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Shannon’s 1948 seminal paper
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h(X) =
∫
f (x) log

1
f (x)

dx where X ∼ f

“You should call it entropy [...] no one really knows what entropy
really is, so in a debate you will always have the advantage.”

John von Neumann (1903–1957)

"In the continuous case it is convenient to work not with the entropy
H of an ensemble but with a derived quantity which we will call the
entropy power." [Shannon’1948]

6 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



h(X) =
∫
f (x) log

1
f (x)

dx where X ∼ f

“You should call it entropy [...] no one really knows what entropy
really is, so in a debate you will always have the advantage.”

John von Neumann (1903–1957)

"In the continuous case it is convenient to work not with the entropy
H of an ensemble but with a derived quantity which we will call the
entropy power." [Shannon’1948]

6 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Entropy-Power

Definition ([Shannon48])

Power: P(X) = E(X2)

Entropy-Power: N(X)

= P(X∗)

power of a Gaussian X∗ having the
same entropy

h(X∗) = h(X)

• Since h(X∗) = 1
2 log

(
2πeP(X∗)

)
:

N(X) =
e2h(X)

2πe
“entropy power"

• Scaling Property:

P(aX) = a2P(X) N(aX) = a2N(X)
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Entropy-Power Inequality (EPI)

for any X ⊥⊥ Y:
P(X + Y) = P(X) + P(Y)

Theorem (stated by Shannon, 1948)

N(X + Y) ≥ N(X) + N(Y)

with equality iff X, Y are Gaussian.
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Entropy-Power Inequality (EPI)

for any X ⊥⊥ Y:
P(X + Y) = P(X) + P(Y)

Theorem (stated by Shannon, 1948)

e2h(X+Y) ≥ e2h(X) + e2h(Y)

with equality iff X, Y are Gaussian.
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Shannon’s 1948 “proof” (Appendix 6).

A variational argument: h(X + Y) for fixed h(X) and h(Y) has a
stationary point when X, Y are Gaussian.

This does not exclude local minima/maxima/saddle points.
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The EPI has a Long History

1948 Stated and “proved” by Shannon in his seminal paper
1959 Stam’s proof using Fisher information
1965 Blachman’s exposition of Stam’s proof in IEEE Trans. IT
1978 Lieb’s proof using strengthened Young’s inequality
1991 Dembo-Cover-Thomas’ review of Stam’s & Lieb’s proofs
1991 Carlen-Soffer 1D variation of Stam’s proof
2000 Szarek-Voiculescu variant with Brunn-Minkowski inequality
2006 Guo-Shamai-Verdú proof based on the I-MMSE relation
2007 Rioul’s proof based on Mutual Information
2014 Wang-Madiman strengthening using Rényi entropies
2016 Courtade’s strengthening
2017 Yet another simple proof!
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Applications of the EPI:

nonGaussian Capacity [Shannon’48]
Gaussian means worst noise / Gaussian means best signal

multi-user capacity region outer bounds

strengthening the Central Limit Theorem [Barron86]

blind deconvolution / source separation [Donoho81]
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Ingredients

random X =


X1

X2

...
Xn

 ∈ Rn with independent components Xi

a linear transformation: X 7→ AX

consider h(AX):

• assume it is nondegenerate: h(AX) > −∞
• =⇒ A has full row rank
• A is an m× n matrix with m ≤ n

maxh(AX) or minh(AX) ?
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Max/Min Entropy Principle

Let X∗ be Gaussian with independent components X∗i of same
variances: Var(X∗i ) = Var(Xi).

Theorem (Maximum Entropy Principle)

h(AX) ≤ h(AX∗) with equality iff X is Gaussian

Proof: h(AX∗)− h(AX) = DKL(AX‖AX∗) ≥ 0
known in the 19th century (Gibbs’ inequality)
components need not be independent
E. T. Jaynes, "Information theory and statistical mechanics,"
Physical Review, vol. 106, no. 4, pp. 620–630, 1957.
J. P. Burg, "Maximum entropy spectral analysis," Ph.D.,
Stanford, Dept. of Geophysics, Stanford, CA, USA, 1975.
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Max/Min Entropy Principle

Let X∗ be Gaussian with independent components X∗i of same
entropies: h(X∗i ) = h(Xi).

Theorem (Minimun Entropy Principle)

h(AX) ≥ h(AX∗) with equality iff X is Gaussian. . .

