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_ Shannon’s 1948 seminal paper

The Bell System Technical Journal

Vol. XXViI July, 1945 No.3

A Mathematical Theory of Communication
By C. E. SHANNON
INTRODUCTION

HE recent development of various methods of modulation such as PCM

and PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley?
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the statistical structure of the original message
and due to the nature of the final des of the information,

B enrony.
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N h(X) = [ f(x)log Flx )dxwhereXNf

“You should call it entropy [...] no one really knows what entropy
really is, so in a debate you will always have the advantage.”

John von Neumann (1903-1957) M
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N h(X) = [ f(x)log Flx )dxwhereXNf

“You should call it entropy [...] no one really knows what entropy
really is, so in a debate you will always have the advantage.”

John von Neumann (1903-1957) M

"In the continuous case it is convenient to work not with the entropy
H of an ensemble but with a derived quantity which we will call the
entropy power." [Shannon’1948]
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_ Entropy-Power
Definition ([Shannon48])

m Power: P(X) = E(X?)
B Entropy-Power: N(X) power of a Gaussian X* having the
same entropy
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_ Entropy-Power

Definition ([Shannon48])

m Power: P(X) = E(X?)
B Entropy-Power: N(X) = P(X*) power of a Gaussian X* having the
same entropy h(X*) = h(X)

e Since h(X*) = 3 log(2meP(X*)):

e2h(X)

2me
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Definition ([Shannon48])

m Power: P(X) = E(X?)

B Entropy-Power: N(X) = P(X*) power of a Gaussian X* having the

same entropy h(X*) = h(X)

e Since h(X*) = 3 log(2meP(X*)):

N(X) =
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_ Entropy-Power

Definition ([Shannon48])

m Power: P(X) = E(X?)

B Entropy-Power: N(X) = P(X*) power of a Gaussian X* having the

same entropy h(X*) = h(X)

e Since h(X*) = 3 log(2meP(X*)):

N(X) =

e2h(X)

2me

e Scaling Property:

P(aX) = a’P(X)

“entropy power"

N(ax) = a*N(X)
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_ Entropy-Power Inequality (EPI)

forany X 1L Y:
P(X+Y)=P(X)+ P(Y)
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_ Entropy-Power Inequality (EPI)

forany X 1L Y:
P(X+Y)=P(X)+ P(Y)

Theorem (stated by Shannon, 1948)

N(X +Y) > N(X) + N(Y)

with equality iff X,Y are Gaussian.

The following result is derived in Appendix 6.

Theorem 15: Let the average power of two ensembles be N,

and N, and let their entropy powers be N, and N, Then the
entropy power of the sum, N, is bounded by

Ni+ N: < No< Ny + N B e

White Gaussian noise has the peculiar property that it can LS
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forany X 1L Y:
P(X+Y)=P(X)+ P(Y)

Theorem (stated by Shannon, 1948)

e2h(X+Y) > g2h(X) 4 g2h(Y)

with equality iff X,Y are Gaussian.

The following result is derived in Appendix 6.

Theorem 15: Let the average power of two ensembles be N,

and N, and let their entropy powers be N, and N, Then the
entropy power of the sum, N, is bounded by

Ni+ N: < No< Ny + N B e
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*T THINK. 4OU SHOWD BE MORE EXPLICIT
HERE. ™ STEP TWO .

Shannon’s 1948 “proof” (Appendix 6).

A variational argument: h(X + Y) for fixed h(X) and h(Y) has a
stationary point when X, Y are Gaussian.

This does not exclude local minima/maxima/saddle points.
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_ The EPI has a Long History

1948
1959
1965
1978
1991
1991
2000
2006
2007
2014
2016
2017

Stated and “proved” by Shannon in his seminal paper
Stam’s proof using Fisher information
Blachman’s exposition of Stam’s proof in IEEE Trans. IT
Lieb’s proof using strengthened Young’s inequality
Dembo-Cover-Thomas’ review of Stam’s & Lieb’s proofs
Carlen-Soffer 1D variation of Stam’s proof
Szarek-Voiculescu variant with Brunn-Minkowski inequality
Guo-Shamai-Verdu proof based on the I-MMSE relation
Rioul’s proof based on Mutual Information
Wang-Madiman strengthening using Rényi entropies
Courtade’s strengthening
Yet another simple proof!

|
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_ Applications of the EPI:

B nonGaussian Capacity [Shannon’48]
Gaussian means worst noise / Gaussian means best signal
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_ Applications of the EPI:

B nonGaussian Capacity [Shannon’48]
Gaussian means worst noise / Gaussian means best signal

B multi-user capacity region outer bounds
B strengthening the Central Limit Theorem [Barron86]
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_ Applications of the EPI:

B nonGaussian Capacity [Shannon’48]
Gaussian means worst noise / Gaussian means best signal

B multi-user capacity region outer bounds
B strengthening the Central Limit Theorem [Barron86]
B blind deconvolution / source separation [Donoho81]
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Max/Min Entropy Principles
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_ Ingredients

X1

2
B random X = | . | € R” with independent components X;

- entropy

TELECOM

13 /40 16552018 Olivier Rioul On Minimum Entropy and Gaussian Transport =
_ EZET



_ Ingredients

X1
2
B random X = | . | € R” with independent components X;
Xn
B 3 linear transformation: X — AX
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_ Ingredients

X1
2
B random X = | . | € R” with independent components X;
Xn
B 3 linear transformation: X — AX

B consider h(AX):
* assume it is nondegenerate: h(AX) > —co
* = A has full row rank
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_ Ingredients

X1
2
B random X = | . | € R” with independent components X;
Xn
B 3 linear transformation: X — AX

B consider h(AX):
* assume it is nondegenerate: h(AX) > —co
° — A has full row rank
. II]isanm x n matrix withm <n
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_ Ingredients

X1
X2 . .

