\right)}$ and apply the result to the $c_{i} X_{i}$.

- Since $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$, all X_{i}^{*} have the same variance, hence are i.i.d.
- We may assume that \mathbf{A} has rank $=m \leq n$ (otherwise the result is trivial): $h(\mathbf{A} X)=h\left(\mathbf{A} X^{*}\right)=-\infty$.

Generalization to Linear Transformations

Proceed to prove $h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right)$.

- We may assume all X_{i} have the same entropy: Otherwise, introduce $c_{i}=e^{-h\left(X_{i}\right)}$ and apply the result to the $c_{i} X_{i}$.
- Since $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$, all X_{i}^{*} have the same variance, hence are i.i.d.

■ We may assume that \mathbf{A} has rank $=m \leq n$ (otherwise the result is trivial): $h(\mathbf{A} X)=h\left(\mathbf{A} X^{*}\right)=-\infty$.

- The difference $h(\mathbf{A} X)-h\left(\mathbf{A} X^{*}\right)$ is invariant by elementary row operations. By the Gram-Schmidt procedure, we may assume that the rows of \mathbf{A} are orthonormal: $\mathbf{A A}^{t}=\mathbf{I}$.

Generalization to Linear Transformations

Proceed to prove $h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right)$.

- We may assume all X_{i} have the same entropy: Otherwise, introduce $c_{i}=e^{-h\left(X_{i}\right)}$ and apply the result to the $c_{i} X_{i}$.
- Since $h\left(X_{i}^{*}\right)=h\left(X_{i}\right)$, all X_{i}^{*} have the same variance, hence are i.i.d.
- We may assume that \mathbf{A} has rank $=m \leq n$ (otherwise the result is trivial): $h(\mathbf{A} X)=h\left(\mathbf{A} X^{*}\right)=-\infty$.
■ The difference $h(\mathbf{A} X)-h\left(\mathbf{A} X^{*}\right)$ is invariant by elementary row operations. By the Gram-Schmidt procedure, we may assume that the rows of \mathbf{A} are orthonormal: $\mathbf{A A}^{t}=\mathbf{I}$.
- Extend \mathbf{A} to an orthogonal matrix $\mathbf{A}^{\prime}=\left(\frac{\mathbf{A}}{\mathbf{A}^{c}}\right)$

Generalization to Linear Transformations

- Then let $\widetilde{X}=\mathbf{A} X^{*}$ et $\widetilde{X}^{c}=\mathbf{A}^{c} X^{*}$ so that $\widetilde{X}^{\prime}=\binom{\widetilde{\tilde{X}}}{\widetilde{X}^{c}}=\boldsymbol{A} X^{*}$ has
i.i.d. components. Inverting yields $X^{*}=\boldsymbol{A}^{t} \widetilde{X}^{\prime}$.

Generalization to Linear Transformations

- Then let $\tilde{X}=\mathbf{A} X^{*}$ et $\widetilde{X}^{c}=\mathbf{A}^{c} X^{*}$ so that $\widetilde{X}^{\prime}=\binom{\tilde{\tilde{X}}}{\tilde{X}^{c}}=\boldsymbol{A}^{\prime} X^{*}$ has i.i.d. components. Inverting yields $X^{*}=\boldsymbol{A}^{t} \widetilde{X}^{\prime}$.
- By the changes of variables $X_{i}=T_{i}\left(X_{i}^{*}\right)$, since conditioning reduces entropy:

$$
\begin{aligned}
h(\mathbf{A} X) & =h\left(\mathbf{A} \mathbf{T}\left(X^{*}\right)\right) \\
& =h\left(\mathbf{A} \mathbf{T}\left(\mathbf{A}^{\prime t} \widetilde{X}^{\prime}\right)\right) \\
& \geq h\left(\mathbf{A} \mathbf{T}\left(\mathbf{A}^{\prime t} \widetilde{X}^{\prime}\right) \mid \widetilde{X}^{c}\right)
\end{aligned}
$$

Generalization to Linear Transformations

- Then let $\widetilde{X}=\mathbf{A} X^{*}$ et $\widetilde{X}^{c}=\mathbf{A}^{c} X^{*}$ so that $\widetilde{X}^{\prime}=\binom{\tilde{x}}{\tilde{X}^{c}}=\mathbf{A} X^{*}$ has
i.i.d. components. Inverting yields $X^{*}=\boldsymbol{A}^{t} \widetilde{X}^{\prime}$.
- By the changes of variables $X_{i}=T_{i}\left(X_{i}^{*}\right)$, since conditioning reduces entropy:

$$
\begin{aligned}
h(\mathbf{A} X) & =h\left(\mathbf{A} \mathbf{T}\left(X^{*}\right)\right) \\
& =h\left(\mathbf{A} \mathbf{T}\left(\mathbf{A}^{\prime t} \widetilde{X}^{\prime}\right)\right) \\
& \geq h\left(\mathbf{A} \mathbf{T}\left(\mathbf{A}^{\prime t} \widetilde{X}^{\prime}\right) \mid \widetilde{X}^{c}\right)
\end{aligned}
$$