... or A is trivial

Closeness to normality by linear filtering
D. Donoho, "On minimum entropy deconvolution," in Applied
Time Series Analysis II, Acad. Press, 1981, pp. 565–608.
R. Zamir & M. Feder, "A generalization of the entropy power
inequality," IEEE Trans. IT, 39(5):1723–1728, Sep. 1993.
Application to deconvolution / blind separation
Proof: involved!
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Simplest nontrivial case: (m,n) = (1,2)

Take A =
(
a b

)
with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1,2))

For any two independent X, Y, letting X∗, Y∗ independent Gaussian
s.t. h(X∗) = h(X), h(Y) = h(Y∗),

h(aX + bY) ≥ h(aX∗ + bY∗) with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:

N(X) = Var(X∗) where h(X∗) = h(X)

i.e., since h(X∗) = 1
2 log

(
2πeVar(X∗)

)
,

N(X) = exp
(
2h(X)

)
/2πe

N(X∗) = Var(X∗)

17 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Simplest nontrivial case: (m,n) = (1,2)

Take A =
(
a b

)
with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1,2))

For any two independent X, Y, letting X∗, Y∗ independent Gaussian
s.t. h(X∗) = h(X), h(Y) = h(Y∗),

h(aX + bY) ≥ h(aX∗ + bY∗) with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:

N(X) = Var(X∗) where h(X∗) = h(X)

i.e., since h(X∗) = 1
2 log

(
2πeVar(X∗)

)
,

N(X) = exp
(
2h(X)

)
/2πe

N(X∗) = Var(X∗)

17 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Simplest nontrivial case: (m,n) = (1,2)

Take A =
(
a b

)
with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1,2))

For any two independent X, Y, letting X∗, Y∗ independent Gaussian
s.t. h(X∗) = h(X), h(Y) = h(Y∗),

N(aX + bY) ≥ N(aX∗ + bY∗) with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:

N(X) = Var(X∗) where h(X∗) = h(X)

i.e., since h(X∗) = 1
2 log

(
2πeVar(X∗)

)
,

N(X) = exp
(
2h(X)

)
/2πe

N(X∗) = Var(X∗)

17 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Simplest nontrivial case: (m,n) = (1,2)

Take A =
(
a b

)
with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1,2))

For any two independent X, Y, letting X∗, Y∗ independent Gaussian
s.t. h(X∗) = h(X), h(Y) = h(Y∗),

N(aX + bY) ≥ N(aX∗ + bY∗) with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:

N(X) = Var(X∗) where h(X∗) = h(X)

i.e., since h(X∗) = 1
2 log

(
2πeVar(X∗)

)
,

N(X) = exp
(
2h(X)

)
/2πe N(X∗) = Var(X∗)

17 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Simplest nontrivial case: (m,n) = (1,2)

Take A =
(
a b

)
with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1,2))

For any two independent X, Y, letting X∗, Y∗ independent Gaussian
s.t. h(X∗) = h(X), h(Y) = h(Y∗),

N(aX + bY) ≥ N(aX∗) + N(bY∗) with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:

N(X) = Var(X∗) where h(X∗) = h(X)

i.e., since h(X∗) = 1
2 log

(
2πeVar(X∗)

)
,

N(X) = exp
(
2h(X)

)
/2πe N(X∗) = Var(X∗)

17 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Simplest nontrivial case: (m,n) = (1,2)

Take A =
(
a b

)
with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1,2))

For any two independent X, Y, letting X∗, Y∗ independent Gaussian
s.t. h(X∗) = h(X), h(Y) = h(Y∗),

N(aX + bY) ≥ N(aX∗) + N(bY∗) with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:

N(X) = Var(X∗) where N(X∗) = N(X)

i.e., since h(X∗) = 1
2 log

(
2πeVar(X∗)

)
,

N(X) = exp
(
2h(X)

)
/2πe N(X∗) = Var(X∗)

17 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Simplest nontrivial case: (m,n) = (1,2)

Take A =
(
a b

)
with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1,2))

For any two independent X, Y, letting X∗, Y∗ independent Gaussian
s.t. h(X∗) = h(X), h(Y) = h(Y∗),

N(aX + bY) ≥ N(aX) + N(bY) with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:

N(X) = Var(X∗) where N(X∗) = N(X)

i.e., since h(X∗) = 1
2 log

(
2πeVar(X∗)

