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Abstract. Recently, an optimal transportation argument was proposed
by the author to provide a simple proof of Shannon’s entropy-power
inequality. Interestingly, such a proof could have been given by Shannon
himself in his 1948 seminal paper. In fact, by 1948 Shannon established
all the ingredients necessary for the proof and the transport argument
takes the form of a simple change of variables.

In this paper, the optimal transportation argument is extended to
Rényi entropies in relation to Shannon’s entropy-power inequality and
to a reverse version involving a certain conditional entropy. The trans-
portation argument turns out to coincide with Barthe’s proof of sharp
direct and reverse Young’s convolutional inequalities and can be applied
to derive recent Rényi entropy-power inequalities.

Keywords: Rényi entropy · Entropy-power inequality · Optimal
transport

1 Introduction: A Proof that Shannon Missed

2016 was the Shannon Centenary which marked the life and influence of
Claude E. Shannon on the 100th anniversary of his birth. On this occasion
many scientific events were organized throughout the world in honor of his
achievements—on top of which his 1948 seminal paper [1] which developed the
mathematical foundations of communication. The French edition of the book
re-edition of Shannon’s paper [2] has recently been published.

Remarkably, Shannon’s revolutionary work, in a single publication [1], estab-
lished the fully formed field of information theory, with all insights and math-
ematical proofs, albeit in sketched form. There seems to be only one exception
in which Shannon’s proof turned out to be flawed: the celebrated entropy-power
inequality (EPI).

The EPI can be described as follows. Letting P (X) = 1
nE{‖X‖2} be the

average power of a random vector X taking values in Rn, Shannon defined the
entropy-power N(X) as the power of a zero-mean white Gaussian random vector
X∗ having the same entropy as X. He argued [1, Sect. 21] that for continuous
random vectors it is more convenient to work with the entropy-power N(X)
than with the differential entropy h(X). By Shannon’s formula [1, Sect. 20.6]
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2 O. Rioul

h(X∗) = n
2 log

(
2πeP (X∗)

)
for the entropy of the white Gaussian X∗, the closed-

form expression of N(X) = P (X∗) when h(X∗) = h(X) is

N(X) =
exp

(
2
nh(X)

)

2πe
(1)

which is essentially e to the power a multiple of the entropy of X, also recognized
as the “entropy power” of X in this sense. Since the Gaussian maximizes entropy
for a given power [1, Sect. 20.5]: h(X) ≤ n

2 log
(
2πeP (X)

)
, the entropy-power

does not exceed the actual power: N(X) ≤ P (X) with equality if and only if X
is white Gaussian. The power of a scaled random vector is given by P (aX) =
a2P (X), and the same property holds for the entropy-power:

N(aX) = a2N(X) (2)

thanks to the well-known scaling property of the entropy [1, Sect. 20.9]:

h(aX) = h(X) + n log |a| (3)

Now for any two independent continuous random vectors X and Y , the power
of the sum equals the sum of the individual powers: P (X + Y ) = P (X) + P (Y )
and clearly the same relation holds for the entropy-power in the case of white
Gaussian vectors (or Gaussian vectors with proportional covariances). In general,
however, the entropy-power of the sum exceeds the sum of the individual entropy-
powers:

N(X + Y ) ≥ N(X) + N(Y ) (4)

where equality holds only if X and Y are Gaussian with proportional covariances.
This is the celebrated entropy-power inequality (EPI) as stated by Shannon.

It is remarkable that Shannon had the intuition of this inequality since it
turns out to be quite difficult to prove. Shannon’s proof [1, Appendix 6] is an
incomplete variational argument which shows that Gaussian densities yield a
stationary point for N(X + Y ) with fixed N(X) and N(Y ) but this does not
exclude the possibility that the stationary point is not a global minimum.

The first actual proof of the EPI occurred more than ten years later and
was quite involved; subsequent proofs used either integration over a path of a
continuous Gaussian perturbation or the sharp version of Young’s inequality
where the EPI is obtained as a limit (which precludes to settle the equality
condition in this case). We refer to [3] for a comprehensive list of references and
a detailed history.