B random X = | . | € R” with independent components X;
Xn

B 3 linear transformation: X — AX

B consider h(AX):
* assume it is nondegenerate: h(AX) > —co
° — A has full row rank
. II]isanm x n matrix withm <n

B maxh(AX) or minh(AX)?
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X/ of same
variances: Var(X;) = Var(X;).

Theorem (Maximum Entropy Principle)

h(AX) < h(AX*)  with equality iff X is Gaussian
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
variances: Var(X;) = Var(X;).

Theorem (Maximum Entropy Principle)

h(AX) < h(AX*)  with equality iff X is Gaussian

® Proof: h(AX*) — h(AX) = Dy (AX[|AX*) > 0 O
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
variances: Var(X;) = Var(X;).

Theorem (Maximum Entropy Principle)

h(AX) < h(AX*)  with equality iff X is Gaussian

B Proof: h(AX*) — h(AX) = D (AX||AX*) > 01
B known in the 19th century (Gibbs’ inequality)
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
variances: Var(X;) = Var(X;).

Theorem (Maximum Entropy Principle)

h(AX) < h(AX*)  with equality iff X is Gaussian

B Proof: h(AX*) — h(AX) = D (AX||AX*) > 01

B known in the 19th century (Gibbs’ inequality)

B components need not be independent

B E. T. Jaynes, "Information theory and statistical mechanics,"a
Physical Review, vol. 106, no. 4, pp. 620-630, 1957. '
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
variances: Var(X;) = Var(X;).

Theorem (Maximum Entropy Principle)

h(AX) < h(AX*)  with equality iff X is Gaussian

B Proof: h(AX*) — h(AX) = D (AX||AX*) > 01

B known in the 19th century (Gibbs’ inequality)

B components need not be independent

B E. T. Jaynes, "Information theory and statistical mechanics,"a
Physical Review, vol. 106, no. 4, pp. 620-630, 1957.

B |. P. Burg, "Maximum entropy spectral analysis," Ph.D., o«
Stanford, Dept. of Geophysics, Stanford, CA, USA, 1975. L Ez s
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
variances: Var(X;) = Var(X;).

Theorem (Maximum Entropy Principle)

h(AX) < h(AX*)  with equality iff X is Gaussian

Let X* be Gaussian with independent components X7 of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality iff X is Gaussian. ..
B cirepy.
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality iff X is Gaussian. ..
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality iff X is Gaussian. ..

... or Ais trivial

B Closeness to normality by linear filtering
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality iff X is Gaussian. ..

... or Ais trivial

B Closeness to normality by linear filtering
B D. Donoho, "On minimum entropy deconvolution," in Appliedﬁ
Time Series Analysis Il, Acad. Press, 1981, pp. 565-608. =
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality iff X is Gaussian. ..

... or Ais trivial

B Closeness to normality by linear filtering

® D. Donoho, "On minimum entropy deconvolution," in Applied
Time Series Analysis Il, Acad. Press, 1981, pp. 565-608. :

B R. Zamir & M. Feder, "A generalization of the entropy power@
inequality," IEEE Trans. IT, 39(5):1723-1728, Sep. 1993.
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality iff X is Gaussian. ..

... or Ais trivial

B Closeness to normality by linear filtering

® D. Donoho, "On minimum entropy deconvolution," in Applied
Time Series Analysis Il, Acad. Press, 1981, pp. 565-608. i

B R. Zamir & M. Feder, "A generalization of the entropy power@
inequality," IEEE Trans. IT, 39(5):1723-1728, Sep. 1993.

B Application to deconvolution / blind separation B crony.
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality iff X is Gaussian. ..

... or Ais trivial
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® D. Donoho, "On minimum entropy deconvolution," in Applied

Time Series Analysis Il, Acad. Press, 1981, pp. 565-608. i
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N Simplest nontrivial case: (m,n) =(1,2)
Take A= (a b) with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1, 2))

For any two independent X, Y, letting X*,Y* independent Gaussian
s.t. h(X*) = h(X), h(Y) = h(Y™),

h(aX + bY) > h(aX* + bY™) |with equality iff X,Y are Gaussian.

- entropy
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For any two independent X, Y, letting X*,Y* independent Gaussian
s.t. h(X*) = h(X), h(Y) = h(Y™),

h(aX + bY) > h(aX* + bY™) |with equality iff X,Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:
N(X) = Var(X*)  where  h(X*) = h(X)
i.e., since h(X*) = J log(2meVar(X*)),
N(X) = exp(2h(X))/2me
TSR
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N Simplest nontrivial case: (m,n) =(1,2)
Take A= (a b) with nonzero a, b (nontrivial mixture).