)
,

N(X) = exp
(
2h(X)

)
/2πe N(X∗) = Var(X∗)

17 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Simplest nontrivial case: (m,n) = (1,2)

Take A =
(
a b

)
with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1,2))

For any two independent X, Y,

letting X∗, Y∗ independent Gaussian
s.t. h(X∗) = h(X), h(Y) = h(Y∗),

N(

a

X +

b

Y) ≥ N(

a

X) + N(

b

Y) with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:

N(X) = Var(X∗) where N(X∗) = N(X)

i.e., since h(X∗) = 1
2 log

(
2πeVar(X∗)

)
,

N(X) = exp
(
2h(X)

)
/2πe N(X∗) = Var(X∗)

17 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Simplest nontrivial case: (m,n) = (1,2)

Take A =
(
a b

)
with nonzero a, b (nontrivial mixture).

Theorem (Entropy-Power Inequality [Shannon’48])

For any two independent X, Y,

letting X∗, Y∗ independent Gaussian
s.t. h(X∗) = h(X), h(Y) = h(Y∗),

N(

a

X +

b

Y) ≥ N(

a

X) + N(

b

Y) with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:

N(X) = Var(X∗) where N(X∗) = N(X)

i.e., since h(X∗) = 1
2 log

(
2πeVar(X∗)

)
,

N(X) = exp
(
2h(X)

)
/2πe N(X∗) = Var(X∗)

17 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Outline

Introduction

What is Entropy?

Max/Min Entropy Principles

Equivalence to the Entropy Power Inequality

A Proof that Shannon Missed

Generalization to Linear Transformations

Shannon vs. Rényi

A Proof that Shannon Missed (Revisited)

Generalization to Rényi Entropies

18 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Ingredients: “Optimal Transport”

Lemma (inverse function sampling method)

If U is uniform in [0,1] and X has c.d.f. F(x) = P(X ≤ x), then
F−1(U) has the same distribution as X.

Proof.

P(F−1(U) ≤ x) = P(U ≤ F(x)) = F(x).

Corollary (monotonic increasing transport T = F−1 ◦ G)

Let F,G be two c.d.f’s. Then X∗ ∼ G =⇒ X = T(X∗) ∼ F.

Proof.

U = G(X∗) ∼ uniform; T(X∗) = F−1
(
G(X∗)

)
= F−1(U) ∼ F.

nD generalization: Knöthe map, Brenier map. . .
Used in optimal transport theory

19 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Ingredients: “Optimal Transport”

Lemma (inverse function sampling method)

If U is uniform in [0,1] and X has c.d.f. F(x) = P(X ≤ x), then
F−1(U) has the same distribution as X.

Corollary (monotonic increasing transport T = F−1 ◦ G)

Let F,G be two c.d.f’s. Then X∗ ∼ G =⇒ X = T(X∗) ∼ F.

Proof.

U = G(X∗) ∼ uniform; T(X∗) = F−1
(
G(X∗)

)
= F−1(U) ∼ F.

nD generalization: Knöthe map, Brenier map. . .
Used in optimal transport theory

19 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Ingredients: “Optimal Transport”

Lemma (inverse function sampling method)

If U is uniform in [0,1] and X has c.d.f. F(x) = P(X ≤ x), then
F−1(U) has the same distribution as X.

Corollary (monotonic increasing transport T = F−1 ◦ G)

Let F,G be two c.d.f’s. Then X∗ ∼ G =⇒ X = T(X∗) ∼ F.

Proof.

U = G(X∗) ∼ uniform; T(X∗) = F−1
(
G(X∗)

)
= F−1(U) ∼ F.

nD generalization: Knöthe map, Brenier map. . .

Used in optimal transport theory

19 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Ingredients: “Optimal Transport”

Lemma (inverse function sampling method)

If U is uniform in [0,1] and X has c.d.f. F(x) = P(X ≤ x), then
F−1(U) has the same distribution as X.

Corollary (monotonic increasing transport T = F−1 ◦ G)

Let F,G be two c.d.f’s. Then X∗ ∼ G =⇒ X = T(X∗) ∼ F.

Proof.

