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A Model Compilation Approach for Optimized Implementations of
Signal-Processing Systems

Keywords: Domain-Specific Modeling, Model Transformation, Model-Driven Architecture

Abstract: To meet the computational and flexibility requirements of future 5G networks, the signal-processing functions
of baseband stations and user equipments will be accelerated onto programmable, configurable and hard-
wired components (e.g., CPUs, FPGAs, hardware accelerators). Such mixed architectures urge the need to
automatically generate efficient implementations from high-level models. Existing model-based approaches
can generate executable implementations of Systems-on-Chip (SoCs) by translating models into multiple SoC-
programming languages (e.g., C/C++, OpenCL, Verilog/VHDL). However, these translations do not typically
consider the optimization of non-functional properties (e.g., memory footprint, scheduling). This paper pro-
poses a novel approach where system-level models are optimized and compiled into multiple implementa-
tions for different SoC architectures. We show the effectiveness of our approach with the compilation of
UML/SysML models of a 5G decoder. Our solution generates both a software implementation for a Digital
Signal Processor platform and a hardware-software implementation for a platform based on hardware Intel-
lectual Property (IP) blocks. Overall, we achieve a memory footprint reduction of 72.7% in the first case and
88.93% in the second case.

1 INTRODUCTION

Future 5G networks are expected to provide
higher data-rates (10x with respect to 4G) to sup-
port use cases such as the Internet of Things (IoT)
and cloud computing (e.g., Cloud Radio Access Net-
works). The equipment of current baseband stations
is designed with mixed architectures that contain both
programmable (CPUs, Digital Signal Processors -
DSPs) and configurable (Field Programmable Gate
Arrays - FPGAs) components. To meet the com-
putational requirements of the above 5G use cases,
the functions (e.g., signal-processing operations) exe-
cuted by both components will change over time in-
stead of being statically allocated. This raises the
need for unified solutions capable to efficiently pro-
totype designs of 5G mixed architectures.
Model-Driven Engineering (MDE) (Schmidt, 2006)
is widely accepted in the signal-processing domain
as the most promising design paradigm to cope with
these issues. MDE combines domain-specific model-
ing languages to abstract the structure, behavior and
requirements of a system under design, with transfor-
mation engines and generators. The latter analyze
models and produce artifacts such as source code,
simulation, verification inputs or alternative model
representations.
In the context of MDE for 5G Systems-on-Chip, an
important research problem is the efficient translation

of system-level models – that abstract implementation
details – into executable implementations. Challenges
arise from the desire to generate executable code for
different architectures (e.g., General-Purpose Control
Processors, FPGAs), implementations (i.e., software,
hardware and mixed hardware-software) and execu-
tion units (e.g., DSPs, CPUs, Hardware Accelerators).
This paper proposes a compilation approach for
model-based specifications of SoCs, regardless of
their final realization technology (e.g., FPGA, Ap-
plication Specific Integrated Circuit - ASIC). Mod-
els are given as input to a model compiler that opti-
mizes the system’s memory footprint and generates a
behaviorally equivalent ANSI C program. As a prac-
tical case study we propose the model-based design of
a 5G datalink-layer decoder. The program compiled
from the decoder’s models is transformed into exe-
cutable implementations for (i) a DSP-based platform
(software executable file) and (ii) a hardware IP-based
platform (FPGA bitstream) by a traditional software
compiler and a SoC design tool.
The rest of the paper is organized as follows. Sec-
tion 2 positions our work with respect to related con-
tributions. The structure of the compiler and its im-
plementation are respectively described in Section 3
and Section 4. Section 5 describes the model-based
design and compilation of the UML/SysML diagrams
for the 5G decoder. Section 6 concludes this paper
and discusses our future work.