- But the Jacobian matrix of
$\mathbf{T}_{\widetilde{X}}(\widetilde{X})=\mathbf{A} \mathbf{T}\left(\boldsymbol{A}^{t} \widetilde{X}^{\prime}\right)=\mathbf{A} \mathbf{T}\left(\mathbf{A}^{t} \widetilde{X}+\left(\mathbf{A}^{c}\right)^{t} \widetilde{X}^{c}\right)$ for fixed \widetilde{X}^{c} is

Generalization to Linear Transformations

- The change of variables in the entropy yields

$$
\begin{aligned}
h(\mathbf{A} X) & \geq h\left(\mathbf{A} \mathbf{T}\left(\mathbf{A}^{\prime t} \widetilde{X}^{\prime}\right) \mid \widetilde{X}^{c}\right) \\
& =h\left(\widetilde{X} \mid \widetilde{X}^{c}\right)+\mathbb{E} \log \operatorname{det}\left(\mathbf{A T}^{\prime}\left(X^{*}\right) \mathbf{A}^{t}\right)
\end{aligned}
$$

Generalization to Linear Transformations

- The change of variables in the entropy yields

$$
\begin{aligned}
h(\mathbf{A} X) & \geq h\left(\mathbf{A} \mathbf{T}\left(\mathbf{A}^{\prime t} \widetilde{X}^{\prime}\right) \mid \widetilde{X}^{c}\right) \\
& =h\left(\widetilde{X} \mid \widetilde{X}^{c}\right)+\mathbb{E} \log \operatorname{det}\left(\mathbf{A} \mathbf{T}^{\prime}\left(X^{*}\right) \mathbf{A}^{t}\right)
\end{aligned}
$$

- By the concavity of the logarithm:

$$
\log \operatorname{det}\left(\mathbf{A T}^{\prime}\left(X^{*}\right) \mathbf{A}^{t}\right) \geq \operatorname{tr}\left(\mathbf{A} \cdot \log \mathbf{T}^{\prime}\left(X^{*}\right) \cdot \mathbf{A}^{t}\right)
$$

thus

$$
h(\mathbf{A} X) \geq h\left(\widetilde{X} \mid \widetilde{X}^{c}\right)+\operatorname{tr}\left(\mathbf{A} \cdot \mathbb{E} \log \mathbf{T}^{\prime}(\widetilde{X}) \cdot \mathbf{A}^{t}\right)
$$

Generalization to Linear Transformations

- The change of variables in the entropy yields

$$
\begin{aligned}
h(\mathbf{A} X) & \geq h\left(\mathbf{A} \mathbf{T}\left(\mathbf{A}^{t} \widetilde{X}^{\prime}\right) \mid \widetilde{X}^{c}\right) \\
& =h\left(\widetilde{X} \mid \widetilde{X}^{c}\right)+\mathbb{E} \log \operatorname{det}\left(\mathbf{A T}^{\prime}\left(X^{*}\right) \mathbf{A}^{t}\right)
\end{aligned}
$$

- By the concavity of the logarithm:

$$
\log \operatorname{det}\left(\mathbf{A} \mathbf{T}^{\prime}\left(X^{*}\right) \mathbf{A}^{t}\right) \geq \operatorname{tr}\left(\mathbf{A} \cdot \log \mathbf{T}^{\prime}\left(X^{*}\right) \cdot \mathbf{A}^{t}\right)
$$

thus

$$
h(\mathbf{A} X) \geq h\left(\widetilde{X} \mid \widetilde{X}^{c}\right)+\operatorname{tr}\left(\mathbf{A} \cdot \mathbb{E} \log \mathbf{T}^{\prime}(\widetilde{X}) \cdot \mathbf{A}^{t}\right)
$$

- But $h\left(\widetilde{X} \mid \widetilde{X}^{c}\right)=h(\widetilde{X})=h\left(\mathbf{A} X^{*}\right)$ and $\mathbb{E} \log T_{i}^{\prime}\left(\widetilde{X}_{i}\right)=h\left(T_{i}\left(\widetilde{X}_{i}\right)\right)-h\left(\widetilde{X}_{i}\right)=h\left(X_{i}\right)-h\left(\widetilde{X}_{i}\right)=0$; so

$$
h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right)
$$

Generalization to Linear Transformations

- The change of variables in the entropy yields

$$
\begin{aligned}
h(\mathbf{A} X) & \geq h\left(\mathbf{A} \mathbf{T}\left(\mathbf{A}^{t} \widetilde{X}^{\prime}\right) \mid \widetilde{X}^{c}\right) \\
& =h\left(\widetilde{X} \mid \widetilde{X}^{c}\right)+\mathbb{E} \log \operatorname{det}\left(\mathbf{A T}^{\prime}\left(X^{*}\right) \mathbf{A}^{t}\right)
\end{aligned}
$$

- By the concavity of the logarithm:

$$
\log \operatorname{det}\left(\mathbf{A T}^{\prime}\left(X^{*}\right) \mathbf{A}^{t}\right) \geq \operatorname{tr}\left(\mathbf{A} \cdot \log \mathbf{T}^{\prime}\left(X^{*}\right) \cdot \mathbf{A}^{t}\right)
$$

thus

$$
h(\mathbf{A} X) \geq h\left(\widetilde{X} \mid \widetilde{X}^{c}\right)+\operatorname{tr}\left(\mathbf{A} \cdot \mathbb{E} \log \mathbf{T}^{\prime}(\widetilde{X}) \cdot \mathbf{A}^{t}\right)
$$