Recently, an optimal transportation argument was proposed by the author
[4,5] to provide a simple proof of the entropy-power inequality, including the equal-
ity condition. Interestingly, as we shall now demonstrate, such a proof, appropri-
ately rephrased, could have been given by Shannon himself in his 1948 seminal
paper. In fact, by 1948 Shannon established all the ingredients necessary for the
proof. As in Shannon’s paper [1], to simplify the presentation we assume, without
loss of generality, that all considered random vectors have zero mean and we here
restrict ourselves to real-valued random variables in one dimension n = 1.
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Optimal Transport to Rényi Entropies 3

The optimal transport argument takes the form of a simple change of vari-
ables: if e.g., X∗ is Gaussian, then there exists a (possibly nonlinear) nonde-
creasing transformation T such that T (X∗) is identically distributed as X—so
that one would take X = T (X∗) in what follows. Similarly if Y ∗ is Gaussian on
can take Y = U(Y ∗). A detailed proof of this change of variable is given in [4,5]
but this is easily seen as a generalization of the inverse c.d.f. method used e.g.,
for sampling random variables.

Theorem 1 (Shannon’s Entropy-Power Inequality). Let X,Y be indepen-
dent zero-mean random variables with continuous densities. Then N(X + Y ) ≥
N(X) + N(Y ).

Proof. The proof is in several steps, each being a direct consequence of Shannon’s
basic results established in [1].

1. We first proceed to prove the apparently more general inequality

N(aX + bY ) ≥ a2N(X) + b2N(Y ) (5)

for any real-valued coefficients a, b. By the scaling property of the entropy-
power (2), this is in fact equivalent to the original EPI (4).

2. We can always assume that X and Y have the same entropy-power N(X) =
N(Y ), or equivalently, have the same entropy h(X) = h(Y ). Otherwise, one
could find constants c, d such that cX and dY have equal entropy-power (e.g.,
c = exp(−h(X)) and d = exp(−h(Y ))) and applying (5) to cX and dY yields
the general case, again thanks to the scaling property of the entropy-power.

3. Let X∗, Y ∗ be independent zero-mean Gaussian variables with the same
entropy as X,Y . Since the entropies of X∗ and Y ∗ are equal they have the
same variance and are, therefore, identically distributed. Since equality holds
in (5) for X∗, Y ∗, we have a2N(X) + b2N(Y ) = a2N(X∗) + b2N(Y ∗) =
N(aX∗ + bY ∗) so that (5) is equivalent to N(aX + bY ) ≥ N(aX∗ + bY ∗) or
(taking the logarithm)

h(aX + bY ) ≥ h(aX∗ + bY ∗) (6)

4. To prove (6) we may always assume the change of variables X = T (X∗),
Y = U(Y ∗) as explained above. One is led to prove that

h(aT (X∗) + bU(Y ∗)) ≥ h(aX∗ + bY ∗) (7)

which is written only in terms of the Gaussian variables.
5. Since X∗ and Y ∗ are i.i.d. Gaussian, the Gaussian variables X̃ = aX∗ + bY ∗

and Ỹ = −bX∗ + aY ∗ are uncorrelated and, therefore, independent. Letting
∆ = a2 + b2 we can write X∗ = (aX̃ − bỸ )/∆ and Y ∗ = (bX̃ + aỸ )/∆. Since
conditioning reduces entropy [1, Sect. 20.4],

h(aT (X∗) + bU(Y ∗)) = h(aT (aX̃−bỸ
∆ ) + bU( bX̃+aỸ

∆ ))

≥ h(aT (aX̃−bỸ
∆ ) + bU( bX̃+aỸ

∆ )|Ỹ ) (8)

A
u

th
o

r 
P

ro
o

f



4 O. Rioul

6. By the change of variable in the entropy [1, Sect. 20.8], for any transformation
T , h(T (X)) = h(X) + E log T ′(X) where T ′(X) > 0 is the jacobian of the
transformation. Applying the transformation in X̃ for fixed Ỹ in the right-
hand side of (8) we obtain

h(aT (aX̃−bỸ
∆ ) + bU( bX̃+aỸ

∆ )|Ỹ ) = h(X̃|Ỹ ) + E log
(a2

∆ T ′(aX̃−bỸ
∆ ) + b2

∆ U ′( bX̃+aỸ
∆ )