2 RELATED WORK

In the context of UML-based MDE, code genera-
tion for SoCs is based on a direct translation of UML
modeling assets into constructs of a target language
(e.g., a UML block becomes a C function), accord-
ing to precise translation rules (Vanderperren et al.,
2012). Many works propose one-to-one translation
rules for SoC languages such as C (Nicolas et al.,
2014), C++ (Ciccozzi et al., 2012), Verilog (Bazydlo
et al., 2014), VHDL (Moreira et al., 2010) and Sys-
temC (Mischkalla et al., 2010; Xi et al., 2005; Tan
et al., 2004). A representative work that uses one-
to-many translation rules is Gaspard2 (Graphical Ar-
ray Specification for Parallel and Distributed Com-
puting) (Gamatie et al., 2008; DaRTteam, 2009), a
MDE SoC co-design framework based on MARTE.
Thanks to the notion of Deployment, in Gaspard2 an
Elementary Component (a resource or a functional-
ity in a MARTE model) is related to implementa-
tion code that specifies low-level behavioral or struc-
tural details in a usual programming language (e.g.,
C/C++) for formal verification, simulation, software
execution and hardware synthesis.
Executable UML (xUML) or executable and translat-
able UML (xtUML) (Mellor and Balcer, 2003; Mel-
lor and Balcer, 2002) defines both a software devel-
opment methodology and a highly abstract software
language that combines a subset of UML’s graphical
notation with executable semantics and timing rules.
When "programming" in xUML, a system’s applica-
tion is captured in the metamodel. The model com-
piler comprises some library code and a set of rules
that are interpreted against the metamodel to produce
text for a target SoC (e.g., C++ classes, C structs;
VHDL specifications for hardware registers). How-
ever, the overall architecture of the generated SoC is
defined by the model compiler itself (i.e., its transla-
tion rules). As opposed to our approach, xUML con-
siders a platform-independent model as input. To the
best of our knowledge, no work exists that attempts to
optimize the performance of code generated from the
xUML subset.
The Foundational Subset for Executable UML Mod-
els (fUML) (fUML, 2016) and the Action Language
for fUML (Alf) (Alf, 2017) standard were created to
make xUML models detailed enough and well spec-
ified for detailed programming and machine execu-
tion. The goal of fUML is to go beyond xUML in
specifying a reasonable subset of UML with a precise
semantics, in order not to be specific to any executable
modeling methodology. The syntax of Alf is bor-
rowed from Java, C, C++ and C# to specify the behav-
ior and computation (concurrent data-flow semantics)

of graphical fUML models. xUML, fUML and Alf
are essentially focused on specifying a semantics suit-
able to generate executable code from UML graphi-
cal models. With respect to this, our work goes one
step further. Our model compiler demonstrates that
non-functional properties of a system denoted with
UML/SysML diagrams can be improved before code
generation, with a significant impact on the perfor-
mance of the final executable (e.g., memory footprint
reduction).
In the 2011 edition of MODELS, the work in (Floch
et al., 2011) illustrated how MDE techniques (e.g.,
meta-metamodels, meta-tools, Domain Specific Lan-
guages) can be applied to help in solving or simpli-
fying issues such as code maintainability and sustain-
ability, interfacing with external tools, semantics pre-
serving of the Intermediate Representation transfor-
mations and code generation. While (Floch et al.,
2011) tries to bridge the gap between model-based
optimizations and abstract representations of pure
software systems, our work transforms system-level
models that also include hardware components (e.g.,
on-Chip RAM memories).
The landscape of industrial tools that generate SoC
implementations of signal-processing applications
from models is also very rich, e.g., National In-
struments LabVIEW Communications System De-
sign (Labview, 2017), MATLAB (MAtrix LABora-
tory) (Mathworks, 2017), GNU Radio (GNURadio,
2017). While our compilation approach targets multi-
processor architectures, these tools translate models
that describe the functionality of a system to be exe-
cuted onto single-processor architectures where data
are processed onto a single unit.

3 THE COMPILER STRUCTURE

The model compiler that we present in Fig. 1
takes as input model-based specifications (a Platform-
Specific Model - PSM - and a Platform Independent
Model - PIM) from a MDE design environment and
produces an optimized program (Target program in
Fig. 1). Prominent examples of MDE environments
used in the signal-processing domain are described
in (Gerstlauer et al., 2009). In these environments,
a target system is first modeled, then design alterna-
tives (PSMs) are explored until a solution that satisfies
the desired requirements (e.g., latency, throughput) is
found to be realized. It is this solution that our com-
piler takes as input.
Our compiler in Fig. 1 is inspired by those for tradi-
tional programming languages (Torczon and Cooper,
2007). However, it differs from the latter in mainly



two aspects. First, it has two inputs: a pair PIM-PSM
and a library of implementation-specific functions of
the computation and communication operations that
are allocated in the PSM. Second, our compiler oper-
ates at a higher abstraction level, known as system-
level (Gerstlauer and Gajski, 2002). The scale at
which the compiler performs optimizations is the one
of an entire system (e.g., a Multi-Processor System-
on-Chip) with multiple computation, communication
and storage units that can be shared, distributed or
both; rather than a single processor (e.g., CPU, DSP).
In analogy with traditional compilers whose middle-
end attempts to optimize the allocation of CPU reg-
isters, our system-level model compiler attempts to
optimize the allocation of buffers that store arrays of
data in the memories of signal-processing units.
In the following, we present the main components of
such a compiler.
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Figure 1: The model compilation approach