- But $h\left(\widetilde{X} \mid \widetilde{X}^{c}\right)=h(\widetilde{X})=h\left(\mathbf{A} X^{*}\right)$ and
$\mathbb{E} \log T_{i}^{\prime}\left(\widetilde{X}_{i}\right)=h\left(T_{i}\left(\widetilde{X}_{i}\right)\right)-h\left(\widetilde{X}_{i}\right)=h\left(X_{i}\right)-h\left(\widetilde{X}_{i}\right)=0$; so

$$
h(\mathbf{A} X) \geq h\left(\mathbf{A} X^{*}\right)
$$

- Equality iff either \mathbf{A} is trivial or $T_{i}^{\prime}\left(X_{i}\right)=$ Cst., hence X is Gaus

Outline

Introduction
What is Entropy?
Max/Min Entropy Principles
Equivalence to the Entropy Power Inequality
A Proof that Shannon Missed
Generalization to Linear Transformations
Shannon vs. Rényi
A Proof that Shannon Missed (Revisited)
Generalization to Rényi Entropies

Shannon's and Rényi's Entropies

$$
h(X)=\int f \log \frac{1}{f}
$$

Shannon's and Rényi's Entropies

$$
\begin{aligned}
& h(X)=\int f \log \frac{1}{f}=h_{1}(X) \\
& h_{r}(X)=\frac{1}{1-r} \log \int f^{r}
\end{aligned}
$$

"A mathematician is a device for turning coffee into theorems"

Alfred Renyi (1921-1970)

Lieb's Restatement of the EPI

Theorem (Lieb, 1978)

$$
e^{2 h(X+Y)} \geq e^{2 h(X)}+e^{2 h(Y)}
$$

\Longleftrightarrow for any $0<\lambda<1$

$$
h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y) \geq \lambda h(X)+(1-\lambda) h(Y)
$$

Proof.

$\Longrightarrow: X=\sqrt{\lambda} X^{\prime}, Y=\sqrt{1-\lambda} Y^{\prime}$, take the log (concavity of the log)
$\Longleftarrow X=X^{\prime} / \sqrt{\lambda}, Y=Y^{\prime} / \sqrt{1-\lambda}$, take the exp, assuming λ such that $h(X)=h(Y)$, r.h.s. is $\left(e^{2 h(X)}\right)^{\lambda}\left(e^{2 h(Y)}\right)^{1-\lambda}=\lambda e^{2 h(X)}+(1-\lambda) e^{2 h(Y)}$.

Lieb's Restatement of the EPI

Theorem (

$$
e^{2 h_{r}(X+Y)} \geq c \cdot\left(e^{2 h_{r}(X)}+e^{2 h_{r}(Y)}\right)
$$

\Longleftrightarrow for any $0<\lambda<1$

$$
h_{r}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y) \geq \lambda h_{r}(X)+(1-\lambda) h_{r}(Y)+\log \sqrt{c}
$$

$\Longleftarrow X=X^{\prime} / \sqrt{\lambda}, Y=Y^{\prime} / \sqrt{1-\lambda}$, take the exp, assuming λ such that $h_{r}(X)=h_{r}(Y)$, r.h.s. $\left(e^{2 h_{r}(X)}\right)^{\lambda}\left(e^{2 h_{r}(Y)}\right)^{1-\lambda}=\lambda e^{2 h_{r}(X)}+(1-\lambda) e^{2 h_{r}(Y)_{\square} \square_{1}}$

Lieb's Restatement of the EPI

Theorem (

$$
e^{2 h_{r}(X+Y)} \geq c \cdot\left(e^{2 h_{r}(X)}+e^{2 h_{r}(Y)}\right)
$$

\Longleftrightarrow for any $0<\lambda<1$

$$
h_{r}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y) \geq \lambda h_{r}(X)+(1-\lambda) h_{r}(Y)+n \log \sqrt{c}
$$

! (with c independent of the dimension).

$\Longrightarrow: X=\sqrt{\lambda} X^{\prime}, Y=\sqrt{1-\lambda} Y^{\prime}$, take the log (concavity of the log)
$\Longleftarrow X=X^{\prime} / \sqrt{\lambda}, Y=Y^{\prime} / \sqrt{1-\lambda}$, take the exp, assuming λ such that $h_{r}(X)=h_{r}(Y)$, r.h.s. $\left(e^{2 h_{r}(X)}\right)^{\lambda}\left(e^{2 h_{r}(Y)}\right)^{1-\lambda}=\lambda e^{2 h_{r}(X)}+(1-\lambda) e^{2 h_{r}(Y)_{\Gamma}{ }_{\square}}$

Restatement for More than Two Variables

N independent variables $X_{1}, X_{2}, \ldots, X_{N}$.