Theorem ( [Shannon’48])

For any two independent X, Y,

N( X+ Y)>N( X)+N( Y)|with equality iff X,Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:
N(X) = Var(X*) where  N(X*) = N(X)
i.e., since h(X*) = 3 log(2reVar(X*)),
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A Proof that Shannon Missed
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_ Ingredients: “Optimal Transport”

Lemma (inverse function sampling method)

If U is uniform in [0, 1] and X has c.d.f. F(x) = P(X < x), then
F~Y(U) has the same distribution as X.

P(F1(U) < x) = P(U < F(x)) = F(x). O

. entropy
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_ Ingredients: “Optimal Transport”

Lemma (inverse function sampling method)

If U is uniform in [0, 1] and X has c.d.f. F(x) = P(X < x), then
F~Y(U) has the same distribution as X.

Corollary (monotonic increasing transport T = F1 0 G)

Let F,G be two c.d.f’s. Then X* ~ G = X =T(X*) ~F.

U = G(X*) ~ uniform; T(X*) =F 1(G(X*)) = F}(U) ~F. O
B oy
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_ Ingredients: “Optimal Transport”

Lemma (inverse function sampling method)

If U is uniform in [0, 1] and X has c.d.f. F(x) = P(X < x), then
F~Y(U) has the same distribution as X.

Corollary (monotonic increasing transport T = F1 0 G)

Let F,G be two c.d.f’s. Then X* ~ G = X =T(X*) ~F.

Proof.
U = G(X*) ~ uniform; T(X*) =F 1(G(X*)) = F}(U) ~F. O

B nD generalization: Knéthe map, Brenier map. ..
B oy
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_ Ingredients: “Optimal Transport”

Lemma (inverse function sampling method)

If U is uniform in [0, 1] and X has c.d.f. F(x) = P(X < x), then
F~Y(U) has the same distribution as X.

Corollary (monotonic increasing transport T = F1 0 G)

Let F,G be two c.d.f’s. Then X* ~ G = X =T(X*) ~F.

Proof.
U = G(X*) ~ uniform; T(X*) =F 1(G(X*)) = F}(U) ~F. O
B nD generalization: Knéthe map, Brenier map. ..

B Used in optimal transport theory B errory
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_ Ingredients: “Optimal Transport”

Lemma (Change of variable [Shannon’48])

For any continuous X, X*, monotonic increasing transport T(X*) ~ X,
h(X) =|h(T(X*)) = h(X*) + Elog T'(X*)

- entropy
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_ Ingredients: “Optimal Transport”

Lemma (Change of variable [Shannon’48])

For any continuous X, X*, monotonic increasing transport T(X*) ~ X,
h(X) =|h(T(X*)) = h(X*) + Elog T'(X*)

Proof: make the change of variable x = T(x*) in

h(X) = / fe(x) log ﬁ o= / e (T(¢)) T (x*) log m dx*
fiex (x*)

. entropy
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_ Ingredients: “Optimal Transport”

Lemma (Change of variable [Shannon’48])

For any continuous X, X*, monotonic increasing transport T(X*) ~ X,
h(X) =|h(T(X*)) = h(X*) + Elog T'(X*)

Proof: make the change of variable x = T(x*) in

h(X) = / fe(x) log ﬁ o= / e (T(¢)) T (x*) log m dx*
fiex (x*)

m in particular h(aX) = h(X) + log |a] <= N(aX) = a®N(X); =
B cony.
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_ Ingredients: “Optimal Transport”

Lemma (Change of variable [Shannon’48])

For any continuous X, X*, monotonic increasing transport T(X*) ~ X,
h(X) =|h(T(X*)) = h(X*) + Elog T'(X*)

Proof: make the change of variable x = T(x*) in

h(X) = / fx(x)log ﬁ dx = / fix (T(x")) T'(x") log fx(; S

T(x*))
fx (x*)
m in particular h(aX) = h(X) + log |a] <= N(aX) = a®N(X); =
B s
® more generally in nD: h(T(X*)) = h(X*) + E log | det T'(X*)|
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*, Y* are indep. Gaussian s.t. h(X*) = h(X), h(Y) = h(Y*)

‘ entropy
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y).

‘ entropy
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.

u entropy
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.

So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

u entropy
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.

So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: .

u entropy
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.

So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = +v/a? + b?;
* the log A terms cancel.

l entropy
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.

So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = vaZ + b2;
* the log A terms cancel.

3. Make the changes of variables X = T(X*), Y = U(Y*):
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.
So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = vaZ + b2;
* the log A terms cancel.

