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Determining Corner Points of Two-User Gaussian Interference Channels

Olivier Rioul
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Université Paris-Saclay, 75013 Paris, France
Email: olivier.rioul@telecom-paristech.fr

Abstract—The corner points of the capacity region of the
two-user Gaussian interference channel under strong or weak
interference are determined using the notions of almost Gaussian
random vectors, almost lossless addition of random vectors, and
almost linearly dependent random vectors. In particular, the
“missing” corner point problem is solved in a manner that differs
from previous works in that it avoids the use of integration
over a continuum of SNR values or of Monge-Kantorovitch
transportation problems.

I. INTRODUCTION

This work is about the complete determination of corner
points of the capacity region of the two-user Gaussian interfer-
ence channel. Some classical ingredients are Fano’s inequality,
the data processing inequality (DPI), the maximum entropy
(MaxEnt) property under a power constraint, the entropy
power inequality (EPI), and the concavity of the entropy
power. Interestingly, only weak forms of the latter two are
required. To these ingredients we add the notions of almost
Gaussian random vectors, almost lossless addition of random
vectors, and almost linearly dependent random vectors.

The determination of the second corner point under weak in-
terference is the content of Costa’s corner point conjecture [1].
This conjecture has been settled recently and independently
by Polyanskiy and Wu [2] (using optimal transport theory)
and Bustin et al. [3], [4] (using the I-MMSE relation). The
approach described here is a natural continuation from previ-
ous works [5]–[8] that is very close in spirit to the solution
of Polyanskiy and Wu. However, it is more direct because is
sidesteps the notion of Wasserstein distance associated to a
Monge–Kantorovich problem.

II. DEFINITIONS AND NOTATIONS

Throughout the paper we consider zero-mean random vec-
tors taking values in Rn and let k·k denote the Euclidean norm
in Rn. Consider the two-user Gaussian interference channel in
standard form (Fig. 1):

Y1 = X1 +
p
bX2 + Z1

Y2 =
p
aX1 +X2 + Z2,

(1)

where the joint distribution of the Gaussian noises (Z1, Z2)
at the decoder sides is not relevant as there is no cooperation
between the receivers. We find it notationally convenient to
set Z1 = Z2 = Z. The corresponding noise powers are N1 =
N2 = N . Sender i = 1, 2 produces a uniformly distributed

W1 X1 Y1 cW1

W2 X2 Y2 cW2

Z

1

1

(P1)

(P2) p
a

p
b (N1)

(N2)

Fig. 1. Gaussian interference channel.

Mi-ary message Wi, where W1 and W2 are independent. En-
coder i maps Wi to a random vector Xi 2 Rn of dimension n

which satisfies the power constraint kXik2  nPi. Decoder i
maps the output Yi to an Mi-ary decoded message Ŵi.

The capacity region of the channel may be defined as the
set of all limit points of all sequences (R1, R2) for which the
corresponding sequence of encoding and decoding functions
with Mi = e

nRi are such that P{Ŵi 6= Wi} (i = 1, 2) tend
to 0 as n ! +1. Note that R1, R2, W1, W2, X1, X2, Y1,
Y2, Z1, Z2 all depend on the dimension n. However, P1, P2

and N are constants, independent of n. Because n is taken
arbitrarily large, it is convenient to use the following notation.

Definition 1 (Almost Inequalities . and &). Let ✏(n) denote
any positive function of n which tends to 0 as n ! +1 (thus
we can write, for example, ✏(n) + ✏(n) = ✏(n)). Given real
number sequences An, Bn, we write An . Bn (An is almost

less than Bn) if

An  Bn + n✏(n) () Bn � An � n✏(n). (2)

We also write Bn & An (Bn is almost greater than An).

The capacity region is a subset of the rectangle R1  C1,
R2  C2, where Ci = (1/2) log(1 + Pi/Ni) with two
corner points (C1, C

0
2) and (C 0

1, C2). A typical shape is shown
in Fig. 2. That (C1, C

0
2) is a corner point is established

by showing that it is achievable and that for any (R1, R2)
for which the associated probability of error tends to 0 as
n ! +1,

nR1 & nC1 =) nR2 . nC
0
2. (3a)

That (C 0
1, C2) is a corner point is similarly characterized by:

nR2 & nC2 =) nR1 . nC
0
1. (3b)

Achievability is generally not a problem and is done using
classical ingredients such as random coding, onion peeling and
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Fig. 2. Corner points (C1, C0
2) and (C0

1, C2) of the capacity region (marked
with circles).

rate splitting. Therefore, in this paper, we focus exclusively on
the derivation of the converse (3).