The front-end is dedicated to “understanding” –
with scanning and parsing techniques – the PIM and
PSM denoted in a specific modeling language (e.g.,
UML/SysML/MARTE, AADL) and to encode this
knowledge (e.g., topology of the target platform,
dependencies between functions, scheduling and
memory allocation constraints imposed by hardware
and software units onto the allocated functions)
into an Intermediate Representation (e.g., a directed
graph) IR1 in Fig. 1. IR1 must be independent of
the language used to denote the models. It must also
preserve their behavior.

The purpose of the middle-end is to attempt to
rewrite IR1 in a way that is likely to optimize the
performance of the final implementation in terms
of memory management, power consumption,
throughput, etc. Such a rewriting results in a second
intermediate representation (IR2) that must respect
the static allocation of functions defined in the PSM
(i.e., if function A has been allocated to unit U1, it
cannot migrate to another unit at run-time) and must
preserve the behavior present in IR1. Examples of
optimizations that can be performed at this stage are:
optimizations that reduce the memory occupancy of
storage units, scheduling optimizations that minimize
the workload of processing and communication units.

In Fig. 1, the back-end is a code generator that
translates IR2 into a target program written in a
high-level programming language (e.g., C/C++).
This program schedules the execution of computation
and communication operations and also manages
the allocation of the physical memory regions where
data is stored to be produced and consumed. The
program is generated by including a library of
implementation-specific functions of computation
and communication operations. The final target
program must be behaviorally equivalent to IR2, IR1
and the PIM-PSM.

The target program translator produces an exe-
cutable implementation. This can be a pure software
implementation (e.g., an application that runs on
top of an Operating System onto a general-purpose
control processor) or a pure hardware implementa-
tion (e.g., a hardware IP-based design) or a mixed
hardware-software implementation (e.g., some func-
tionalities are executed by a general-purpose control
processor and some are accelerated in hardware).
In the case of implementations that require some
functionality to be realized in hardware, the translator
is a Computer Aided Design (CAD) toolsuite (e.g.,
Xilinx Vivado High Level Synthesis). In case of
pure software implementations, the translator can be
a traditional programming-language compiler (e.g.,
GNU/gcc/g++, clang, TurboC). The lower part of
Fig. 1 (dotted boxes) represents all of these possible
implementation types.

The compiler proposed in Fig. 1 essentially performs
a series of model transformations: model-to-model
in the front-end and middle-end, model-to-text in
the back-end. These transformations should be
formally described in order to guarantee that the
output model/text of the transformation retains the
semantics of the input model. However, these formal



descriptions depend not only on the formalism of
the input PIM-PSM and on the language of the
output target program. They also depend on the
formalism of the Intermediate Representations. As
stated in (Floch et al., 2011): "Since compiler IRs are
abstractions used to represent programs, they are by
essence models (an instance of IR is an abstraction of
the given source code). In this context, the grammar
of the source language, or more often the structure of
IR, becomes the metamodel".

An implementation of the compiler architecture
shown in Fig. 1 results in a tool that can be used
to target, at the same time, different implementation
types for multiple architectures. Given the pair PIM-
PSM and a library of implementation-specific func-
tions, an implementation to be executed in software
(e.g., for execution on a control processor, for em-
ulation purposes) is obtained by using a traditional
compiler (e.g., GNU/gcc) for software languages. By
changing the translator to a CAD tool, the same sys-
tem can be realized in terms of both hardware and
software components (e.g., executable file and FPGA
bitstream). By changing the input models only, the
same tool-chain (i.e., input MDE environment, model
compiler, target program translator) and library of
implementation-specific functions can target different
signal-processing applications.

4 COMPILER
IMPLEMENTATION

In this section, we describe an implementation of
the model compilation approach in Fig. 1 that tar-
gets multi-processor Systems-on-Chip implementa-
tions for signal-processing applications.

4.1 Implementation Overview

The structure of our compiler is shown in Fig. 2. It
is inspired by the code generation engine in (Enrici
et al., 2017), where the middle-end is extended with
memory allocation optimizations. In the following,
we present the main components and data structures
of this implementation.