Theorem

$$
e^{2 h_{r}\left(\sum_{i} x_{i}\right)} \geq c \cdot \sum_{i} e^{2 h_{r}\left(X_{i}\right)}
$$

\Longleftrightarrow for any convex combination $\left(\sum_{i} \lambda_{i}=1\right)$

$$
h_{r}\left(\sum_{i} \sqrt{\lambda_{i}} x_{i}\right) \geq \sum_{i} \lambda_{i} h_{r}\left(X_{i}\right)+\frac{n}{2} \log c
$$

Same proof.

Variation for More than Two Variables

N independent variables $X_{1}, X_{2}, \ldots, X_{N}$.

Theorem

$$
e^{2 \alpha h_{r}\left(\sum_{i} X_{i}\right)} \geq \sum_{i} e^{2 \alpha h_{r}\left(X_{i}\right)}
$$

\Longleftrightarrow for any convex combination $\left(\sum_{i} \lambda_{i}=1\right)$

$$
h_{r}\left(\sum_{i} \sqrt{\lambda_{i}} X_{i}\right) \geq \sum_{i} \lambda_{i} h_{r}\left(X_{i}\right)+\frac{n}{2}(1 / \alpha-1) H(\lambda)
$$

Same proof.

Outline

Introduction
What is Entropy?
Max/Min Entropy Principles
Equivalence to the Entropy Power InequalityA Proof that Shannon Missed
Generalization to Linear Transformations
Shannon vs. Rényi
A Proof that Shannon Missed (Revisited)
Generalization to Rényi Entropies

The Proof that Shannon Missed (Again)

Take any $X \Perp Y$ and X^{*}, Y^{*} i.i.d. Gaussian. Set $X=T\left(X^{*}\right)$ and $Y=U\left(Y^{*}\right)$. Then

$$
\begin{aligned}
& h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y)-\lambda h(X)-(1-\lambda) h(Y) \\
& \quad=h\left(\sqrt{\lambda} T\left(X^{*}\right)+\sqrt{1-\lambda} U\left(Y^{*}\right)\right)-\lambda h\left(T\left(X^{*}\right)\right)-(1-\lambda) h\left(U\left(Y^{*}\right)\right)
\end{aligned}
$$

The Proof that Shannon Missed (Again)

Take any $X \Perp Y$ and X^{*}, Y^{*} i.i.d. Gaussian. Set $X=T\left(X^{*}\right)$ and $Y=U\left(Y^{*}\right)$. Then

$$
\begin{aligned}
& h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y)-\lambda h(X)-(1-\lambda) h(Y) \\
& \quad=h\left(\sqrt{\lambda} T\left(X^{*}\right)+\sqrt{1-\lambda} U\left(Y^{*}\right)\right)-\lambda \underbrace{h\left(T\left(X^{*}\right)\right)}-(1-\lambda) \underbrace{h\left(Y^{\left.U\left(Y^{*}\right)\right)}\right.}
\end{aligned}
$$

Compare this to

$$
h\left(X^{*}\right)+\mathbb{E} \log T^{\prime}\left(X^{*}\right) \quad h\left(Y^{*}\right)+\mathbb{E} \log U^{\prime}\left(Y^{*}\right)
$$

$$
h(\underbrace{\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}}_{\widetilde{X}})-\lambda h\left(X^{*}\right)+(1-\lambda) h\left(Y^{*}\right)
$$

The Proof that Shannon Missed (Again)

Take any $X \Perp Y$ and X^{*}, Y^{*} i.i.d. Gaussian. Set $X=T\left(X^{*}\right)$ and $Y=U\left(Y^{*}\right)$. Then

$$
\begin{aligned}
& h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y)-\lambda h(X)-(1-\lambda) h(Y) \\
& \quad=h\left(\sqrt{\lambda} T\left(X^{*}\right)+\sqrt{1-\lambda} U\left(Y^{*}\right)\right)-\lambda \underbrace{h\left(T\left(X^{*}\right)\right)}-(1-\lambda) \underbrace{h(\underbrace{\left.U\left(Y^{*}\right)\right)}}
\end{aligned}
$$

Compare this to

$$
h\left(X^{*}\right)+\mathbb{E} \log T^{\prime}\left(X^{*}\right) \quad h\left(Y^{*}\right)+\mathbb{E} \log U^{\prime}\left(Y^{*}\right)
$$

$$
\begin{aligned}
& h(\underbrace{\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}})-\lambda h\left(X^{*}\right)+(1-\lambda) h\left(Y^{*}\right) \\
& \left\{\begin{array} { l }
{ \widetilde { x } = \sqrt { \lambda } X ^ { \widetilde { * } } + \sqrt { 1 - \lambda } Y ^ { * } } \\
{ \widetilde { Y } = - \sqrt { 1 - \lambda } X ^ { * } + \sqrt { \lambda } Y ^ { * } }
\end{array} \quad \left\{\begin{array}{l}
X^{*}=\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda} \widetilde{Y} \\
Y^{*}=\sqrt{1-\lambda} \tilde{X}+\sqrt{\lambda} \widetilde{Y}
\end{array}\right.\right.
\end{aligned}
$$

The Proof that Shannon Missed (Again)