III. PRELIMINARIES

Throughout the paper XG denotes a white Gaussian vector
of the same variance as X .

Lemma 1. The condition nR1 & nC1 in (3a) implies

(a) h(X1 + Z) & h(XG
1 + Z);

(b) I(X1;Y1) & I(X1;X1 + Z).

The symmetrical lemma holds for (3b).
Proof: By the classical derivation of the converse:

nR1 = H(W1) . I(W1;Y1) (Fano) (4a)
 I(X1;Y1) (DPI) (4b)
 I(X1;X1 + Z) (DPI again) (4c)
= h(X1 + Z)� h(Z) (4d)
 nC1 (MaxEnt) (4e)

Thus nR1 & nC1 amounts to saying that all quantities
in (4) are at distance  n✏(n). This implies, in particular,
(a) from (4e) and (b) from (4c).

Remark 1. Condition nR1 & nC1 also implies I(W1;Y1) &
I(X1;Y1) which holds (with equality) if the encoder mapping
is invertible. In that case nR1 & nC1 () (a),(b).

Lemma 1 naturally leads to the following definitions.

Definition 2 (AG and AL properties). Let X have power
constraint 1

n E{kXk2}  P . We say that X is almost (white)

Gaussian (AG) if
h(X) & h(XG). (5)

Let Z and Z
0 be mutually independent (not necessarily Gaus-

sian) vectors, independent of X . We say that X + Z + Z
0 is

almost lossless (AL) compared to X +Z (with respect to X)
if

I(X;X + Z + Z
0) & I(X;X + Z). (6)

Thus (a), (b) in Lemma 1 are equivalent to:
(a) X1 + Z is AG;

(b) X1+
p
bX2 + Z is AL compared to X1 + Z w.r.t. X1.

The latter condition means that adding interference bX2 in Y1

almost does not decrease information. This becomes vacuous

X1

X2

Y = X1 +X2 + Z

Z

Fig. 3. An illustration of the Fork Lemma.

in the case of no interference (b = 0). If b 6= 0, condition (b)
is equivalent to:
(b0) X1+

p
bX2+Z is AL compared to

p
bX2+Z w.r.t. X2.

This is a direct consequence of the following lemma, which
is particularly important as it allows one to pass from one
transmission to the other (Fig. 3).

Lemma 2 (Fork Lemma). Let X1, X2 and Z be independent.

If X1 +X2 + Z is AL compared to X1 + Z w.r.t. X1, then it

is also AL compared to X2 + Z w.r.t. X2.

Proof: I(X2;X1+X2+Z)�I(X2;X2+Z) = h(X1+X2+
Z) � h(X1 + Z) � h(X2 + Z) + h(Z) = I(X1;X1 +X2 +
Z)� I(X1;X1 + Z).

To simplify the derivations in the remainder of the paper,
we restrict ourselves the case of a Gaussian Z-interference
channel with one of the interference parameters (e.g., b) equal
to zero (Fig. 4):

Y1 = X1 + Z

Y2 = X2 +
p
aX1 + Z.

(7)

The general determination of corner points will follow in the
general case of two-sided interference by noting that removing
an interference link can only enlarge the capacity region, as
explained in [1, Table I].

W1 X1 Y1 cW1

W2 X2 Y2 cW2

Z

(P1)

(P2)
p
a

(N1)

(N2)

Fig. 4. Gaussian Z-interference channel.

IV. CORNER POINTS UNDER STRONG INTERFERENCE

The very strong interference case (a � 1 + P2/N ) is well-
known [9]. One has (C 0

1 = C1, C
0
2 = C2) and in this case

there is no need to prove (3). For strong interference (1 
a  1+P2/N ) the corner points are known and given by (8)
below. The usual derivation follows from that of the capacity
region of the multiple access channel and from the result of
Han and Kobayashi [10] and Sato [11], who showed that both
receivers should be able to decode both messages W1 and W2.
We offer a simple proof based on the following lemma.
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Lemma 3. Let Xt=
p
tX and Z be Gaussian independent of

X . Then I(X;Xt +Z), or h(Xt +Z), is nondecreasing in t.

Proof: Let u = 1
t , Zu =

p
uZ so that I(X;Xt + Z) =

I(X;X + Zu) and let Z 0 be an independent copy of Z. By
the DPI and the divisibility property of the Gaussian, 8� > 0,
I(X;X +Zu) � I(X;X +Zu +Z

0
�) = I(X;X +Zu+�).

