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Abstract-Yet another simple proof of the entropy power inequality is given, which avoids both the integration over a path of Gaussian perturbation and the use of Young's inequality with sharp constant or Rényi entropies. The proof is based on a simple change of variables, is formally identical in one and several dimensions, and easily settles the equality case. Index Terms-Entropy power inequality, differential entropy, gaussian variables, optimal transport.

I. INTRODUCTION

T HE entropy power inequality (EPI) was stated by Shannon [START_REF] Shannon | A mathematical theory of communication[END_REF] in the form 

for any independent n-dimensional random vectors X, Y ∈ R n with densities and finite second moments, with equality if and only if X and Y are Gaussian with proportional covariances. Shannon gave an incomplete proof; the first complete proof was given by Stam [START_REF] Stam | Some inequalities satisfied by the quantities of information of Fisher and Shannon[END_REF] using properties of Fisher's information. A detailed version of Stam's proof was given by Blachman [START_REF] Blachman | The convolution inequality for entropy powers[END_REF]. A very different proof was provided by Lieb [START_REF] Lieb | Proof of an entropy conjecture of Wehrl[END_REF] using Young's convolutional inequality with sharp constant. Dembo et al. [START_REF] Dembo | Information theoretic inequalities[END_REF] provided a clear exposition of both Stam's and Lieb's proofs. Carlen and Soffer gave an interesting variation of Stam's proof for one-dimensional variables [START_REF] Carlen | Entropy production by block variable summation and central limit theorems[END_REF]. Szarek and Voiculescu [START_REF] Szarek | Shannon's entropy power inequality via restricted Minkowski sums[END_REF] gave a proof related to Lieb's but based on a variant of the Brunn-Minkowski inequality. Guo et al. [START_REF] Guo | Proof of entropy power inequalities via MMSE[END_REF], Verdú and Guo [START_REF] Verdú | A simple proof of the entropy-power inequality[END_REF] gave another proof based on the I-MMSE relation. A similar proof based on a relation between divergence and causal MMSE was given by Binia [START_REF] Binia | On divergence-power inequalities[END_REF]. Yet another proof based on properties of mutual information was proposed in [START_REF] Rioul | A simple proof of the entropy-power inequality via properties of mutual information[END_REF] and [START_REF] Rioul | Information theoretic proofs of entropy power inequalities[END_REF]. A more involved proof based on a stronger form of the EPI that uses spherically symmetric rearrangements, also related to Young's inequality with sharp constant, was recently given by Wang and Madiman [START_REF] Wang | Beyond the entropy power inequality, via rearrangements[END_REF].

As first noted by Lieb [START_REF] Lieb | Proof of an entropy conjecture of Wehrl[END_REF], the above Shannon's formulation (1) of the EPI is equivalent to

h( √ λX + √ 1 -λ Y ) ≥ λh(X) + (1 -λ)h(Y ) (2) 
for any 0 < λ < 1. All available proofs of the EPI used this form. There are a few technical difficulties for proving (2) which are not always explicitly stated in previous proofs. First of all, one should check that for any random vector X with finite second moments, the differential entropy h(X) is always well-defined-even though it could be equal to -∞. This is a consequence of [12, Proposition 1]; see also Appendix A for a precise statement and proof. Now if both independent random vectors X and Y have densities and finite second moments, so has √ λX + √ 1λ Y and both sides of (2) are well-defined. Moreover, if either h(X) or h(Y ) equals -∞ then (2) is obviously satisfied. Therefore, one can always assume that X and Y have finite differential entropies. 2Another technical difficulty is the requirement for smooth densities. More precisely, as noted in [START_REF] Wang | Beyond the entropy power inequality, via rearrangements[END_REF]Remark 10] some previous proofs use implicitly that for any X with arbitrary density and finite second moments and any Gaussian3 Z independent of X,

lim t ↓0 h(X + √ t Z) = h(X). (3) 
This was proved explicitly in [12, Lemma 3] As a consequence, it is sufficient to prove the EPI for random vectors of the form X + √ t Z (t > 0). Indeed, letting Z be an independent copy of Z such that (Z , Z ) is independent of (X, Y ), the EPI written for