U = G(X∗) ∼ uniform; T(X∗) = F−1
(
G(X∗)

)
= F−1(U) ∼ F.

nD generalization: Knöthe map, Brenier map. . .
Used in optimal transport theory

19 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Ingredients: “Optimal Transport”

Lemma (Change of variable [Shannon’48])

For any continuous X,X∗, monotonic increasing transport T(X∗) ∼ X,

h(X) = h
(
T(X∗)

)
= h(X∗) + E log T′(X∗)

Proof.

Proof: make the change of variable x = T(x∗) in

h(X) =

∫
fX(x) log

1

fX(x)
dx =

∫
fX
(
T(x∗)

)
T′(x∗)︸ ︷︷ ︸

fX∗ (x∗)

log
1

fX
(
T(x∗)

) dx∗

in particular h(aX) = h(X) + log |a| ⇐⇒ N(aX) = a2N(X);

more generally in nD: h
(
T(X∗)

)
= h(X∗) + E log |det T′(X∗)|
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A Proof that Shannon Missed

Proceed to prove the inequality h(aX + bY) ≥ h(aX∗ + bY∗)

where X∗, Y∗ are indep. Gaussian s.t. h(X∗) = h(X), h(Y) = h(Y∗)

1. We may assume h(X) = h(Y). Otherwise:
• set c = e−h(X) and d = e−h(Y) so that h(cX) = h(dY);
• apply the above to cX and dY.

So w.l.o.g. X∗, Y∗ are i.i.d. Gaussian.

2. We may always normalize: a2 + b2 = 1 . Otherwise:
• divide a,b by ∆ =

√
a2 + b2;

• the log ∆ terms cancel.

3. Make the changes of variables X = T(X∗), Y = U(Y∗):

One is led to prove h(aT(X∗) + bU(Y∗)) ≥ h(aX∗ + bY∗)

4. Define X̃ = aX∗ + bY∗. Complete the rotation: Ỹ = −bX∗ + aY∗

so that X̃, Ỹ are i.i.d. Gaussian and X∗ = aX̃ − bỸ , Y∗ = bX̃ + aỸ .
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21 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



A Proof that Shannon Missed

Proceed to prove the inequality h(aX + bY) ≥ h(aX∗ + bY∗)

where X∗, Y∗ are indep. Gaussian s.t. h(X∗) = h(X) = h(Y) = h(Y∗)

1. We may assume h(X) = h(Y). Otherwise:
• set c = e−h(X) and d = e−h(Y) so that h(cX) = h(dY);
• apply the above to cX and dY.

So w.l.o.g. X∗, Y∗ are i.i.d. Gaussian.

2. We may always normalize: a2 + b2 = 1 . Otherwise:
• divide a,b by ∆ =

√
a2 + b2;

• the log ∆ terms cancel.

3. Make the changes of variables X = T(X∗), Y = U(Y∗):

One is led to prove h(aT(X∗) + bU(Y∗)) ≥ h(aX∗ + bY∗)

4. Define X̃ = aX∗ + bY∗. Complete the rotation: Ỹ = −bX∗ + aY∗
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A Proof that Shannon Missed

One is led to prove h(aT(X∗) + bU(Y∗)) ≥ h(aX∗ + bY∗)

X̃, Ỹ are i.i.d. Gaussian and X∗ = aX̃ − bỸ , Y∗ = bX̃ + aỸ .

5. Since conditioning reduces entropy:

h(aT(X∗) + bU(Y∗)) = h(aT(aX̃ − bỸ) + bU(bX̃ + aỸ))

≥ h(aT(aX̃ − bỸ) + bU(bX̃ + aỸ)|Ỹ)
6. By the change of variable:

= h(X̃) + E log T′
Ỹ

(X̃)

= h(X̃) + E log
(
a2T′(aX̃ − bỸ) + b2U′(bX̃ + aỸ)

)
= h(aX∗ + bY∗) + E log

(
a2T′(X∗) + b2U′(Y∗)

)
7. By concavity of the log:
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X̃, Ỹ are i.i.d. Gaussian and X∗ = aX̃ − bỸ , Y∗ = bX̃ + aỸ .
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5. Since conditioning reduces entropy:

h(aT(X∗) + bU(Y∗)) = h(aT(aX̃ − bỸ) + bU(bX̃ + aỸ))
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Ỹ

(X̃)

= h(X̃) + E log
(
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X̃, Ỹ are i.i.d. Gaussian and X∗ = aX̃ − bỸ , Y∗ = bX̃ + aỸ .
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TỸ(X̃)

|Ỹ)
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Equality Case

For nonzero a,b:

in log concavity inequality:

E log
(
a2T′(X∗) + b2U′(Y∗)

)
= a2E log T′(X∗) + b2E logU′(Y∗)

=⇒ T′(X∗) = U′(X∗) = c > 0 constant a.e.