Proposition 1. For the strong Z-interference Gaussian chan-

nel,

C
0
1 =

1

2
log

⇣
1 +

aP1 + P2

N

⌘
� C2

=
1

2
log

⇣
1 +

aP1

P2 +N

⌘
(8a)

C
0
2 =

1

2
log

⇣
1 +

aP1 + P2

N

⌘
� C1

=
1

2
log

⇣
1 +

(a� 1)P1 + P2

P1 +N

⌘
. (8b)

Proof of Proposition 1: First suppose that nR1 & nC1. From
Lemma 1, X1 + Z is AG. Therefore, from (4a)–(4b) where
index 1 is replaced by 2,

nR2 . I(X2;Y2) (9a)
= h(Y2)� h(

p
aX1+Z) (9b)

 h(Y2)� h(X1 + Z) (Lemma 3) (9c)
. h(Y2)� h(Z)� nC1 (AG) (9d)
 nC

0
2 (MaxEnt) (9e)

which proves that nR2 . nC
0
2 (cf. (3a)).

Next suppose that nR2 & nC2. From Lemma 1 written for
transmission 2, X2 + Z is AG and aX1 + X2 + Z is AL
compared to X2 + Z w.r.t. X2. Since a 6= 0, by Lemma 2,
aX1+X2+Z is AL compared to aX1+Z w.r.t. X1. Therefore,
from (4a)–(4b),

nR1 . I(X1;Y1) = I(X1;X1 + Z) (10a)
 I(X1;

p
aX1 + Z) (Lemma 3) (10b)

. I(X1;
p
aX1 +X2 + Z) (AL) (10c)

= h(Y2)� h(X2 + Z) (10d)
. h(Y2)� h(Z)� nC2 (AG) (10e)
 nC

0
1 (MaxEnt) (10f)

which proves that nR1  nC
0
1 (cf. (3b)).

V. SATO’S CORNER POINT

For weak interference a < 1, Sato [12] (see also [13]) has
found that the first corner point is given by (11) below. The
usual derivation follows from the equivalence between Gaus-
sian Z-interference channel and a “fully” degraded version
proved in [1], the fact that it can be considered as a broadcast
channel with input power given by P1 + P2 [12], and the
derivation of the capacity region of the Gaussian (degraded)
broadcast channel by Bergmans [14]. We give a simple proof
based on the following lemma which is a direct consequence
of the EPI.

Lemma 4. Let Xt=
p
tX and Z be Gaussian independent of

X . If X + Z is AG then so is Xt + Z for any 0 < t < 1.

Proof: Let u = 1/t > 1, Zu =
p
uZ and let Z

0 be an
independent copy of Z. By the DPI for divergence and the
divisibility property of the Gaussian, h(XG

t +Z)�h(Xt+Z) =
h(XG + Zu)� h(X + Zu) = h(XG + Z + Z

0
u�1)� h(X +

Z + Z
0
u�1) = D(X + Z + Z

0
u�1kXG + Z + Z

0
u�1) 

D(X + ZkXG + Z) = h(XG + Z)� h(X + Z).

Remark 2. By noting that X is AG if and only if its entropy
power N(X) satisfies N(X) � N(XG) � ✏(n), it is readily
seen that the general EPI N(X + Y ) � N(X) + N(Y ) for
independent X,Y implies that if X and Y are AG, then so is
X + Y [7]. Thus the conclusion of Lemma 4 is also obtained
using the EPI where one of the variables is Gaussian: N(X+
Z) � N(X) +N(Z).

It is interesting to note, however, that the EPI is not even
required: only the DPI applied to divergence was necessary
in the above proof, which is strictly weaker than the EPI.
In fact, D(X + ZkXG + Z)  D(XkXG) is equivalent
to N(X + Z) � N(X) + N(Z) ·

�
N(X)/N(XG)

�
where

N(X)/N(XG)  1.

Proposition 2. For the weak Z-interference Gaussian channel,

C
0
2 =

1

2
log

⇣
1 +

P2

aP1 +N

⌘
. (11)

Proof: Suppose that nR1 & nC1. From Proposition 1, X1 +
Z is AG. By Lemma 4,

p
aX1 + Z is also AG. Therefore,

from (4a)–(4b) written for i = 2,

nR2 . I(X2;Y2) = h(Y2)� h(
p
aX1 + Z) (12a)

. h(Y2)� h(
p
aX

G
1 + Z) (AG) (12b)

 nC
0
2 (MaxEnt) (12c)

which proves that nR2 . nC
0
2 (cf. (3a)).