3. Make the changes of variables X = T(X*), Y = U(Y*):

One is led to prove ‘ h(aT(X*) +bU(Y")) > h(aX™ + bY™)
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.
So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = vaZ + b2;
* the log A terms cancel.
3. Make the changes of variables X = T(X*), Y = U(Y*):
One is led to prove ‘ h(aT(X*) +bU(Y")) > h(aX™ + bY™)

4. Define X = ax* + bY™,

u entropy
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.
So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = vaZ + b2;
* the log A terms cancel.
3. Make the changes of variables X = T(X*), Y = U(Y*):
One is led to prove ‘ h(aT(X*) +bU(Y")) > h(aX™ + bY™)

4. Define X = aX* + bY*. Complete the rotation: Y = —bX* + aY*

B oy

so that | X,Y are i.i.d.|Gaussian -
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.
So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = vaZ + b2;
* the log A terms cancel.
3. Make the changes of variables X = T(X*), Y = U(Y*):
One is led to prove | h(aT(X") + bU(Y")) > h(aX" + bY*)

4. Define X = aX* + bY*. Complete the rotation: Y = —bX* + aY* sy

=2
so that X Y are i.i.d.|Gaussian and | X* = aX — bY, Y* = b))
fre




_ A Proof that Shannon Missed

One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

)?,Vare i.i.d.

Gaussian and ‘X* = aX — bY ‘ ‘ Y* = bX + a?‘.

‘ entropy

TELECOM
ParisTech

arisTech
22 /40 1652018 On Minimum Entropy and Gaussian Transport =
_ EZETN



I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces entropy:
h(aT(X*) 4+ bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))

> h(aT(aX — bY) + bU(bX + aY)|Y)

u entropy
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I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces entropy:
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))
> h(aT(aX — bY) + bU(bX + aY) |Y)

T3(X)

u entropy
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I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces eDtropxz B _
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))
> h(aT(aX — bY) + bU(bX + aY) |Y)
6. By the change of variable: Ty(X)
= h(X|Y) + Elog T”~(()~<)

u entropy

TELECOM
ParisTech

islecl
22 /40 1652018 Olivier Rioul On Minimum Entropy and Gaussian Transport =3
_ EZETN



I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces eDtropxz B _
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))
> h(aT(aX — bY) + bU(bX + aY) |Y)
6. By the change of variable: Ty(X)
= h(X) +Elog T’y()N()
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_ A Proof that Shannon Missed

One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

)?,Vare i.i.d.

Gaussian and ‘X* = aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces entropy:
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))

> h(aT(aX — bY) + bU(bX + aY) |Y)

6. By the change of variable: Ty(X)

= h(X) +Elog T’y()N()
= h(X) + Elog(aT’(aX — bY) + b2U'(bX + aY))

l entropy

TELECOM
ParisTech

islecl
22 /40 1652018 Olivier Rioul On Minimum Entropy and Gaussian Transport =3
_ EZETN



_ A Proof that Shannon Missed

One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

)?,Vare i.i.d.

Gaussian and ‘X* = aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces entropy:
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))

> h(aT(aX — bY) + bU(bX + aY) |Y)

6. By the change of variable: Ty(X)

= h(X) +Elog T’y()N()
= h(X) + Elog(aT’(aX — bY) + b2U'(bX + aY))
= h(aX* + bY*) + Elog(a®T'(X*) + b*U'(Y*))

l entropy
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I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) + bU(Y")) > h(aX™ + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces eDtropxz B _
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))
> h(aT(aX — bY) + bU(bX + aY) |Y)
6. By the change of variable: Ty(X)
= h(X) + Elog T5(X)
) + Elog(a®T'(aX — bY) + b?U'(bX + aY))

= h(X
h(aX* + bY*) + Elog(a®T'(X*) + b*U'(Y*))
7. By concavity of the Iog
h(aX* + bY*) + a’Elog T'(X*) +b°E loggh 1/ ¥*)

ntropy
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I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) + bU(Y")) > h(aX™ + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces eDtropxz B _
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))

> h(aT(aX — bY) + bU(bX + aY) |Y)

6. By the change of variable: Ty(X)
= h(X) +Elog T’y()N()
= h(X) + Elog(aT’(aX — bY) + b2U'(bX + aY))
= h(aX* + bY*) + Elog(a®T'(X*) + b*U'(Y*))

7. By concavity of the log:

> h(aX* + bY*) + a’Elog T'(X*)+b’E log (")

~~
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I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) + bU(Y")) > h(aX™ + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces eDtropxz B _
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))
> h(aT(aX — bY) + bU(bX + aY) |Y)
6. By the change of variable: Ty(X)
= h(X) + Elog T5(X)
= h(X) + Elog(aT’(aX — bY) + b2U'(bX + aY))
h(aX* + bY*) + Elog(a®T'(X*) + b*U'(Y*))
7. By concavity of the Iog
h(aX* + bY*) + a’Elog T'(X*)+b’E logg 1L¥™*)
h(aX* + bY™) O TeLeCom
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_ Equality Case

For nonzero a, b:
B in log concavity inequality:

Elog(a®T'(X*) + b°U'(Y*)) = a’Elog T'(X*) + b°Elog U'(Y*)

= T/(X*) = U'(X*) = c > 0 constant a.e.

‘ entropy

TELECOM
ParisTech

arisTech
23 /40 1652018 On Minimum Entropy and Gaussian Transport =
_ EZET



_ Equality Case

For nonzero a, b:
B in log concavity inequality:
Elog(a®T'(X*) + b°U'(Y*)) = a’Elog T'(X*) + b°Elog U'(Y*)
= T/(X*) = U'(X*) = c > 0 constant a.e.
= T,U arelinear: X = T(X*) = cX*, Y = U(Y*) = cY* Gaussian.