=⇒ T,U are linear: X = T(X∗) = cX∗, Y = U(Y∗) = cY∗ Gaussian.
=⇒ c = 1 since h(X) = h(X∗), h(Y) = h(Y∗).

in information inequality:

h(aT(aX̃ − bỸ) +bU(bX̃ + aỸ)) = h(aT(aX̃ − bỸ) +bU(bX̃ + aỸ)|Ỹ)

comes for free since a(aX̃ − bỸ) + b(bX̃ + aỸ) = X̃ is indep of Ỹ.
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Generalization to Linear Transformations

Proceed to prove h(AX) ≥ h(AX∗).

We may assume all Xi have the same entropy: Otherwise,
introduce ci = e−h(Xi) and apply the result to the ciXi.
Since h(X∗i ) = h(Xi), all X∗i have the same variance, hence are
i.i.d.
We may assume that A has rank = m ≤ n (otherwise the result is
trivial): h(AX) = h(AX∗) = −∞.
The difference h(AX)− h(AX∗) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AAt = I.

Extend A to an orthogonal matrix A′ =

(
A

Ac

)

25 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Generalization to Linear Transformations

Proceed to prove h(AX) ≥ h(AX∗).

We may assume all Xi have the same entropy: Otherwise,
introduce ci = e−h(Xi) and apply the result to the ciXi.

Since h(X∗i ) = h(Xi), all X∗i have the same variance, hence are
i.i.d.
We may assume that A has rank = m ≤ n (otherwise the result is
trivial): h(AX) = h(AX∗) = −∞.
The difference h(AX)− h(AX∗) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AAt = I.

Extend A to an orthogonal matrix A′ =

(
A

Ac

)

25 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Generalization to Linear Transformations

Proceed to prove h(AX) ≥ h(AX∗).

We may assume all Xi have the same entropy: Otherwise,
introduce ci = e−h(Xi) and apply the result to the ciXi.
Since h(X∗i ) = h(Xi), all X∗i have the same variance, hence are
i.i.d.

We may assume that A has rank = m ≤ n (otherwise the result is
trivial): h(AX) = h(AX∗) = −∞.
The difference h(AX)− h(AX∗) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AAt = I.

Extend A to an orthogonal matrix A′ =

(
A

Ac

)

25 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Generalization to Linear Transformations

Proceed to prove h(AX) ≥ h(AX∗).

We may assume all Xi have the same entropy: Otherwise,
introduce ci = e−h(Xi) and apply the result to the ciXi.
Since h(X∗i ) = h(Xi), all X∗i have the same variance, hence are
i.i.d.
We may assume that A has rank = m ≤ n (otherwise the result is
trivial): h(AX) = h(AX∗) = −∞.

The difference h(AX)− h(AX∗) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AAt = I.

Extend A to an orthogonal matrix A′ =

(
A

Ac

)

25 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Generalization to Linear Transformations

Proceed to prove h(AX) ≥ h(AX∗).

We may assume all Xi have the same entropy: Otherwise,
introduce ci = e−h(Xi) and apply the result to the ciXi.
Since h(X∗i ) = h(Xi), all X∗i have the same variance, hence are
i.i.d.
We may assume that A has rank = m ≤ n (otherwise the result is
trivial): h(AX) = h(AX∗) = −∞.
The difference h(AX)− h(AX∗) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AAt = I.

Extend A to an orthogonal matrix A′ =

(
A

Ac

)

25 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Generalization to Linear Transformations

Proceed to prove h(AX) ≥ h(AX∗).

We may assume all Xi have the same entropy: Otherwise,
introduce ci = e−h(Xi) and apply the result to the ciXi.
Since h(X∗i ) = h(Xi), all X∗i have the same variance, hence are
i.i.d.
We may assume that A has rank = m ≤ n (otherwise the result is
trivial): h(AX) = h(AX∗) = −∞.
The difference h(AX)− h(AX∗) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AAt = I.

Extend A to an orthogonal matrix A′ =

(
A

Ac

)

25 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



Generalization to Linear Transformations

Then let X̃ = AX∗ et X̃c = AcX∗ so that X̃′ =

(
X̃

X̃c

)
= A′X∗ has

i.i.d. components. Inverting yields X∗ = A′t X̃′.