VI. ALMOST LINEAR DEPENDENCE

For any two (zero-mean) n-dimensional random vectors
U, V with finite average powers we define their correlation

coefficient by

⇢(U, V ) =
E{U · V }p

E kUk2}E kV k2}
(13)

where · denotes the scalar product. By Cauchy-Schwarz in-
equality1 one has |⇢(U, V )|  1 with equality if and only if U
and V are linearly dependent in the sense that U = �V a.e.
for some � 2 R.

Definition 3 (ALD property). We say that U and V are almost

linearly dependent (ALD) if

1� |⇢(U, V )|  ✏(n). (14)

1This particular instance of Cauchy-Schwarz inequality can be proved
by considering the discriminant of the nonnegative quadratic form � 7!
E{kU + �V k2}. Alternatively, one has |E{U · V }| 

Pn
i=1 |E{UiVi}| Pn

i=1

p
E |Ui|2}

p
E |Vi|2} 

p
E kUk2}E kV k2} where the Cauchy-

Schwarz inequality is applied twice (for random variables and for vectors).
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(Recall that ✏(n) denotes any positive function of n which
tends to 0 as n ! +1.)

We now consider Y = X2 + Z of variance Q  P2 + N

and the interference term X =
p
aX1.

Remark 3. Since Z is Gaussian, it is proven in [15, App. II.A]
that Y = X2 + Z has a continuous density (see also [16,
Lemma 1]2). Similarly X + Y = (

p
aX1 +X2) +Z also has

a continuous density. In contrast, X is proportional to a code
distribution that is typically discrete.

Clearly Y
G = X

G
2 + Z satisfies the inequality h(Y ) 

h(Y G). However, the interference term X might very well be
such that the opposite inequality h(X + Y ) � h(X + Y

G)
holds after addition. We now aim at bounding the difference
h(X + Y )� h(X + Y

G).

Lemma 5. One has

h(X + Y )� h(X + Y
G)  c · n ·

q
1� ⇢(Y, Y G) (15)

where c is a constant (independent of n).

Proof. The continuous p.d.f. q of X + Y
G takes the form

q(u) = E{q(u|X)} =
E exp

⇣
�ku�Xk2

2Q

⌘

(2⇡)n/2Qn
. (16)

Since D(X + Y kX + Y
G) � 0, we have

h(X + Y )� h(X + Y
G)  E log

q(X + Y
G)

q(X + Y )
. (17)

where

log
q(ũ)

q(u)
= log

E exp
⇣
�kũ�Xk2

2Q

⌘

E exp
⇣
�ku�Xk2

2Q

⌘ . (18)

Now for any u 2 Rn, ku�Xk2�kũ�Xk2 = kuk2�kũk2+
2X · (ũ � u)  kuk2 � kũk2 + 2

p
anP1kũ � uk. It follows

that

log
q(ũ)

q(u)
 kuk2 � kũk2 + 2

p
anP1kũ� uk

2Q
(19)

where the identical terms E exp(�kũ�Xk2/2Q) in the nu-
merator and denominator were cancelled. Plugging this in-
equality into (17) and noting that X+Y

G�(X+Y ) = Y
G�Y

we obtain

h(X + Y )� h(X + Y
G)

 E{kX + Y k2}/2Q� E{kX + Y
Gk2}/2Q

+

p
anP1

Q

q
E{kY k2}+ E{kY Gk2}� 2E{Y · Y G}} (20)

= n

p
2aP1/Q ·

q
1� ⇢(Y, Y G) (21)

2In fact, the density of Y is indefinitely differentiable, bounded, positive,
tends to zero at infinity and all its derivatives are also bounded and tend to
zero at infinity [17, App. B]; but we shall not need this result here.

where the first two terms in (20) were cancelled.

The result of Lemma 5 shows that if Y and Y
G are ALD

such that 1�⇢(Y, Y G)  ✏(n), then h(X+Y )�h(X+Y
G) .

0. In other words h(X + Y
G) � h(X + Y ) & 0 is almost

positive: it can be negative, but not by much. In order to obtain
a value ⇢(Y, Y G) close to one, the next lemma shows that is
sufficient to assume a dependence of the form Y = F (Y G)
where F is “almost linear”.