)
(9)

7. By the concavity of the logarithm,

log
(

a2

∆ T ′(aX̃−bỸ
∆ ) + b2

∆ U ′( bX̃+aỸ
∆ )

)
= log

(
a2

∆ T ′(X∗) + b2

∆ U ′(Y ∗)
)

≥ a2

∆ log T ′(X∗) + b2

∆ log U ′(Y ∗) (10)

but again from change of variable in the entropy [1, Sect. 20.8], E log T ′(X∗) =
h(T (X∗))−h(X∗) = h(X)−h(X∗) = 0 and similarly E log U ′(Y ∗) = 0. Thus
the second term in the right-hand side of (9) is ≥ 0.

8. Since X̃, Ỹ are independent, one has [1, Sect. 20.2] h(X̃|Ỹ ) = h(X̃) =
h(aX∗ + bY ∗), which is the right-hand side of (7). Combining the established
inequalities this proves the EPI. %&

Remark 1. The case of equality can easily be settled by noting that equality
holds in (10) only if T ′(X) = U ′(Y ) a.e., which since X and Y are independent
implies that T ′ = U ′ is constant, hence transformations T,U are linear and X,Y
are Gaussian (see [4] for details).

Going back to the proof it is interesting to note that the only place where
the gaussianity of X∗, Y ∗ is used is for the simplification h(X̃|Ỹ ) = h(X̃). If we
drop this assumption we obtain the more general statement:

Corollary 1. Let X,Y be independent zero-mean random variables with con-
tinuous densities, and similarly let X∗, Y ∗ be independent zero-mean random
variables with continuous densities, all of equal entropies. Then for any real a, b,

h(aX + bY ) ≥ h(aX∗ + bY ∗| − bX∗ + aY ∗) (11)

If in addition we drop the assumption of equal entropies than letting λ = a2/∆,
1 − λ = b2/∆ we obtain

Corollary 2. Let X,Y be independent zero-mean random variables with con-
tinuous densities, and similarly let X∗, Y ∗ be independent zero-mean random
variables with continuous densities. Then for any 0 < λ < 1,

h(
√

λX +
√

1 − λY ) − λh(X) − (1 − λ)h(Y ) (12)

≥ h(
√

λX∗ +
√

1 − λY ∗| −
√

1 − λX∗ +
√

λY ∗) − λh(X∗) − (1 − λ)h(Y ∗)

In fact since the choice of (X,Y ) and (X∗, Y ∗) is arbitrary the latter inequality
can be split into two inequalities [5], the EPI and a reverse EPI:

h(
√

λX +
√

1 − λY ) ≥ λh(X) + (1 − λ)h(Y )

h(
√

λX∗+
√

1 − λY ∗| −
√

1 − λX∗+
√

λY ∗) ≤ λh(X∗)+(1 − λ)h(Y ∗).
(13)
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Optimal Transport to Rényi Entropies 5

2 Generalization to Rényi Entropies

We now extend the same argument to Rényi entropies.

Definition 1 (Hölder Conjugate). Let p > 0, its Hölder conjugate is p′ such
that 1

p + 1
p′ = 1. We write p′ = ∞ if p = 1; note that p′ can be negative if p < 1.

Definition 2 (Rényi Entropy). The Rényi entropy of order p of a random
vector X with density f ∈ Lp(Rn) is defined by

hp(X) = −p′ log ‖f‖p =
1

1 − p
log

∫

Rn

fp. (14)

As is well known, hp(X) is non-increasing in p and we recover Shannon’s entropy
by letting p → 1 from above or below: h(X) = limp→1 hp(X). We also make the
following definitions.

Definition 3 (Power Transformation). Given a random vector X with den-
sity f ∈ Lα, we define Xα as the random vector with density

fα =
fα

∫
fα

. (15)

Definition 4 (Young’s Triple). A Young triple (p, q, r) consists of three pos-
itive real numbers such that p′, q′, r′ are of the same sign and

1
p′ +

1
q′ =

1
r′ . (16)

The triple rate λ associated to (p, q, r) is the ratio of 1/p′ in 1/r′:

λ =
1/p′

1/r′ =
r′

p′ 1 − λ =
1/q′

1/r′ =
r′

q′ . (17)

In other words 1/p + 1/q = 1 + 1/r as in the classical Young’s inequality. If all
p′, q′, r′ are > 0 then p, q, r > 1; otherwise p′, q′, r′ < 0 and p, q, r < 1. Thus we
always have 0 < λ < 1.