4.2 Front-end

The front-end in Fig. 2 converts an input pair PIM-
PSM model into a first intermediate representa-
tion G = (A,E): a Synchronous Data Flow (SDF)
graph (Lee and Parks, 1995) annotated with map-
ping information. The models are parsed and scanned
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Figure 2: The implementation of the approach in Fig. 1

by a MDE-to-compiler plugin that allows the com-
piler to be independent of the specific modeling
language used by the input MDE. In this paper,
the PIM-PSM is taken from the open-source MDE
framework TTool/DIPLODOCUS (Apvrille et al.,
2006; Apvrille, 2008). The plugin scans and
parses a PIM-PSM described in .xml format by
TTool/DIPLODOCUS and passes this description to
the Graph generator (Fig. 2). The latter converts a
UML-SysML pair PIM-PSM (Apvrille, 2008) into a
SDF graph.
In a SDF graph, nodes (actors) represent processing
entities interconnected by a set of First-In First-Out
(FIFO) data queues. An actor starts execution (fir-
ing) when its incoming FIFO(s) contains enough to-
kens, it cannot be preempted and produces tokens
onto its outgoing FIFO(s). The number of tokens con-
sumed/produced by each firing is a fixed scalar that
is annotated with the graph edges. As actors have
no state in the SDF Model of Computation (MoC), if
enough tokens are available, an actor can start several
executions in parallel. For this reason, SDF graphs
naturally express the parallelism of signal-processing
applications and can be statically analyzed during
compilation for memory allocation optimizations.
A PIM in DIPLODOCUS is a SysML Block Def-
inition diagram that captures the computation of a
signal-processing system as well as their data and
control dependencies. The internal behavior of each
operation is further described with a SysML Activity
diagram. As the execution of a SDF graph is not in-
fluenced by the internal variables of actors, we ignore
the Activity diagrams of a DIPLODOCUS’ PIM and
only consider the Block Definition diagram. More-
over, as we are interested in optimizing the memory
footprint of a signal-processing system, we only con-
sider blocks in the PIM that are connected by data
channels. Therefore, we produce for each block and



data channel in the PIM a SDF actor and an edge, re-
spectively. Each actor in the resulting SDF graph G
is annotated with the execution unit where is has been
mapped in the PSM. A PSM in TTool/DIPLODOCUS
is a UML Deployment diagram that specifies a plat-
form’s topology, its units (e.g., CPU, Direct Memory
Access - DMA, memory) and each unit’s performance
characteristics (e.g., number of cores for a CPU, num-
ber of channels for a DMA). UML artifacts are used
to map operations onto the platform’s units.

4.3 Middle-end

In this version of the compiler’s middle-end, we
propose a system-level memory optimizer that min-
imizes the footprint of the logical buffers associated
with the data channels among computations in a
SysML PIM from DIPLODOCUS. In this work, we
differentiate between logical and physical buffers. A
physical buffer defines a range of memory addresses
of a physical memory device (e.g., a Random Access
Memory - RAM). A logical buffer, instead, is a
virtual address space that can be mapped onto one or
multiple physical buffers.
Our optimizer implements a variant of the allocation
techniques presented in (Desnos et al., 2014) that
we adapted to allow the sharing of input and output
buffers of actors, similar to one of the memory
reuse techniques presented in (Desnos et al., 2016).
Essentially, the optimizer performs a series of graph
transformations to deduce a lower bound for the
physical buffers that must be allocated for the PIM’s
logical buffers.

The SDF graph G in Fig. 2 is transformed first into a
single-rate SDF, where the production and consump-
tion rates on each FIFO are made equal. The single-
rate SDF is transformed into a Direct Acyclic Graph
(DAG) by isolating one iteration of the single-rate
SDF and by ignoring FIFOs with initial tokens. The
DAG graph contains two types of memory objects:

• Communication buffers that are used to transfer
tokens between consecutive actors.

• Feedback/pipeline buffers that store feedback FI-
FOs, i.e., buffers corresponding to (feedback)
edges whose input and output port are associated
with the same actor.

Our work differs from (Desnos et al., 2014) as, in
the latter, a DAG also expresses an estimation of
an actor’s internal memory (e.g., the stack space
of a task allocated by an Operating System). In
the context of our research, as 5G applications are
accelerated by hardware IP blocks, there is no need to

express the internal working memory of DAG actors.
From the DAG, a Memory Exclusion Graph (MEG)
is derived. Nodes in the MEG represent logical
memory objects: FIFO buffers whose size is equal to
the number of tokens in the single-rate SDF. Edges
in the MEG link logical FIFO buffers that cannot
be allocated to overlapping physical buffers. The
MEG is then updated with mapping information
from the PSM that specifies the execution constraints
(scheduling) for each signal-processing operation.
This allows to remove edges (exclusion relations)
between nodes in the MEG. The purpose of this
operation is to merge logical buffers so that physical
buffers in the executable code can share common
memory regions, thus reducing the total footprint of
an application.