Lemma 6. One can always assume that Y = F (Y G) where

the change of variable F has a triangular Jacobian matrix J
with positive diagonal elements such that

⇢(Y, Y G) =
1

n
E{Tr(J)} � 0. (22)

Of course, a truly linear dependence of the form Y = �Y
G

implies � = 1 (since Y and Y
G have the same variance),

hence J = I (identity matrix), in keeping with the fact that
⇢(Y, Y G) = 1 in this case.

Proof. The change of variable of this lemma is well known as
Knöthe map in the theory of convex bodies [18, p. 126], [19,
p. 312], [20, Thm. 3.4], [21, Thm. 1.3.1]. For completeness we
give Knöthe’s proof [22]. By Remark 3, Y has a continuous
density. For each y

G
1 2 R, define F1(yG1 ) such that

Z F1(y
G
1 )

�1
pY1 =

Z yG
1

�1
pY G

1
. (23)

Clearly F1 is increasing and differentiating gives

pY1(F1(y
G
1 ))

@F1

@y
G
1

(yG1 ) = pY G
1
(yG1 ) (24)

which proves the result in one dimension: Y1 has the same

distribution as F1(Y G
1 ) where

@F1

@y
G
1

is positive. Next for each

y
G
1 , y

G
2 in R, define F2(yG1 , y

G
2 ) such that

Z F2(y
G
1 ,yG

2 )

�1
pY1,Y2(F1(y

G
1 ), · )

@F1

@y
G
1

(yG1 ) =

Z yG
2

�1
pY G

1 ,Y G
2
(yG1 , · )

(25)
Again F2 is increasing in y

G
2 and differentiating gives

pY1,Y2(F1(y
G
1 ), F2(y

G
1 , y

G
2 ))

@F1

@y
G
1

(yG1 )
@F2

@y
G
2

(yG1 , y
G
2 )

= pY G
1 ,Y G

2
(yG1 , y

G
2 ). (26)

Continuing in this manner we arrive at

pY1,Y2,...,Yn(F1(y
G
1 ), F2(y

G
1 , y

G
2 ), . . . , Fn(y

G
1 , y

G
2 , . . . , y

G
n ))

⇥ @F1

@y
G
1

(yG1 )
@F2

@y
G
2

(yG1 , y
G
2 ) · · ·

@Fn

@yGn

(yG1 , y
G
2 , . . . , y

G
n )

= pY G
1 ,Y G

2 ,...,Y G
n
(yG1 , y

G
2 , . . . , y

G
n ) (27)

which shows that Y has the same distribution as F (Y G) =�
F1(Y G

1 ), F2(Y G
1 , Y

G
2 ), . . . , Fn(Y G

1 , Y
G
2 , . . . , Y

G
n )

�
. The Ja-

cobian matrix J of F is triangular with positive diagonal ele-
ments are positive since by construction each Fk is increasing

IEEE ICC 2017 Communication Theory Symposium



in y
G
k . For convenience we choose to define (Y, Y G) such that

Y = F (Y G). By Stein’s lemma,

⇢(Y, Y G) =
1

nQ

nX

i=1

E(Y G
i · Fi(Y

G)) (28)

=
1

n

nX

i=1

E( @Fi

@y
G
i

(Y G)) =
1

n
E{Tr(J)}.

Proposition 3. If Y is AG, then Y and Y
G

are ALD and

I(X;X + Y
G) & I(X;X + Y ). (29)

The latter equation also reads, with our previous notations,

I(X1;
p
aX1 +X

G
2 + Z) & I(X1;

p
aX1 +X2 + Z). (30)

Proof. By making the change of variable in the expression of
Y = F (Y G) one obtains

h(Y ) = h(F (Y G)) = h(Y G) + E log detJ (31)

Thus, since Y is AG, E log detJ & 0. On the other hand
from (22) by Hadamard’s inequality,

⇢(Y, Y G) =
1

n
E{Tr(J)} � E{ n

p
detJ} (32)

� e
1
n E log detJ (33)

which shows that Y and Y
G are ALD, such that 1 �

⇢(Y, Y G)  ✏(n). From Lemma 5 it follows that h(X+Y )�
h(X +Y

G) . 0, hence I(X;X +Y ) = h(X +Y )�h(Y ) .
h(X + Y

G)� h(Y G) = I(X;X + Y
G).