X + √ t Z and Y + √ t Z reads h( √ λX + √ 1 -λ Y + √ t Z ) ≥ λh(X + √ t Z) + (1 -λ)h(Y + √ t Z )
where Z = √ λZ + √ 1λ Z is again identically distributed as Z and Z . Letting t → 0 we obtain the general EPI (2). 4Now, for any random vector X and any t > 0, X + √ t Z has a continuous and positive density. This can be seen using the properties of the characteristic function, similarly as in [12, Lemma 1]; see Appendix B for a precise statement and proof. Therefore, as already noticed in [13, Sec. XI], one can always assume that X and Y have continuous, positive densities.

One is thus led to prove the following version of the EPI.

Theorem (EPI): Let X, Y be independent random vectors with continuous, positive densities and finite differential entropies and second moments. For any 0 < λ < 1,

h( √ λX + √ 1 -λ Y ) ≥ λh(X) + (1 -λ)h(Y ) (2) 
with equality if and only if X, Y are Gaussian with identical covariances.

Previous proofs of (2) can be classified into two categories:

• proofs in [START_REF] Stam | Some inequalities satisfied by the quantities of information of Fisher and Shannon[END_REF], [START_REF] Blachman | The convolution inequality for entropy powers[END_REF], [START_REF] Carlen | Entropy production by block variable summation and central limit theorems[END_REF], and [START_REF] Guo | Proof of entropy power inequalities via MMSE[END_REF]- [START_REF] Rioul | Information theoretic proofs of entropy power inequalities[END_REF] rely on the integration over a path of a continuous Gaussian perturbation of some data processing inequality using either Fisher's information, the minimum mean-squared error (MMSE) or mutual information. As explained in [11, eq. ( 10)], [START_REF] Rioul | Information theoretic proofs of entropy power inequalities[END_REF] and [19, eq. ( 25)], it is interesting to note that in this context, Fisher's information and MMSE are complementary quantities; • proofs in [START_REF] Lieb | Proof of an entropy conjecture of Wehrl[END_REF], [START_REF] Szarek | Shannon's entropy power inequality via restricted Minkowski sums[END_REF], [START_REF] Wang | Beyond the entropy power inequality, via rearrangements[END_REF], and [START_REF] Wang | A new approach to the entropy power inequality, via rearrangements[END_REF] are related to Young's inequality with sharp constant or to an equivalent argumentation using spherically symmetric rearrangements, and/or the consideration of convergence of Rényi entropies. It should also be noted that not all of the available proofs of (2) settle the equality case-that equality in (2) holds only for Gaussian random vectors with identical covariances. Only proofs from the first category using Fisher's information were shown to capture the equality case. This was made explicit by Stam [START_REF] Stam | Some inequalities satisfied by the quantities of information of Fisher and Shannon[END_REF], Carlen and Soffer [START_REF] Carlen | Entropy production by block variable summation and central limit theorems[END_REF] and for more general fractional EPI's by Madiman and Barron [START_REF] Madiman | Generalized entropy power inequalities and monotonicity properties of information[END_REF].

In this paper, a simple proof of the Theorem is given that avoids both the integration over a path of a continuous Gaussian perturbation and the use of Young's inequality, spherically symmetric rearrangements, or Rényi entropies. It is based on a "Gaussian to not Gaussian" lemma proposed in [START_REF] Rioul | On some almost properties[END_REF] and is formally identical in one dimension (n = 1) and in several dimensions (n > 1). It also easily settles the equality case.

II. FROM GAUSSIAN TO NOT GAUSSIAN

The following "Gaussian to not Gaussian" lemma [START_REF] Rioul | On some almost properties[END_REF] will be used here only in the case where X * is a n-variate Gaussian vector, e.g., X * ∼ N (0, I), but holds more generally as X * needs not be Gaussian.

Lemma 1: Let X = (X 1 , . . . , X n ) and X * = (X * 1 , . . . , X * n ) be any two n-dimensional random vectors in R n with continuous, positive densities. There exists a diffeomorphism whose Jacobian matrix is triangular with positive diagonal elements such that X has the same distribution as (X * ).