Take any $X \Perp Y$ and X^{*}, Y^{*} i.i.d. Gaussian. Set $X=T\left(X^{*}\right)$ and $Y=U\left(Y^{*}\right)$. Then

$$
h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y)-\lambda h(X)-(1-\lambda) h(Y)
$$

$$
\begin{aligned}
& \quad=h\left(\sqrt{\lambda} T\left(X^{*}\right)+\sqrt{1-\lambda} U\left(Y^{*}\right)\right)-\lambda \underbrace{h\left(T\left(X^{*}\right)\right)}_{h\left(X^{*}\right)+\mathbb{E} \log T^{\prime}\left(X^{*}\right)}-(1-\lambda) \underbrace{h\left(U\left(Y^{*}\right)\right)}_{h\left(Y^{*}\right)+\mathbb{E} \log U^{\prime}\left(Y^{*}\right)} \\
& \text { Compare this to }
\end{aligned}
$$

$$
\begin{aligned}
& h\left(\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}\right)-\lambda h\left(X^{*}\right)+(1-\lambda) h\left(Y^{*}\right) \\
& \left\{\begin{array} { l }
{ \widetilde { X } = \sqrt { \lambda } X ^ { * } + \sqrt { 1 - \lambda } Y ^ { * } } \\
{ \widetilde { Y } = - \sqrt { 1 - \lambda } X ^ { * } + \sqrt { \lambda } Y ^ { * } }
\end{array} \quad \left\{\begin{array}{l}
X^{*}=\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda} \widetilde{Y} \\
Y^{*}=\sqrt{1-\lambda} \bar{X}+\sqrt{\lambda} \widetilde{Y}
\end{array}\right.\right.
\end{aligned}
$$

Then $\sqrt{\lambda} T\left(X^{*}\right)+\sqrt{1-\lambda} U\left(Y^{*}\right)$ becomes a function of $\widetilde{X}, \widetilde{Y} \ldots$

A Proof that Shannon Missed (Cont'd)

$$
\begin{aligned}
& h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y)=h\left(\sqrt{\lambda} T\left(X^{*}\right)+\sqrt{1-\lambda} U\left(Y^{*}\right)\right) \\
& =h(\sqrt{\lambda} T(\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda \widetilde{Y}})+\sqrt{1-\lambda} U(\sqrt{1-\lambda} \widetilde{X}+\sqrt{\lambda} \widetilde{Y})) \\
& \geq h(\sqrt{\lambda} T(\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda} \widetilde{Y})+\sqrt{1-\lambda} U(\sqrt{1-\lambda} \widetilde{X}+\sqrt{\lambda} \widetilde{Y}) \mid \widetilde{Y}) \\
& =h(\widetilde{X} \widetilde{Y})+\mathbb{E} \log \left(\lambda T^{\prime}(\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda} \widetilde{Y})+(1-\lambda) U^{\prime}(\sqrt{1-\lambda} \widetilde{X}+\sqrt{\lambda} \widetilde{Y})\right) \\
& =h(\widetilde{X})+\mathbb{E} \log \left(\lambda T^{\prime}\left(X^{*}\right)+(1-\lambda) U^{\prime}\left(Y^{*}\right)\right) \\
& \geq h\left(\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}\right)+\lambda \mathbb{E} \log T^{\prime}\left(X^{*}\right)+(1-\lambda) \mathbb{E} \log U^{\prime}\left(Y^{*}\right)
\end{aligned}
$$

A Proof that Shannon Missed (Cont'd)

$$
\begin{aligned}
& h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y)=h\left(\sqrt{\lambda} T\left(X^{*}\right)+\sqrt{1-\lambda} U\left(Y^{*}\right)\right) \\
& =h(\sqrt{\lambda} T(\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda \widetilde{Y}})+\sqrt{1-\lambda} U(\sqrt{1-\lambda} \widetilde{X}+\sqrt{\lambda} \widetilde{Y})) \\
& \geq h(\sqrt{\lambda} T(\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda} \widetilde{Y})+\sqrt{1-\lambda} U(\sqrt{1-\lambda} \widetilde{X}+\sqrt{\lambda} \widetilde{Y}) \mid \widetilde{Y}) \\
& =h(\widetilde{X} \widetilde{Y})+\mathbb{E} \log \left(\lambda T^{\prime}(\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda} \widetilde{Y})+(1-\lambda) U^{\prime}(\sqrt{1-\lambda} \widetilde{X}+\sqrt{\lambda} \widetilde{Y})\right) \\
& =h(\widetilde{X})+\mathbb{E} \log \left(\lambda T^{\prime}\left(X^{*}\right)+(1-\lambda) U^{\prime}\left(Y^{*}\right)\right) \\
& \geq h\left(\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}\right)+\lambda \mathbb{E} \log T^{\prime}\left(X^{*}\right)+(1-\lambda) \mathbb{E} \log U^{\prime}\left(Y^{*}\right)
\end{aligned}
$$