‘ entropy

TELECOM
ParisTech

islecl
23 /40 1652018 On Minimum Entropy and Gaussian Transport =
_ EZET



_ Equality Case

For nonzero a, b:
B in log concavity inequality:
Elog(a®T'(X*) + b°U'(Y*)) = a’Elog T'(X*) + b°Elog U'(Y*)
= T/(X*) = U'(X*) = c > 0 constant a.e.
= T,U arelinear: X = T(X*) = cX*, Y = U(Y*) = cY* Gaussian.
= ¢ = 1since h(X) = h(X*), h(Y) = h(Y*).

u entropy
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_ Equality Case

For nonzero a, b:
B in log concavity inequality:
Elog(a’T'(X*) + b*U'(Y*)) = a’Elog T'(X*) + b°Elog U'(Y*)

= T/(X*) = U'(X*) = c > 0 constant a.e.
= T,U arelinear: X = T(X*) = cX*, Y = U(Y*) = cY* Gaussian.
= ¢ = 1since h(X) = h(X*), h(Y) = h(Y*).

B in information inequality:
h(aT(aX — bY) +bU(bX + aY)) = h(aT(aX — bY)+bU(bX + aY)|Y)
comes for free since a(aX — bY) + b(bX + aY) = X is indep of Y.

l entropy
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B outline

Generalization to Linear Transformations

. entropy
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_ Generalization to Linear Transformations

Proceed to prove h(AX) > h(AX*).

. entropy
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_ Generalization to Linear Transformations

Proceed to prove h(AX) > h(AX*).
B We may assume all X; have the same entropy: Otherwise,
introduce ¢; = e~ ") and apply the result to the ¢;X;.

- entropy
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_ Generalization to Linear Transformations

Proceed to prove h(AX) > h(AX*).
B We may assume all X; have the same entropy: Otherwise,
introduce ¢; = e~ ") and apply the result to the ¢;X;.
B Since h(X;) = h(X;), all X} have the same variance, hence are
i.i.d.

‘ entropy
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_ Generalization to Linear Transformations

Proceed to prove h(AX) > h(AX*).
B We may assume all X; have the same entropy: Otherwise,
introduce ¢; = e~ ") and apply the result to the ¢;X;.
B Since h(X;) = h(X;), all X} have the same variance, hence are
i.i.d.
B We may assume that A has rank = m < n (otherwise the result is
trivial): h(AX) = h(AX*) = —oc.

u entropy
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_ Generalization to Linear Transformations

Proceed to prove h(AX) > h(AX*).

B We may assume all X; have the same entropy: Otherwise,
introduce ¢; = e~ ") and apply the result to the ¢;X;.

B Since h(X;) = h(X;), all X} have the same variance, hence are
i.i.d.

B We may assume that A has rank = m < n (otherwise the result is
trivial): h(AX) = h(AX*) = —oc.

B The difference h(AX) — h(AX*) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AA! = I.

l entropy
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_ Generalization to Linear Transformations

Proceed to prove h(AX) > h(AX*).

25 /40 1652018 On Minimum Entropy and Gaussian Transport ==
_ EZETN

We may assume all X; have the same entropy: Otherwise,
introduce ¢; = e~ ") and apply the result to the ¢;X;.

Since h(X;) = h(X;), all X} have the same variance, hence are
i.i.d.

We may assume that A has rank = m < n (otherwise the result is
trivial): h(AX) = h(AX*) = —oc.

The difference h(AX) — h(AX*) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AA! = I.

A
Extend A to an orthogonal matrix A = ( >

AC

l entropy
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_ Generalization to Linear Transformations

- - - X
B Then let X = AX* et X¢ = A°X* so that X' = )~(C> = AX* has

i.i.d. components. Inverting yields X* = A X'.

‘ entropy
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_ Generalization to Linear Transformations

- - - X
B Then let X = AX* et X¢ = A°X* so that X' = )~(C> = AX* has

i.i.d. components. Inverting yields X* = A X'.
® By the changes of variables X; = T;(X}), since conditioning
reduces entropy:

h(AX)

h(AT(X*))

‘ entropy
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_ Generalization to Linear Transformations

- - - X
B Then let X = AX* et X¢ = A°X* so that X' = )~(C> = AX* has

i.i.d. components. Inverting yields X* = A X'.
® By the changes of variables X; = T;(X}), since conditioning
reduces entropy:

h(AX) = h(AT(X"))
(AT(A"X"))

(AT(A" X')| X°)

h
h

v

B But the Jacobian matrix of

T (X) = AT(K* X') = AT(A X + (A)E X°) for fixed X€ is

kv tY N .
T}(C(X) = AT (K" X’ )At = AT (X*)At where T'(X*) = d1ag(T,-’ (X*l\\,

y
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_ Generalization to Linear Transformations

B The change of variables in the entropy yields
h(AX) > h(AT(K" X')| X°)
= h(X|X°) + Elog det(AT'(X*)A!)