By the changes of variables Xi = Ti(X∗i ), since conditioning
reduces entropy:

h(AX) = h(AT(X∗))

= h(AT(A′
t
X̃′))

≥ h(AT(A′
t
X̃′) | X̃c)

But the Jacobian matrix of
TX̃c(X̃) = AT(A′t X̃′) = AT(At X̃ + (Ac)t X̃c) for fixed X̃c is
T′
X̃c

(X̃) = AT′(A′t X̃′)At = AT′(X∗)At where T′(X∗) = diag(T′i (X
∗
i ))
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Generalization to Linear Transformations

The change of variables in the entropy yields

h(AX) ≥ h(AT(A′
t
X̃′) | X̃c)

= h(X̃|X̃c) + E log det(AT′(X∗)At)

By the concavity of the logarithm:

log det(AT′(X∗)At) ≥ tr(A · logT′(X∗) · At)

thus
h(AX) ≥ h(X̃|X̃c) + tr(A · E logT′(X̃) · At)

But h(X̃|X̃c) = h(X̃) = h(AX∗) and
E log T′i (X̃i) = h(Ti(X̃i))− h(X̃i) = h(Xi)− h(X̃i) = 0; so

h(AX) ≥ h(AX∗)

Equality iff either A is trivial or T′i (Xi) = Cst., hence X is Gaussian.
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Shannon’s and Rényi’s Entropies

h(X) =

∫
f log

1

f

= h1(X)

hr(X) =
1

1− r
log

∫
f r

“A mathematician is a device for turning coffee into theorems”

Alfred Renyi (1921–1970)
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Lieb’s Restatement of the EPI

Theorem (Lieb, 1978)

e2h(X+Y) ≥ e2h(X) + e2h(Y)

⇐⇒ for any 0 < λ < 1

h(
√
λX +

√
1− λY) ≥ λh(X) + (1− λ)h(Y)

Proof.

=⇒ : X =
√
λX′, Y =

√
1− λY′, take the log (concavity of the log)

⇐= X = X′/
√
λ, Y = Y′/

√
1− λ, take the exp, assuming λ such that

h(X) = h(Y), r.h.s. is
(
e2h(X)

)λ(
e2h(Y)

)1−λ
= λe2h(X) + (1− λ)e2h(Y).
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Lieb’s Restatement of the EPI

Theorem (A generalization:)
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hr(
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√
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√
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Restatement for More than Two Variables

N independent variables X1,X2, . . . ,XN.

Theorem

e2hr(
∑

i Xi) ≥ c ·
∑
i

e2hr(Xi)

⇐⇒ for any convex combination (
∑

i λi = 1)

hr
(∑

i

√
λiXi

)
≥
∑
i

λihr(Xi) +
n

2
log c

Same proof.
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Variation for More than Two Variables

N independent variables X1,X2, . . . ,XN.

Theorem

e2αhr(
∑

i Xi) ≥
∑
i

e2αhr(Xi)

⇐⇒ for any convex combination (
∑

i λi = 1)

hr
(∑

i

√
λiXi

)
≥
∑
i

λihr(Xi) +
n

2

(
1/α− 1

)
H(λ)

Same proof.
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The Proof that Shannon Missed (Again)

Take any X ⊥⊥ Y and X∗, Y∗ i.i.d. Gaussian. Set X = T(X∗) and
Y = U(Y∗). Then

h(
√
λX +

√
1− λY)− λh(X)− (1− λ)h(Y)

= h(
√
λT(X∗) +

√
1− λU(Y∗))− λh(T(X∗))− (1− λ)h(U(Y∗))

Compare this to
h()− λh(X∗) + (1− λ)h(Y∗){

X̃ =
√
λX∗ +

√
1− λY∗

Ỹ = −
√

1− λX∗ +
√
λY∗

{
X∗ =

√
λX̃ −

√
1− λỸ

Y∗ =
√

1− λX̃ +
√
λỸ

Then
√
λT(X∗) +

√
1− λU(Y∗) becomes a function of X̃, Ỹ...
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34 / 40 16/5/2018 Olivier Rioul On Minimum Entropy and Gaussian Transport



A Proof that Shannon Missed (Cont’d)

h(
√
λX +

√
1− λY) = h(

√
λT(X∗) +

√
1− λU(Y∗))