VII. THE “MISSING” CORNER POINT

For weak interference a < 1, Costa [1] has stated that the
second corner point is given by (35) below. A problematic
issue in the proof was detected by Sason [13] and the corner
point has been later dubbed “missing” [24]. Recently, Polyan-
skiy and Wu [2] solved the missing corner point problem using
optimal transport theory by showing Lipschtiz continuity of
differential entropy with respect to the Wasserstein distance
and Talagrand’s transportation-information inequality. An in-
dependent solution using the I-MMSE approach was given
by Bustin et al. [3], [4] for a restricted subset of inputs—
and later more generally—by integration of the MMSE over a
continuum of SNR values. We provide yet another solution to
the problem in continuation of previous investigations [5]–[8]
that is close to Polyanskiy and Wu’s but sidesteps the use of
the Wasserstein distance. Our proof is based on Prop. 3 and
the following lemma.

Lemma 7. Let Z be Gaussian independent of X and write

Zu =
p
uZ. For any positive u < u

0
< u

00
, there exists µ

constant independent of n such that

I(X;X+Zu0)� I(X;X + Zu)

� µ ·
�
I(X;X + Zu00)� I(X;X + Zu0)

� (34)

Consequently, I(X;X + Zu00) & I(X;X + Zu0) implies

I(X;X + Zu0) & I(X;X + Zu).

Proof: Letting t = 1/u > t
0 = 1/u0

> t
00 = 1/u00, it is

equivalent to show that I(X;Xt0 + Z) � I(X;Xt + Z) �
µ ·

�
I(X;Xt00 + Z) � I(X;Xt0 + Z)

�
. But this holds with

µ = t�t0

t0�t00 by concavity of t 7! I(X;Xt + Z).

Remark 4. The concavity of I(X;Xt + Z) or h(Xt + Z)
is a consequence of the concavity of the entropy power [25]
N(Xt + Z) but is strictly weaker as remarked in [2], since
a concave function is not always exponentially concave. In
fact it can be shown [16] that the concavity of N(Xt + Z)
is equivalent to the concavity of N(X + Zt). By taking the
logarithm, this implies concavity of both h(Xt + Z) and
h(X + Zt). While the latter can be shown directly using the
DPI [26], the former requires de Bruijn’s identity or the I-
MMSE relation [27].

Proposition 4. For the weak Z-interference Gaussian channel,

C
0
1 =

1

2
log

⇣
1 +

aP1

P2 +N

⌘
. (35)

Proof: Suppose that nR2 & nC2. From Proposition 1 written
for transmission 2, X2+Z is AG and adding interference aX1

in Y2 =
p
aX1 + X2 + Z is AL w.r.t. X2. Since a 6= 0, by

the Fork Lemma (Lemma 2), this implies that adding X2 in
Y2 =

p
aX1+X2+Z is AL compared to

p
aX1+Z w.r.t. X1.

Therefore,

nC
0
1 = h(

p
aX

G
1 +X

G
2 + Z)� h(XG

2 + Z) (36a)
� h(

p
aX1 +X

G
2 + Z)� h(XG

2 + Z) (MaxEnt) (36b)
= I(X1;

p
aX1 +X

G
2 + Z) (36c)

& I(X1;
p
aX1 +X2 + Z) (Prop. 3) (36d)

& I(X1;
p
aX1 + Z) (AL) (36e)

& I(X1;
p
aX1 +

p
aZ) (Lemma 7) (36f)

= I(X1;X1 + Z) = I(X1;Y1) (36g)
& nR1 (see (4a)–(4b)) (36h)

which proves that nR1 . nC
0
1 (cf. (3b)). Notice that we have

used Lemma 7 for u = aN , u0 = N and u
00 = P2+N , in the

form: I(X1;
p
aX1 +X

G
2 + Z) & I(X1;

p
aX1 + Z) implies

I(X1;
p
aX1 + Z) & I(X1;

p
aX1 +

p
aZ).

VIII. CONCLUSION

In this work, a complete determination of corner points
of the capacity region of the two-user Gaussian interference
channel is carried out, using the notions of almost Gaussian
random vectors, almost lossless addition of random vectors,
and almost linearly dependent random vectors. The resulting
proofs use basic properties of Shannon’s information theory.
Interestingly, only weak forms the entropy power inequality
and the concavity of the entropy power are required. This
approach does not aim at finding best possible constants
but yields a rigorous proof for the determination of Costa’s
“missing” corner point which can be thought of as a variation
of the solution of Polyanskiy and Wu which does not recourse
to optimal transport theory nor to estimation theory.
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