At this point, the heuristics proposed in (Desnos et al.,
2014) is applied to compute a lower bound for the
memory of the physical buffers. This bound is defined
in (Fabri, 1979) as the weight of a Maximum Weight
Clique (MWC). A clique is a subgraph of MEG ver-
tices within which each pair of vertices is linked with
an edge. As the memory objects of a clique cannot
share memory space because they mutually exclude
each other, the weight of a clique gives a lower bound
to the amount of memory that must be allocated for
all of the clique’s buffers. This amount is equal to the
sum of the sizes of all clique’s buffers. The pseudo-
code of the heuristics proposed in (Desnos et al.,
2014) is shown in Algorithm 1.
In each iteration of the main loop (lines 6-13) in Algo-
rithm 1, minimum cost vertices v∗ are removed from
C (line 8). If multiple vertices have the same cost, the
vertex v with the lowest number of neighbors |N(v)| is
removed. If the number of neighbors is equal, then the
vertex v with the smallest weight w(v) is removed. If
there are still multiple vertices with equal properties,
a random vertex vrandom is selected. The loop iterates
until the vertices in C form a clique. This condition
is verified, line 6, by comparing the edge density of
a clique with the edge density of the MEG subgraph
formed by the remaining vertices in C. The edge den-
sity of a cliqued is defined as the ratio between exist-
ing exclusions and all possible exclusions. Such den-
sity is equal to 1.0 in the case of the complete MEG.
The number of edges, nbedges, is decremented at line 9
by the number of edges in L that link the removed ver-
tex v∗ to vertices in C. Lines 10-12 update the costs
of the remaining vertices for the next iteration. The
complexity of the heuristic algorithm is of the order
of magnitude of O(|V |2), where |V | is the number of
vertices of the MEG subgraph.
The lower bound computed with Algorithm 1 is anno-



Algorithm 1: The MWC heuristics
/* C = the clique */
/* nbedges = number of edges in C */
/* cost(·) = cost function of C */
/* v = generic vertex in C */
/* w(v) = weight of vertex v */
/* N(v) = neighbor vertices of v */
/* |N(v)| = lowest number of v’s

neighbors */
1 C←V
2 nbedges← |E|
3 foreach v ∈C do
4 cost(v)← w(x)+∑v′∈N(v) w(v′)
5 end
6 while |C|> 1 and 2·nbedges

|C|·(|C|−1) < 1.0 do
7 Select v∗ f rom V that minimizes cost(·)
8 C←C\{v∗}
9 nbedges← nbedges−|N(v∗)∩C|

10 foreach v ∈ {N(v∗)∩C} do
11 cost(v)← cost(v)−w(v∗)
12 end
13 end
14 Select a vertex vrandom ∈C
15 foreach v ∈ {N(vrandom)\C} do
16 if C ⊂ N(v) then
17 C←C∪{v}
18 end
19 end

tated to edges in G, resulting into graph G′, Fig. 2. It
provides an exact value for the size of physical buffers
that are allocated in the final executable. This is op-
posed to (Desnos et al., 2014), where the bound is
a theoretical value that depends on the estimation of
the internal working memory of DAGs’ actors. Con-
sequently, the MWC value in (Desnos et al., 2014)
must be verified before being used to allocate physi-
cal memory.

4.4 Back-end

The back-end in Fig. 2 translates G′ into a C pro-
gram. Each actor (operation) in G′ is translated into 4
implementation-specific C routines for initialization,
execution, scheduling and clean-up purposes (Fig. 2).
Initialization and clean-up routines are called once,
when the program starts and terminates, respectively.
These routines manipulate the software data struc-
tures that are needed by processing units in the tar-
get platform to prepare and clean up the execution
of an actor in G′. Scheduling and execution rou-
tines are called to test the eligibility to run an op-

eration and to trigger its execution on the hardware,
respectively. The memory bound determined by Al-
gorithm 1 is used by the back-end to allocate shared
physical buffers for operations mapped to the same
execution unit.
In the current implementation of the compiler, these
functions must be manually written by a user and are
included in the final source executable code via a ded-
icated configuration file (.hal, hardware abstraction
layer file in Fig. 2).
In our current implementation, the target C program
schedules computations according to the availabil-
ity of input data for operations (coherently to the
SDF MoC). We did not implement a thread-based
scheduler, as using threads and their synchronization
mechanisms would lead to rigid executions that are
difficult to scale in dynamic scenarios (Ousterhout,
1996; Dabek et al., 2002). For instance, in a sys-
tem composed of multiple applications, in case one
or more applications stops execution, it would be
more difficult to re-synchronize its execution using
threads (Lee, 2006).