‘ entropy
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_ Generalization to Linear Transformations

B The change of variables in the entropy yields
h(AX) > h(AT(K" X')| X°)
= h(X|X°) + Elog det(AT'(X*)A!)
B By the concavity of the logarithm:
log det(AT'(X*)A) > tr(A - log T'(x*) - A"

thus
h(AX) > h(X|X°) + tr(A - Elog T'(X) - A}

u entropy
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_ Generalization to Linear Transformations

B The change of variables in the entropy yields
h(AX) > h(AT(K" X')| X°)
= h(X|X°) + E log det(AT’'(X*)A")
B By the concavity of the logarithm:
log det(AT'(X*)A) > tr(A - log T'(x*) - A"

thus
h(AX) > h(X|X°) + tr(A - Elog T'(X) - A}
m But h(X|X<) = h(X) = h(AX*) and
Elog T/(X;) = h(Ti(X;)) — h(X;) = h(X;) — h(X;) = 0; s0
‘h(AX) = (AX*) - B crirery..

TELECOM
ParisTech

‘arisleci
27 / 40 16/512018 Olivier Rioul On Minimum Entropy and Gaussian Transport =
_ EHET



_ Generalization to Linear Transformations

B The change of variables in the entropy yields
h(AX) > h(AT(K" X')| X°)
= h(X|X°) + E log det(AT’'(X*)A")
B By the concavity of the logarithm:
log det(AT'(X*)A) > tr(A - log T'(x*) - A"

thus
h(AX) > h(X|X°) + tr(A - Elog T'(X) - A}

m But h(X|X<) = h(X) = h(AX*) and
Elog T/(Xi) = h(Ti(X;)) — h(X;) = h(X;) — h(X;) = 0; so
(

| h(AX) > h(AX") _——
B Equality iff either A is trivial or T/(X;) = Cst., hence X is Gaus

ParisTech
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B outline

Shannon vs. Rényi

. entropy
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I shannon’s and Rényi’s Entropies

h(X) = /flogi

. entropy
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I shannon’s and Rényi’s Entropies

h(X) = /flog]f — h(X)

—r

1
hr(X) = 1 Iog/fr

“A mathematician is a device for turning coffee into theorems”

Alfred Renyi (1921-1970)

. entropy
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_ Lieb’s Restatement of the EPI

Theorem (Lieb, 1978)

e2h(X+Y) > g2h(X) 4 a2h(Y)

< forany0 < A <1

h(VAX + V1 = AY) > Ah(X) 4 (1 — A)h(Y)

= : X =+ X, Y = /1= )Y/, take the log (concavity of the log)

— X=X'/V\ Y =Y/y1-), take the exp, assuming X such that

h(X) = h(Y), rh.s. is (€2100)} (e2h(M) 1% — e2h(0) 4 (1 — \)e2h(M, ]
B e
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_ Lieb’s Restatement of the EPI

e2h (X+Y) > . (ezhr(x) 4 ezh,(Y))

< forany0 < A <1

h(VAX + VI = AY) > Ah(X) + (1 = A)h(Y)+log Ve

= : X =X, Y = /1= XY/, take the log (concavity of the log)

— X=X /v Y=Y/y/1-) take the exp, assuming \ such that
he(X) = he(Y), rhs. (€200} (e2h (M) 174 = \e2M(X) 4 (1 — A)eh (M

el
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_ Lieb’s Restatement of the EPI

e2h (X+Y) > . (ezhr(x) 4 ezh,(Y))

< forany0 < A <1

h (VAX + V1 = XY) > A (X) + (1 = Nh(Y)+nlog /c

I (with ¢ independent of the dimension).
= : X =X, Y = /1= XY/, take the log (concavity of the log)

— X=X /v Y=Y/y/1-) take the exp, assuming \ such that
he(X) = he(Y), rhs. (€200} (e2h (M) 174 = \e2M(X) 4 (1 — A)eh (M

el
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_ Restatement for More than Two Variables

N independent variables X1, X5, ..., Xy.

eZhF(Zi Xi) 2 C- Z eZhF(XI')
i

<= for any convex combination (> ; \j = 1)

hr(z VX)) > Z Nhr(Xi) + g log ¢
i i

Same proof.
B cnrony..

TELECOM

31/40 16/52018 Olivier Rioul On Minimum Entropy and Gaussian Transport =¥
_ EHET



_ Variation for More than Two Variables

N independent variables X1, X5, ..., Xy.

e2ahr(ZiX,-) Z ZeZahr(X,)
i

<= for any convex combination (> ; \j = 1)

he(3° V/AXG) = 3 Mhe(X) + 3 (1 /o= )H(N)

Same proof.
B cnrony..
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B outline

A Proof that Shannon Missed (Revisited)

. entropy
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_ The Proof that Shannon Missed (Again)

Take any X L Y and X*, Y* i.i.d. Gaussian. Set X = T(X*) and
Y = U(Y*). Then
h(VAX + V1 = AY) — Ah(X) — (1 — A)h(Y)
= h(VAT(X*) + V1 = AU(Y*)) = Ah(T(X*)) — (1 — Mh(U(Y*))

‘ entropy
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_ The Proof that Shannon Missed (Again)
Take any X L Y and X*,Y* i.i.d. Gaussian. Set X = T(X*) and
Y =U(Y*). Then
h(VAX + V1 = XY) — Ah(X) — (1 — A)h(Y)
= h(VAT(X*) + V1 = AU(Y")) = Nh(T(X*)) —(1 — A) h(U(Y™"))
Compare this to h(X*)+E log T (X*) h(Y*)+Elog U'(Y*)
h(VAX* 4+ VT = AY*) = Ah(X*) + (1 — A)h(Y*)