Then subtract $\lambda h(X)+(1-\lambda) h(Y)=\lambda h\left(X^{*}\right)+(1-\lambda) h\left(Y^{*}\right)+\lambda \mathbb{E} \log T^{\prime}\left(X^{*}\right)+(1-\lambda) \mathbb{E} \log U^{\prime}\left(Y^{*}\right):$

$$
\begin{aligned}
h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y) & -\lambda h(X)-(1-\lambda) h(Y) \\
& \geq h\left(\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}\right)-\lambda h\left(X^{*}\right)+(1-\lambda) h\left(Y^{*}\right)=0
\end{aligned}
$$

A Proof that Shannon Missed (Cont'd)

$$
\begin{aligned}
& h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y)=h\left(\sqrt{\lambda} T\left(X^{*}\right)+\sqrt{1-\lambda} U\left(Y^{*}\right)\right) \\
& =h(\sqrt{\lambda} T(\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda \widetilde{Y}})+\sqrt{1-\lambda} U(\sqrt{1-\lambda} \widetilde{X}+\sqrt{\lambda} \widetilde{Y})) \\
& \geq h(\sqrt{\lambda} T(\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda} \widetilde{Y})+\sqrt{1-\lambda} U(\sqrt{1-\lambda} \widetilde{X}+\sqrt{\lambda} \widetilde{Y}) \mid \widetilde{Y}) \\
& =h(\widetilde{X} \widetilde{Y})+\mathbb{E} \log \left(\lambda T^{\prime}(\sqrt{\lambda} \widetilde{X}-\sqrt{1-\lambda} \widetilde{Y})+(1-\lambda) U^{\prime}(\sqrt{1-\lambda} \widetilde{X}+\sqrt{\lambda} \widetilde{Y})\right) \\
& =h(\widetilde{X})+\mathbb{E} \log \left(\lambda T^{\prime}\left(X^{*}\right)+(1-\lambda) U^{\prime}\left(Y^{*}\right)\right) \\
& \geq h\left(\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}\right)+\lambda \mathbb{E} \log T^{\prime}\left(X^{*}\right)+(1-\lambda) \mathbb{E} \log U^{\prime}\left(Y^{*}\right)
\end{aligned}
$$

Then subtract $\lambda h(X)+(1-\lambda) h(Y)=\lambda h\left(X^{*}\right)+(1-\lambda) h\left(Y^{*}\right)+\lambda \mathbb{E} \log T^{\prime}\left(X^{*}\right)+(1-\lambda) \mathbb{E} \log U^{\prime}\left(Y^{*}\right):$

$$
\begin{aligned}
h(\sqrt{\lambda} X+\sqrt{1-\lambda} Y) & -\lambda h(X)-(1-\lambda) h(Y) \\
& \geq h\left(\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}\right)-\lambda h\left(X^{*}\right)+(1-\lambda) h\left(Y^{*}\right)=0
\end{aligned}
$$

Equality case: $T^{\prime}=U^{\prime}=$ Cst hence $X \propto X^{*}, Y \propto Y^{*}$.

Outline

Introduction
What is Entropy?
Max/Min Entropy Principles
Equivalence to the Entropy Power InequalityA Proof that Shannon Missed
Generalization to Linear Transformations
Shannon vs. Rényi
A Proof that Shannon Missed (Revisited)
Generalization to Rényi Entropies

Conclusion for Rényi's Entropy

$$
\begin{aligned}
& h_{r}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y)-\lambda h_{p}(X)-(1-\lambda) h_{q}(Y) \\
& \geq h_{r}\left(\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}\right)-\lambda h_{p}\left(X^{*}\right)-(1-\lambda) h_{q}\left(Y^{*}\right) \\
&=\frac{r}{2(r-1)}\left(\frac{\log r}{r}-\frac{\log p}{p}-\frac{\log q}{q}\right)
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$ (Young's triple with rate λ), i.e., where Hölder conjugates satisfy $\frac{1}{r^{\prime}}=\underbrace{\frac{1}{p^{\prime}}}_{\frac{\lambda}{\Gamma^{\prime}}}+\underbrace{\frac{1}{q^{\prime}}}_{\frac{1-\lambda}{r^{\prime}}}$.

Equality case: $T^{\prime}=U^{\prime}=$ Cst hence $X \propto X^{*}, Y \propto Y^{*}$.

Conclusion for Rényi's Entropy

$$
\begin{aligned}
& h_{r}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y)-\lambda h_{p}(X)-(1-\lambda) h_{q}(Y) \\
& \quad \geq h_{r}\left(\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}\right)-\lambda h_{p}\left(X^{*}\right)-(1-\lambda) h_{q}\left(Y^{*}\right) \\
&=\frac{r}{2(r-1)}\left(\frac{\log r}{r}-\frac{\log p}{p}-\frac{\log q}{q}\right)
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$ (Young's triple with rate λ), i.e., where Hölder conjugates satisfy $\frac{1}{r^{\prime}}=\underbrace{\frac{1}{p^{\prime}}}_{\frac{\lambda}{r^{\prime}}}+\underbrace{\frac{1}{q^{\prime}}}_{\frac{1-\lambda}{r^{\prime}}}$.

Equality case: $T^{\prime}=U^{\prime}=$ Cst hence $X \propto X^{*}, Y \propto Y^{*}$.