4.5 Discussion

In this version of the model compiler, we did not in-
clude any environment for the analysis of the IRs’
metamodels as this goes out of the scope of our cur-
rent research interests. As described in (Floch et al.,
2011), techniques such as generative approaches,
model mapping, Domain Specific Languages and
metamodel instrumentation exist to guarantee the cor-
rectness and maintainability of IR transformations.
However, due to scalability reasons, their use is dif-
ficult to apply to research compilers. It is, however, a
practically surmountable problem that can be solved
by developing additional features to the model com-
piler. In the context of the case study of Section 5,
we manually verified the equivalence between (i) the
data-flow relations in graphs G, G′, (ii) the data-flow
scheduling of operations in the target C program and
(iii) the data-flow dependencies in the input PIM.

4.5.1 Portability

This implementation of the model compiler addresses
platforms where the scheduling of operations is cen-
trally executed by a single general-purpose control
processor. The latter configures and dispatches the ex-
ecution of operations to a set of physically distributed
units (e.g., DSPs, DMAs, IPs), according to events
generated upon the consumption/production of data
by computation and communication operations. For
each platform, a dedicated library of implementation-
specific functions must be provided by re-using those



from other projects as templates. To target designs
where the control code of an application is frag-
mented into separate executables that each run onto
different CPUs, the compiler must be extended (e.g.,
produce multiple executables, include synchroniza-
tion primitives among multiple units).
In order to use this implementation of the compiler
with a design tool other than TTool/DIPLODOCUS,
the user needs to write a new plug-in for the front-
end. The existing plug-in can be used as a template to
reduce development efforts.

4.5.2 Debugging

In the approach we propose in this paper, debugging
is done at different locations: in the front-end MDE
tool, in the C target program and the implementation-
specific functions (e.g., Valgrind, gdb). In this im-
plementation of the compiler, transformations of the
Intermediate Representations can be manually de-
bugged by comparing the data-flow relations among
SDF actors in G, G′ and those between SysML blocks
in the input PIM. Also, simulation and formal verifi-
cation techniques in the input MDE tool can be used
to guarantee the correctness of the PIM and PSM with
respect to design requirements.

5 CASE STUDY

We used the model compiler described in this
paper to produce executable code for two target
platforms, from the UML/SysML model of a 5G
decoder that we designed in DIPLODOCUS for the
uplink (SC-FDMA), single antenna case, Physical
Uplink Shared channel (xPUSCH), based on (Veri-
zon, 2015).
The algorithm of the signal-processing operations
(application) that compose the 5G decoder is
shown in Fig. 3. We captured this application in a
TTool/DIPLODOCUS’ PIM with a SysML Block
Definition diagram containing 10 SysML Composite
Components (1 source, 1 sink and 8 blocks, one for
each of the signal-processing operations in Fig. 3).
Each Composite Component contains 2 SysML
Primitive Components that model the configuration
and the data-processing of a given operation. By way
of example, Fig. 4 shows the TTool/DIPLODOCUS
SysML Composite and Activity diagrams for oper-
ation 64QAM Demodulation. Table 1 lists the data
produced and consumed by operations in Fig. 3,
given an input subframe (14 OFDM symbols and 41
LDPC code blocks). In our final implementations,
the complex samples listed in Table 1 are represented

on 32 bits.