X

u entropy
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_ The Proof that Shannon Missed (Again)

Take any X L Y and X*,Y* i.i.d. Gaussian. Set X = T(X*) and
Y =U(Y*). Then

h(VAX + V1 = XY) — Ah(X) — (1 — M)h(Y)
= h(VAT(X*) + V1 = XU(Y")) — Ah(T(X*)) —(1 — \) h(U(Y"))
Compare this to h(XC)+ElogT/(X*)  h(Y*)+E log U'(Y*)

h(VAX* 4+ VT = AY*) = Ah(X*) + (1 — A)h(Y*)
{)7 — e T {x* Vv S v
y -

—V/T = 2X* 4+ VY™ Y* =+vI— M+ VAY

u entropy
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_ The Proof that Shannon Missed (Again)

Take any X L Y and X*,Y* i.i.d. Gaussian. Set X = T(X*) and
Y =U(Y*). Then
h(VAX + V1 = XY) — Ah(X) — (1 — M)h(Y)
= h(VAT(X*) + V1 = AU(Y")) = Nh(T(X*)) —(1 — A) h(U(Y™"))
. N—— N——
Compare this to h(X*)+ElogT'(X*)  h(Y*)+ElogU’(Y*)
h(VAX* + V1 = AY*) — Ah(X*) + (1 — A)h(Y¥)

X =VAX*+ I ar* X* =vVAX—V1I-\Y
Y = —VI-MX*+VAr* Y* =+vI-XX+VAY

Then VAT(X*) + v/1 — AU(Y*) becomes a function of X, Y...

u entropy
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N . A Proof that Shannon Missed (Cont’d)
h(VAX 4+ V1 = XY) = h(VAT(X*) + V1 — \U(Y*))

VAT(VAX = V1= XY) + V1 = NU(V1 = MX + VAY))

VAT(VAX = V1= XY) + V1 = NU(V1 = MX + VAY)|Y)

X|Y) + Elog(A\T' (VAX — VI = XY) + (1 — AU/ (V1 = XX + VAY))

X) + Elog(AT/(X*) + (1 — )U/(Y"))

VAX* + VI = AY*) + AElog T'(X*) + (1 — N)E log U'(Y*)

= h(
> h(
= h(
= h(
> h(

- entropy
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_ A Proof that Shannon Missed (Cont’d)
h(VAX 4+ V1 = XY) = h(VAT(X*) + V1 — \U(Y*))
= h(VAT(VAX — V1 = 2Y) + V1 - A(V1 - MX + VAY))
> h(VAT(VIX = V1= AY) + V1 - M1 - XX+ VAY)]Y)
= h(X]Y) + Elog(A\T' (VAX — VI = XY) + (1 — MU' (V1 = XX + VAY))
= h(X) + Elog(AT"(X*) + (1 = A)U'(Y*))
> h(VAX* + V1 = AY*) + AElog T'(X*) 4 (1 — A)E log U'(Y*)

Then subtract
Ah(X)+(1 — A)h(Y) = Ah(X*)+(1=A)h(Y*)+AElog T'(X*)+(1—X)E log U’'(Y*):

h(VAX 4+ V1 = XY) = Mh(X) — (1 — A)h(Y)
> h(VAX* 4+ V1 = AY*) = Mh(X*) 4+ (1 = \)h(Y*) =0




_ A Proof that Shannon Missed (Cont’d)
h(VAX 4+ V1 = XY) = h(VAT(X*) + V1 — \U(Y*))
= h(VAT(VAX — V1 = 2Y) + V1 - A(V1 - MX + VAY))
h(VAT(VAX — V1= XY) + V1 = \U(V1 = MX + VAY)|Y)
X|Y) + Elog(A\T' (VAX — VI = XY) + (1 — AU/ (V1 = XX + VAY))
X) + Elog(AT'(X*) + (1 — \)U/(Y"))
> h(VAX* + V1 = AY*) + AElog T'(X*) 4 (1 — A)E log U'(Y*)

(
= h(
= h(
= h(

Then subtract
AM(X)+(1 = A)h(Y) = Ah(X*)+H(1=A)h(Y*)+AE log T’ (X*)+(1—A)E log U'(Y*):
h(VAX 4+ V1 = XY) = Mh(X) — (1 — A)h(Y)
> h(VAX* 4+ V1 = AY*) = Mh(X*) 4+ (1 = \)h(Y*) =0

| L
Equality case: T' = U’ =Cst hence X o« X*, Y o Y*.

35 /40 1652018 Olivier Rioul
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B outline

Generalization to Rényi Entropies

. entropy
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_ Conclusion for Rényi’s Entropy

h(VAX + V1= AY) = Mhy(X) — (1 — A)hg(Y)
> h (VAX 4+ V1 = AY*) = Mhy(X*) — (1 = Ahg(Y*)

_ r (Iogr logp Iogq)

where % + % =1+ 2 (Young's triple with rate A), i.e., where Hélder

conjugates satisfy + = !% + % )
~~ =~

Al 1—X

r r’

Equality case: T' = U’ =Cst hence X o« X*, Y o Y*.