- the natural generalization of the EPI for Rényi entropies

Conclusion for Rényi's Entropy

$$
\begin{aligned}
h_{r}(\sqrt{\lambda} X+ & \sqrt{1-\lambda} Y)-\lambda h_{p}(X)-(1-\lambda) h_{q}(Y) \\
& \geq h_{r}\left(\sqrt{\lambda} X^{*}+\sqrt{1-\lambda} Y^{*}\right)-\lambda h_{p}\left(X^{*}\right)-(1-\lambda) h_{q}\left(Y^{*}\right) \\
& =\frac{r}{2(r-1)}\left(\frac{\log r}{r}-\frac{\log p}{p}-\frac{\log q}{q}\right)
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}$ (Young's triple with rate λ), i.e., where Hölder conjugates satisfy $\frac{1}{r^{\prime}}=\underbrace{\frac{1}{p^{\prime}}}_{\frac{\lambda}{r^{\prime}}}+\underbrace{\frac{1}{q^{\prime}}}_{\frac{1-\lambda}{r^{\prime}}}$.

Equality case: $T^{\prime}=U^{\prime}=$ Cst hence $X \propto X^{*}, Y \propto Y^{*}$.
■ the natural generalization of the EPI for Rényi entropies

- turns out to be equivalent to strong Young's inequality and its reverse [Dembo, Cover, Thomas, 1991] [Barthe, 1998]

Conclusion (Rényi’s Entropy)

For $N \geq 2$ variables:
$h_{r}\left(\sum_{i} \sqrt{\lambda_{i}} X_{i}\right)-\sum_{i} \lambda_{i} h_{r_{i}}\left(X_{i}\right)$ is minimum for X_{i} i.i.d. Gaussian:

$$
h_{r}\left(\sum_{i} \sqrt{\lambda_{i}} X_{i}\right) \geq \sum_{i} \lambda_{i} h_{r_{i}}\left(X_{i}\right)+\frac{r^{\prime}}{2}\left(\frac{\log r}{r}-\sum_{i} \frac{\log r_{i}}{r_{i}}\right)
$$

where Hölder conjugates satisfy $\frac{1}{r^{\prime}}=\sum_{i} \frac{1}{r_{i}^{\prime}}$ where $\frac{1}{r_{i}^{\prime}}=\frac{\lambda_{i}}{r^{\prime}}$

Conclusion (Rényi's Entropy)

For $N \geq 2$ variables:
$h_{r}\left(\sum_{i} \sqrt{\lambda_{i}} X_{i}\right)-\sum_{i} \lambda_{i} h_{r_{i}}\left(X_{i}\right)$ is minimum for X_{i} i.i.d. Gaussian:

$$
h_{r}\left(\sum_{i} \sqrt{\lambda_{i}} X_{i}\right) \geq \sum_{i} \lambda_{i} h_{r_{i}}\left(X_{i}\right)+\frac{r^{\prime}}{2}\left(\frac{\log r}{r}-\sum_{i} \frac{\log r_{i}}{r_{i}}\right)
$$

where Hölder conjugates satisfy $\frac{1}{r^{\prime}}=\sum_{i} \frac{1}{r_{i}^{\prime}}$ where $\frac{1}{r_{i}^{\prime}}=\frac{\lambda_{i}}{r^{\prime}}$
In particular for $r>1$, then $r \geq r_{i}, h_{r}(X) \leq h_{r_{i}}(X)$
For any for any convex combination ($\sum_{i} \lambda_{i}=1$), choosing $r_{i}^{\prime}=r^{\prime} / \lambda_{i}$:

$$
h_{r}\left(\sum_{i} \sqrt{\lambda_{i}} X_{i}\right) \geq \sum_{i} \lambda_{i} h_{r}\left(X_{i}\right)+\frac{r^{\prime}}{2}\left(\frac{\log r}{r}-\sum_{i} \frac{\log r_{i}}{r_{i}}\right)
$$

Back to the Rényi EPI

Theorem (Rényi Entropy Power Inequality)

$$
e^{2 h_{r}\left(\sum_{i} x_{i}\right)} \geq c \cdot \sum_{i} e^{2 h_{r}\left(X_{i}\right)}
$$

\Longleftrightarrow for any convex combination $\left(\sum_{i} \lambda_{i}=1\right)$

$$
h_{r}\left(\sum_{i} \sqrt{\lambda_{i}} X_{i}\right) \geq \sum_{i} \lambda_{i} h_{r}\left(X_{i}\right)+\log \sqrt{c}
$$

Back to the Rényi EPI

Theorem (Rényi Entropy Power Inequality)

$$
e^{2 h_{r}\left(\sum_{i} X_{i}\right)} \geq c \cdot \sum_{i} e^{2 h_{r}\left(X_{i}\right)}
$$

\Longleftrightarrow for any convex combination $\left(\sum_{i} \lambda_{i}=1\right)$

$$
h_{r}\left(\sum_{i} \sqrt{\lambda_{i}} X_{i}\right) \geq \sum_{i} \lambda_{i} h_{r}\left(X_{i}\right)+\log \sqrt{c}
$$