Definition 5 (Dual Young’s Triple). A Young triple (p∗, q∗, r∗) (with rate
λ∗) is dual to (p, q, r) if it satisfies r∗ = 1

r and λ∗ = 1 − λ.

From the definition we have p, q, r > 1 ⇐⇒ p∗, q∗, r∗ < 1 and vice versa. Since
1

p∗′ = λ∗ 1
r∗′ = 1/r′−1/p′

1/r′ (1 − r) = 1/r−1/p
1/r and similarly for q∗′, the definition

fully determines (p∗, q∗, r∗) as

(p∗ =
p

r
, q∗ =

q

r
, r∗ =

1
r
) (18)

We observe from the definition that the dual of (p∗, q∗, r∗) is the original triple
(p, q, r).
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6 O. Rioul

We can now state the following
Theorem 2. Let X,Y be independent zero-mean random variables with con-
tinuous densities, and similarly let X∗, Y ∗ be independent zero-mean random
variables with continuous densities. Then for any Young’s triple (p, q, r) with
dual (p∗, q∗, r∗),

hr(
√

λX1/p +
√

1 − λY1/q) − λhp(X1/p) − (1 − λ)hq(Y1/q) (19)

≥ λ∗hp∗(X∗
1/p∗) + (1 − λ∗)hq∗(Y ∗

1/q∗) − hr∗(−
√

λ∗X∗
1/p∗ +

√
1 − λ∗Y ∗

1/q∗)

Proof. The proof uses the same transportation argument X = T (X∗), Y =
U(Y ∗) as above, combined with an application of Hölder’s inequality. It is omit-
ted due to lack of space (but see Sect. 3.2 below). %&
Remark 2. In (19) terms like hp(X1/p) may be simplified since

hp(X1/p) =
1

1 − p
log

∫
f

(
∫

f1/p)p
=

1
1 − 1/p

log
∫

f1/p = h1/p(X). (20)

The above form was chosen to stress the similarity with (12).

Remark 3. The inequality (19) is invariant by duality, in the sense that if
we permute the roles of all variables (p, q, r,λ, X, Y ) and starred variables
(p∗, q∗, r∗,λ∗,X∗, Y ∗) we obtain the exact same inequality.

Remark 4. The case of equality can be determined as in the proof of Theorem 1:
this is the case where T ′ = U ′ is constant, hence transformations T,U are linear.
Hence equality holds in (19) if and only if there exists a constant c > 0 such that
X has the same distribution as cX∗ and Y has the same distribution as cY ∗.

3 Some Applications

3.1 Back to Shannon’s Entropy-Power Inequality

There is a striking similarity between Theorem 2 and Corollary 2. In fact for fixed
λ = 1 − λ∗, we can let p, q, r → 1 from above (or below) so that p∗, q∗, r∗ → 1
from below (or above) to obtain

h(
√

λX +
√

1 − λY ) − λh(X) − (1 − λ)h(Y ) (21)

≥ (1 − λ)h(X∗) + λh(Y ∗) − h(−
√

1 − λX∗ +
√

λY ∗).

This is exactly (12) in Corollary 2 because the right-hand side can be rewritten as

(1 − λ)h(X∗) + λh(Y ∗) − h(−
√

1 − λX∗ +
√

λY ∗)

= h(X∗) + h(Y ∗) − h(−
√

1 − λX∗ +
√

λY ∗) − λh(X∗) − (1 − λ)h(Y ∗)

= h(
√

λX∗ +
√

1 − λY ∗,−
√

1 − λX∗ +
√

λY ∗)

− h(−
√

1 − λX∗ +
√

λY ∗) − λh(X∗) − (1 − λ)h(Y ∗) (22)

= h(
√

λX∗ +
√

1 − λY ∗| −
√

1 − λX∗ +
√

λY ∗) − λh(X∗) − (1 − λ)h(Y ∗)
(23)

where (22) holds because the entropy is invariant by rotation.
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Optimal Transport to Rényi Entropies 7

Thus, Theorem 2 implies the classical Shannon’s entropy-power inequal-
ity. It is the natural generalization to Rényi entropies using optimal transport
arguments.