= h(
√
λT(
√
λX̃ −

√
1− λỸ) +

√
1− λU(

√
1− λX̃ +

√
λỸ))

≥ h(
√
λT(
√
λX̃ −

√
1− λỸ) +

√
1− λU(

√
1− λX̃ +

√
λỸ)|Ỹ)

= h(X̃|Ỹ) + E log(λT′(
√
λX̃ −

√
1− λỸ) + (1− λ)U′(

√
1− λX̃ +

√
λỸ))

= h(X̃) + E log(λT′(X∗) + (1− λ)U′(Y∗))

≥ h(
√
λX∗ +

√
1− λY∗) + λE log T′(X∗) + (1− λ)E logU′(Y∗)

Then subtract
λh(X)+(1− λ)h(Y) = λh(X∗)+(1−λ)h(Y∗)+λE log T′(X∗)+(1−λ)E logU′(Y∗):

h(
√
λX +

√
1− λY)− λh(X)− (1− λ)h(Y)

≥ h(
√
λX∗ +

√
1− λY∗)− λh(X∗) + (1− λ)h(Y∗) = 0

Equality case: T′ = U′ =Cst hence X ∝ X∗, Y ∝ Y∗.
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1− λỸ) +

√
1− λU(

√
1− λX̃ +

√
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Conclusion for Rényi’s Entropy

hr(
√
λX +

√
1− λY)− λhp(X)− (1− λ)hq(Y)

≥ hr(
√
λX∗ +

√
1− λY∗)− λhp(X∗)− (1− λ)hq(Y∗)

= r
2(r−1)

(
log r
r −

log p
p −

log q
q

)
where 1

p + 1
q = 1 + 1

r (Young’s triple with rate λ), i.e., where Hölder

conjugates satisfy 1
r′ = 1

p′︸︷︷︸
λ
r′

+ 1
q′︸︷︷︸

1−λ
r′

.

Equality case: T′ = U′ =Cst hence X ∝ X∗, Y ∝ Y∗.

the natural generalization of the EPI for Rényi entropies

turns out to be equivalent to strong Young’s inequality and its reverse
[Dembo, Cover, Thomas, 1991] [Barthe, 1998]
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Conclusion (Rényi’s Entropy)

For N ≥ 2 variables:
hr
(∑

i

√
λiXi

)
−
∑

i λihri(Xi) is minimum for Xi i.i.d. Gaussian:

hr
(∑

i

√
λiXi

)
≥
∑
i

λihri(Xi) +
r′

2

( log r

r
−
∑
i

log ri
ri

)
where Hölder conjugates satisfy

1

r′
=
∑
i

1

r′i
where 1

r′i
= λi

r′

In particular for r > 1, then r ≥ ri, hr(X) ≤ hri(X)

For any for any convex combination (
∑

i λi = 1), choosing r′i = r′/λi:

hr
(∑

i

√
λiXi

)
≥
∑
i

λihr(Xi) +
r′

2

( log r

r
−
∑
i

log ri
ri

)
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Back to the Rényi EPI

Theorem (Rényi Entropy Power Inequality)

e2hr(
∑

i Xi) ≥ c ·
∑
i

e2hr(Xi)

⇐⇒ for any convex combination (
∑

i λi = 1)

hr
(∑

i

√
λiXi

)
≥
∑
i

λihr(Xi) + log
√
c

We have found (for r > 1):

log
√
c = min

{r′
2

( log r

r
−
∑
i

log ri
ri

)
s.t.

∑
i

1

ri
= n− 1

r′
}
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Optimal Constant

log c = min
{
r′
( log r

r
−
∑
i

log ri
ri

)
s.t.

∑
i

1

ri
= n− 1

r′
}

But by the log-sum inequality:∑
i

xi log
xi
yi
≥
∑

i xi log
∑

i xi∑
i yi

with equality iff xi ∝ yi

∑
i

log ri
ri

= −
∑
i

1

ri
log

1

ri
≤ −

∑
i

1
ri

log
∑

i
1
ri

N = −(N− 1
r′ ) log

N− 1
r′

N

with equality iff ri are equal.
This gives which was found by [Ram&Sason,2016] as an improvement of
[Bobkov&Chistyakov,2015] (for which c = r

1
r−1 /e)
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Thank you !
Questions?
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