Table 1: Input/Output data of the decoder operations

Operation Input Output
Remove CP 30720 samples 2048 samples1

DFT 2048 samples1 2048 samples1

Sub-carrier
demapping

2048 samples1 1200 samples1

IDFT 1200 samples1 1200 samples1

Demodulation 1200 resource
elements2

7200 soft bits2

Descrambling 7200 soft bits2 7200 soft bits2

LDPC decoder 1944 soft bits2 1620 hard bits2

Code Block
Concatenation

1620 hard bits2 66416 hard
bits2

Remove CRC 66416 hard
bits2

66392 hard
bits2

In this case study we use two target platforms. One
is Embb (Embb, 2017), a generic baseband archi-
tecture dedicated to signal-processing applications.
Embb is composed of a Digital Signal Processing
(DSP) part and a general purpose control part. The
DSP part is composed of a set of Digital Signal
Processing Units interconnected by a crossbar. Each
DSP unit is equipped with a Processing Sub-System
(PSS) as computational unit, a Direct Memory Ac-
cess controller (DMA) and a local memory called the
Memory Sub-System, MSS. These DSPU units can
be seen as programmable IPs that are more flexible
than traditional fully hard-wired accelerators. The
general purpose control part is composed of a RAM
memory and of a CPU that configures and controls
the processing operations performed by the DSPUs
and the data transfers.
The architecture of the second target platform, a
hardware IP-based platform is composed of a
programmable and of a configurable subsystem. The
programmable subsystem executes control func-
tions as well as signal-processing operations whose
performance are not time critical. It is composed
of a CPU and a RAM memory. The configurable
subsystem accelerates performance-critical opera-
tions onto dedicated hardware IP blocks that can
be selected by Xilinx SDx (Xilinx, 2017) from
the target program produced by our compiler. An
IP block includes a processing core, a local mem-
ory and a DMA engine, similarly to a DSPU in Embb.

Thanks to the similarities in the structure of the two
target platforms, we captured their architecture in the
UML Deployment diagram of TTool/DIPLODOCUS
of Fig. 5. In Fig. 5, the left-hand part describes the

1Per OFDM symbol
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Figure 3: The block diagram of the 5G decoder designed in this case study (dotted line).

QAMDemod

X_QAMDemod

+ num_symbols = 11 Natural;
+ numBitsPerSymbol = 6 : Natural;
+ i : Natural;
+ samplesPerSymbol : Natural;

F_QAMDemod

+ in_size : Natural;
+ out_size = 2491 : Natural;
+ samplesPerSymbol = 1200 : Natural;

QAMDemod_Req

getReqArg (size)

SubCarrierDemap_ChOut(numBitsPerSymbolOUT)

SubCarrierDemap_ChIn(numBitsPerSymbolIN)

for(i=0;i<num_symbols;i = i+1) inside loop

exit loop

numBitsPerSymbolIN

(a) (b)

Figure 4: The SysML Composite (a) and Activity (b) dia-
grams for operation 64QAM Demodulation.

<<CPU>>

Main CPU

<<MEMORY>>

Main Memory

<<BRIDGE>>

Main Bridge <<BUS>>
Main Bus

Digital Signal Processing part

General Purpose Control Part

<<BUS>>
Interconnect

<<HWA>>
PE[1..*]

Figure 5: The UML Deployment Diagram of a generic in-
stance of Embb and of the hardware IP-based platform.

subsystem where the processing of data is acceler-
ated. Here, a PE (Processing Element) block models
the architecture of a DSPU in Embb or a hardware
IP block. The TTool/DIPLODOCUS model of a PE’s
internal architecture is depicted in Fig. 6. The right-
hand side of Fig. 5 captures the control part of our two
target platforms: a CPU and a memory units intercon-
nected by a bus unit.
To compile executable code, we instantiated, in
TTool/DIPLODOCUS, a PSM model such as the one
in Fig. 5 that contains two Processing Elements for
Embb and one Processing Element for the IP-based
platform. The mapping information corresponding to
these PSMs is illustrated in Fig. 7.

5.1 The model compilation

The optimization techniques used by our model com-
piler reduce the memory footprint by sharing the
physical buffers among operations that are mapped

2Per frame

<<BUS-RR>>
IP_Internal_Interconnect

<<BRIDGE>>

IPBridge

<<MEMORY>>
IP_Local_Memory<<DMA>>

IP_DMA

<<CPURR>>

Processing_Core

to global interconnect

Figure 6: The UML Deployment Diagram for the generic
architecture of a PE in Fig. 5.

to a given execution unit. In the case of Embb, ac-
cording to the mapping in Fig. 7, each set of logical
buffers {Aout, FinFout, Hin, HI}, {Bin, BC, CD,
DE, Eout} and {GinGout} in Fig. 7 is merged to share
a common physical memory area. Given the sequen-
tial nature of the scheduling of these operations, the
size of each of the three memory areas is equal to
the size of the largest logical buffer: Iin, Bin and
Gout. The target C program produced by the back-end
is based on a library of 371 implementation-specific
functions.
For the IP-based platform, according to the mapping
in Fig. 7, the middle-end optimizes the memory foot-
print of two sets of logical buffers: {AB, BC, CD,
DE, EF} and {GinGout} in Fig. 7. These two sets are
merged and assigned a common memory area equal
to the size of Iin and Gin, respectively. The back-end
composes a target program by linking a library of 33
implementation-specific functions for each operation
in Fig. 3.