Remark 5. The above calculation (22)–(23) also shows that the EPI and the
“reverse EPI” (13) are in fact equivalent, as already noted in [5]. This is due to
the fact that Theorem 2 is invariant by duality (Remark 3).

3.2 Relation to Sharp Young Direct and Reverse Inequalities

To simplify the presentation we stay with one-dimensional random variables.
As in Corollary 2, since the choice of (X,Y ) and (X∗, Y ∗) is arbitrary, (19)
can be simplified. If we let X1/p, Y1/q be i.i.d. centered Gaussian,

√
λX1/p +√

1 − λY1/q also has the same Gaussian distribution, and since the Rényi entropy
of a Gaussian variable X ∼ N (m,σ2) is easily found to be

hp(X) = −p′ log p

2p
+ log

√
2πσ2, (24)

the l.h.s. of (19) is equal to − r′

2 ( log r
r − log p

p − log q
q ). By the equality case

(Remark 4) this expression is also the value taken by the r.h.s. of (19) when
X∗

1/p∗ , Y ∗
1/q∗ are i.i.d. Gaussian (this can also be checked directly from the above

definition of the dual Young’s triple). Therefore, the expression − r′

2 ( log r
r − log p

p

− log q
q ) can be inserted between the two sides of (19) in Theorem 2. In other

words, (19) is split into two equivalent inequalities which can be rewritten as

hr(
√

λX+
√

1 − λY )−λhp(X)−(1−λ)hq(Y ) ≥ −r′

2
(
log r

r
− log p

p
− log q

q
) (25)

with equality if and only if X and Y are i.i.d. Gaussian. Plugging the defini-
tion (14) of Rényi entropies and dividing by r′ (which can be positive of nega-
tive), it is easily found [5] that (25) yields the optimal Young’s direct and reverse
inequalities:

√
r1/r

|r′|1/r′ ‖f ∗ g‖r ≤

√
p1/p

|p′|1/p′ ‖f‖p ·

√
q1/q

|q′|1/q′ ‖g‖q. (26)

for p, q, r > 1 (r′ > 0) and the reverse inequality for 0 < p, q, r < 1 (r′ < 0),
where f and g denote the densities of

√
λX and

√
1 − λY . Equality holds if

and only if X/
√

p′ and Y/
√

q′ are i.i.d. Gaussian. In fact, a closer look at (19)
shows that it coincide with Barthe’s transportation proof of sharp Young’s
inequalities [6, Lemma 1] which uses the same change of variables X = T (X∗),
Y = U(Y ∗) as above.
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8 O. Rioul

3.3 Rényi Entropy-Power Inequalities

Again to simplify the presentation we stay with two one-dimensional indepen-
dent random variables X,Y . By analogy with the entropy-power (1), the Rényi
entropy-power of order p is defined by

Np(X) =
exp

(
2
nhp(X)

)

2πe
(27)

We have the following characterization which is an immediate generalization of
the classical case r = c = 1:

Lemma 1. Let r > 0, c > 0. The Renyi entropy-power inequality

Nr(X + Y ) ≥ c
(
Nr(X) + Nr(Y )

)
(28)

is equivalent to

hr(
√

λX +
√

1 − λY ) − λhr(X) − (1 − λ)hr(Y ) ≥ 1
2

log c
(
∀λ ∈ (0, 1)

)
. (29)

Now suppose p∗, q∗, r∗ < 1 so that r > 1 is greater than p and q. Since hp(X)
is non-increasing in p, one has hp(X) ≥ hr(X) and hq(Y ) ≥ hr(Y ), hence
Theorem 2 in the form (25) implies (29) for any λ ∈ (0, 1) provided that 1

2 log c is
taken as the minimum of the r.h.s. of (25) taken over all p, q such that 1/p+1/q =
1 + 1/r.

The method can easily be generalized to more than two independent random
variables. In this way we obtain the recent Renyi entropy-power inequalities
obtained by Bobkov and Chistyakov [7] and by Ram and Sason [8].
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