We have found (for $r>1$):

$$
\log \sqrt{c}=\min \left\{\frac{r^{\prime}}{2}\left(\frac{\log r}{r}-\sum_{i} \frac{\log r_{i}}{r_{i}}\right) \text { s.t. } \sum_{i} \frac{1}{r_{i}}=n-\frac{1}{r^{\prime}}\right\}
$$

Optimal Constant

$$
\log c=\min \left\{r^{\prime}\left(\frac{\log r}{r}-\sum_{i} \frac{\log r_{i}}{r_{i}}\right) \text { s.t. } \sum_{i} \frac{1}{r_{i}}=n-\frac{1}{r^{\prime}}\right\}
$$

Optimal Constant

$$
\log c=\min \left\{r^{\prime}\left(\frac{\log r}{r}-\sum_{i} \frac{\log r_{i}}{r_{i}}\right) \text { s.t. } \sum_{i} \frac{1}{r_{i}}=n-\frac{1}{r^{\prime}}\right\}
$$

But by the log-sum inequality:

$$
\sum_{i} x_{i} \log \frac{x_{i}}{y_{i}} \geq \sum_{i} x_{i} \log \frac{\sum_{i} x_{i}}{\sum_{i} y_{i}} \quad \text { with equality iff } x_{i} \propto y_{i}
$$

Optimal Constant

$$
\log c=\min \left\{r^{\prime}\left(\frac{\log r}{r}-\sum_{i} \frac{\log r_{i}}{r_{i}}\right) \text { s.t. } \sum_{i} \frac{1}{r_{i}}=n-\frac{1}{r^{\prime}}\right\}
$$

But by the log-sum inequality:

$$
\begin{gathered}
\sum_{i} x_{i} \log \frac{x_{i}}{y_{i}} \geq \sum_{i} x_{i} \log \frac{\sum_{i} x_{i}}{\sum_{i} y_{i}} \quad \text { with equality iff } x_{i} \propto y_{i} \\
\sum_{i} \frac{\log r_{i}}{r_{i}}=-\sum_{i} \frac{1}{r_{i}} \log \frac{1}{r_{i}} \leq-\sum_{i} \frac{1}{r_{i}} \log \frac{\sum_{i} \frac{1}{r_{i}}}{N}=-\left(N-\frac{1}{r^{\prime}}\right) \log \frac{N-\frac{1}{r^{\prime}}}{N}
\end{gathered}
$$

with equality iff r_{i} are equal.

Optimal Constant

$$
\log c=\min \left\{r^{\prime}\left(\frac{\log r}{r}-\sum_{i} \frac{\log r_{i}}{r_{i}}\right) \text { s.t. } \sum_{i} \frac{1}{r_{i}}=n-\frac{1}{r^{\prime}}\right\}
$$

But by the log-sum inequality:

$$
\begin{gathered}
\sum_{i} x_{i} \log \frac{x_{i}}{y_{i}} \geq \sum_{i} x_{i} \log \frac{\sum_{i} x_{i}}{\sum_{i} y_{i}} \quad \text { with equality iff } x_{i} \propto y_{i} \\
\sum_{i} \frac{\log r_{i}}{r_{i}}=-\sum_{i} \frac{1}{r_{i}} \log \frac{1}{r_{i}} \leq-\sum_{i} \frac{1}{r_{i}} \log \frac{\sum_{i} \frac{1}{r_{i}}}{N}=-\left(N-\frac{1}{r^{\prime}}\right) \log \frac{N-\frac{1}{r^{\prime}}}{N}
\end{gathered}
$$

with equality iff r_{i} are equal.
This gives

$$
\log c=\frac{\log r}{r-1}+\left(N r^{\prime}-1\right) \log \left(1-\frac{1}{N r^{\prime}}\right)
$$

Optimal Constant

$$
\log c=\min \left\{r^{\prime}\left(\frac{\log r}{r}-\sum_{i} \frac{\log r_{i}}{r_{i}}\right) \text { s.t. } \sum_{i} \frac{1}{r_{i}}=n-\frac{1}{r^{\prime}}\right\}
$$

But by the log-sum inequality:

$$
\begin{gathered}
\sum_{i} x_{i} \log \frac{x_{i}}{y_{i}} \geq \sum_{i} x_{i} \log \frac{\sum_{i} x_{i}}{\sum_{i} y_{i}} \quad \text { with equality iff } x_{i} \propto y_{i} \\
\sum_{i} \frac{\log r_{i}}{r_{i}}=-\sum_{i} \frac{1}{r_{i}} \log \frac{1}{r_{i}} \leq-\sum_{i} \frac{1}{r_{i}} \log \frac{\sum_{i} \frac{1}{r_{i}}}{N}=-\left(N-\frac{1}{r^{\prime}}\right) \log \frac{N-\frac{1}{r^{\prime}}}{N}
\end{gathered}
$$

with equality iff r_{i} are equal.
This gives

$$
c=r^{\frac{1}{r-1}}\left(1-\frac{1}{N r^{\prime}}\right)^{N r^{\prime}-1}
$$

which was found by [Ram\&Sason,2016] as an improvement of [Bobkov\&Chistyakov,2015] (for which $c=r^{\frac{1}{r-1}} / e$)

Thank you!

Questions?