- entropy
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_ Conclusion for Rényi’s Entropy

h(VAX + V1= AY) = Mhy(X) — (1 — A)hg(Y)
> h (VAX 4+ V1 = AY*) = Mhy(X*) — (1 = Ahg(Y*)

_ r (Iogri logp Iogq)
- 2(r-1)

where £ + 1 =1+ I (Young's triple with rate )\), i.e., where Holder
conjugates satisfy + = L + % .

' q

~~ =~
A 1—\
fl ’-/

Equality case: T' = U’ =Cst hence X o« X*, Y o Y*.

B the natural generalization of the EPI for Rényi entropies

‘ entropy
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_ Conclusion for Rényi’s Entropy

h(VAX + V1= AY) = Mhy(X) — (1 — A)hg(Y)
> h (VAX 4+ V1 = AY*) = Mhy(X*) — (1 = Ahg(Y*)

_ r (Iogr logp Iogq)

where % + % =1+ 2 (Young's triple with rate A), i.e., where Hélder

conjugates satisfy + = !% + % )
~~ =~

Al 1—X

r r’

Equality case: T' = U’ =Cst hence X o« X*, Y o Y*.
B the natural generalization of the EPI for Rényi entropies

B turns out to be equivalent to strong Young’s inequality and its reverse
[Dembo, Cover, Thomas, 1991] [Barthe, 1998] B erirony.
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I Conclusion (Rényi’s Entropy)

For N > 2 variables:
he (3, VAXi) — 32 Aihr(X) is minimum for X; i.i.d. Gaussian:

hr(z \/)T,-X Z)‘ hr, (Io% B Z Io?i r,-)

I

where Hélder conjugates satlsfy = Z where & = 2

‘ entropy
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_ Conclusion (Rényi’s Entropy)

For N > 2 variables:
he (3, VAXi) — 32 Aihr(X) is minimum for X; i.i.d. Gaussian:

T loa r:
(32 V) 2 3 (6) + 5 (50 = 30
i i

R . . 1 1
where Holder conjugates satisfy o= Z E where =
1

In particular for r > 1, then r > r;, h(X) < h(X)
For any for any convex combination () ; \; = 1), choosing r{ =r'/ A

he(3" VX)) Z)\h 'ofr Z'ogr")
: .

1

l entropy
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B 5.k to the Rényi EPI

Theorem (Rényi Entropy Power Inequality)

ezhf(Zi Xi) Z C- Z eZhF(XI')
i

<= for any convex combination (> ; \j = 1)

he (D V/AiXi) =) Aihr(X;) + log Ve

‘ entropy
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B 5.k to the Rényi EPI

Theorem (Rényi Entropy Power Inequality)

Qth(Zi Xi) Z C- Z eZhF(Xi)

<= for any convex combination (> ; \j = 1)

he (D Vaixi) > thr ) +log vc

We have found (for r > 1):

log+v/c = mln{ (Iogr ZlOgr")s,t,ZEZn_l

; I — I r, B oy
1 1
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_ Optimal Constant

logc = min{r’(log — Z IOS r,-) s.t. 1 n— 1
- i X j
1 1

‘ entropy
TELECOM
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_ Optimal Constant

logc = min{r’(g — Z IOS r,-) s.t. 1 n— 1
- i X j
1 1

But by the log-sum inequality:

Zx,- log Xi > > i xilog % with equality iff x; o« y;
p Yi iy

‘ entropy
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_ Optimal Constant

logc = min{r’(g — Z IOS r,-) s.t. 1 n— 1
- i X j
1 1

But by the log-sum inequality:

Zx, Iog — > Do Xi Iog Z X’ with equality iff x; o« y;

I 1 1
Zogr':—zflogf< - - log ’——(N—;l,)logN—f'

i

with equality iff r; are equal.

‘ entropy
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_ Optimal Constant

logc = min{r’(b% — Z IOS r,-) s.t. 1 n— 1
- i . i
1 1

But by the log-sum inequality:

Zx,-log Xi > Y. xilog Z";f
i Yi -~

with equality iff x; oc y;

i

-

logr; 11 =2 N-

Z ':fzflog—g—Z,%IogT':—(Nf}/)Iog -
i i Ti

with equality iff r; are equal.

This gives

u entropy
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_ Optimal Constant

logc = min{r’(b% — Z lOS r,-) s.t. 1 n— 1
- i X j
1 1

But by the log-sum inequality:

Zx,-log Xi > Y. xilog Z";f
; Yi it

with equality iff x; oc y;

i

-

logr; 11 =2 N-

Z—' = fzflog— <= plog =t = —(N = })log —
i i Ti

with equality iff r; are equal.

This gives

N 1 \Nr—1
c=rr1 (1 — —)
Nr’

which was found by [Ram&Sason,2016] as an improvement of
1
[Bobkov&Chistyakov,2015] (for which ¢ = r™=1 /e)
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_ Thank you !

Questions?

SUTRORY
SEMINER:
THE RESULTS OF A
FIVE YEER STUDEE
NTU THE SEKENDLW
UF THURMODYNAMIKS
ABND 11Z INEVIBL
FXT HON SHEWB RT
NSLPA RAQ LICT. ooy

= chuin T

<= =
< -l ) e e
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