5.2 The target program translation

In the case of Embb, the target C program is trans-
lated into an executable with GNU/gcc v.5.4.0 cross-
compiled onto Ubuntu v.16.04.4. This executable (a
pure software implementation of the input models)
runs on the main CPU in Fig. 5 as a user-space ap-
plication for Linux v.4.4.0-xilinx.
In the case of the IP-based platform, we translate
the target C program with Xilinx SDx (Xilinx, 2017)
into a mixed hardware-software implementation. The
output of the Xilinx SDx translation process are a
Linux image and an .elf file for the software part of
the implementation, to be executed by the CPU of
the programmable subsystem. The executable for the
hardware part of the implementation is a FPGA bit-
stream. The latter is loaded into the target FPGA’s
configurable fabric by a Linux image that runs onto



A

Remove CP

B C D E F G1 H1 I1

Main CPU FEP DSPU FEP DSPU FEP DSPU FEP DSPU Main CPU

LDPC DSPU Main CPU Main CPU

DFT Demapping IDFT Demodulation Descrambling LDPC Code Block Remove CRC

Main CPU Main CPU Main CPU Main CPU Main CPU

IP core Main CPU Main CPU

Main CPU

IP-based platform mapping

Embb mapping

8192

8192

8192

8192

4800

4800

4800

4800

7200

7200

5832

1944

203

203

8302

8302

G2 H2 I2

LDPC Code Block Remove CRC

203

203

8302

8302

G0 H0 I0

LDPC Code Block Remove CRC

203

203

8302

8302

1944

1944

Figure 7: The single-rate SDF graph of the 5G decoder in Fig. 3 (tokens are expressed in bytes).

the FPGA’s control processor (not represented in our
models).

5.3 Evaluation

In the case of Embb, the middle-end allocates 8192
and 1944 bytes to the local memories of the FEP and
LDPC processors, respectively, as well as 8302 bytes
to the main CPU memory. Assigning separate I/O
FIFO buffers to each of the 5G decoder operations
would have allocated 25984 bytes to the FEP local
memory, 2147 bytes to the LDPC processor’s local
memory and 39399 bytes to the main CPU mem-
ory. Compilation reduces the memory footprint of
68.47%, 9.46% and 78.93% for each of these three
units, respectively. Overall, it reduces by 72.7%
the memory used by the final executable code, with
respect to pure translation-based approaches.
For the IP-based platform, the middle-end allocates
8302 bytes to the main CPU memory (programmable
system) and 1944 bytes to the hardware IP-core mem-
ory (configurable system). A pure translation-based
approach that allocates separate I/O FIFO buffers
to each operation would have reserved 90375 bytes
and 2147 bytes to the main CPU and the hardware
IP-core memories, respectively. Our compilation
achieves a memory footprint reduction equal to
90.81% and 9.46%, respectively, for these two
units. Overall, this reduces by 88.93% the memory
used in the mixed hardware-software implementation.

The middle-end of our compiler optimizes an appli-
cation’s memory footprint by accounting for the map-
ping information of SDF actors onto a platform’s exe-
cution units. This scheduling update does not impact
the overall timing properties of the final executable.
Specifically to this 5G decoder, its real-time proper-
ties are limited by two factors. First, by the lack of
parallelism between operations that is inherent to the
application in Fig. 3. Secondly, by the absence in the

target platforms of multiple units capable to process
different OFDM symbols in parallel. Because of the
limited size of the FPGAs onto which we prototyped
our platforms, it was only possible to instantiate one
Front-End Processor unit and one LDPC processor in
Embb as well as one hardware IP-block in the sec-
ond platform. For instance, in Embb, the availability
of only one FEP unit does not allow to pipeline the
execution of operations DFT, Demapping, IDFT and
Demodulation for consecutive OFDM symbols.

6 CONCLUSION

This paper proposes a compilation approach of
system-level models for SoC implementations of
signal-processing applications. With respect to
the translation-based approaches discussed in Sec-
tion 2, we showed that optimizing (compiling) the
non-functional properties (i.e., memory footprint) of
model-based specifications can result in significant
performance improvement without impacts on the se-
mantics of the system begin modeled. In the domain
of MDE for SoCs, we believe that this further reduces
the gap between traditional programming approaches
based on C/C++ and model-based programming tech-
niques.
In future work, we will extend our case study with
the complete design of an encoder chain. We will
also consider the integration of other types of non-
functional optimizations (e.g., to reduce power con-
sumption).
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