For completeness we present two proofs in the Appendix. The first proof in Appendix C follows Knöthe [START_REF] Knöthe | Contributions to the theory of convex bodies[END_REF]. The second proof in Appendix D is based on the (multivariate) inverse sampling method.

The essential content of this lemma is well known in the theory of convex bodies [23, p. 126], [START_REF] Giannopoulos | Asymptotic convex geometry: Short overview[END_REF]Th. 3.4], [START_REF] Artstein-Avidan | Asymptotic geometric analysis I[END_REF]Th. 1.3.1] where is known as the Knöthe map between two convex bodies. The difference with Knöthe's map is that in Lemma 1, the determinant of the Jacobian matrix need not be constant. The Knöthe map is also closely related to the so-called Knöthe-Rosenblatt coupling in optimal transport theory [START_REF] Villani | Topics in Optimal Transportation[END_REF], [START_REF] Villani | Optimal transport: Old and new[END_REF], and there is a large literature of optimal transportation arguments for geometric-functional inequalities such as the Brunn-Minkowki, isoperimetric, sharp Young, sharp Sobolev and Prékopa-Leindler inequalities. The Knöthe map was used in the original paper by Knöthe [START_REF] Knöthe | Contributions to the theory of convex bodies[END_REF] to generalize the Brunn-Minkowski inequality, by Gromov in [START_REF] Milman | Asymptotic theory of finite dimensional normed spaces[END_REF]Appendix I] to obtain isoperimetric inequalities on manifolds and by Barthe [START_REF] Barthe | Optimal Young's inequality and its converse: A simple proof[END_REF] to prove the sharp Young's inequality. In a similar vein, other transport maps such as the Brenier map were used in [START_REF] Cordero-Erausquin | A masstransportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities[END_REF] for sharp Sobolev and Gagliardo-Nirenberg inequalities and in [START_REF] Cordero-Erausquin | Prekopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport[END_REF] for a generalized Prékopa-Leindler inequality on manifolds with lower Ricci curvature bounds. Since the present paper was submitted, the Brenier map has also been applied to the stability of the EPI for log-concave densities [START_REF] Courtade | Wasserstein stability of the entropy power inequality for log-concave densities[END_REF]. All the above-mentionned geometric-functional inequalities are known to be closely related to the EPI (see e.g., [START_REF] Dembo | Information theoretic inequalities[END_REF]), and it is perhaps not too surprising to expect a direct proof of the EPI using an optimal transportation argument-namely, Knöthe map-which is what this paper is about. Let be the Jacobian (i.e., the determinant of the Jacobian matrix) of . Since > 0, the usual change of variable formula reads

f (x) dx = f ( (x * )) (x * ) dx * . (4) 
A simple application of this formula gives the following well-known lemma which was used in [START_REF] Rioul | On some almost properties[END_REF].

Lemma 2: For any diffeomorphism with positive Jacobian > 0, if h (X * ) is finite, h (X * ) = h(X * ) + E{log (X * )}. ( 5 
)
The proof is given for completeness.

Proof: Let f (x) be the density of (X * ) so that g(x * ) = f ( (x * )) (x * ) is the density of X * . Then we have f (x) log f (x) dx = f ( (x * )) log f ( (x * )) • (x * )dx * = g(x * ) log g(x * )/ (x * ) dx * which yields [START_REF] Dembo | Information theoretic inequalities[END_REF].

III. PROOF OF THE ENTROPY POWER INEQUALITY

Let X * , Y * be any i.i.d. Gaussian random vectors, e.g., ∼N (0, I). For any 0 < λ < 1, √ λX * + √ 1λ Y * is identically distributed as X * and Y * and, therefore,

h( √ λX * + √ 1 -λ Y * ) = λh(X * ) + (1 -λ)h(Y * ). (6) 
Subtracting both sides from both sides of (2) one is led to prove that

h( √ λX + √ 1 -λ Y ) -h( √ λX * + √ 1 -λ Y * ) ≥ λ h(X) -h(X * ) + (1 -λ) h(Y ) -h(Y * ) . (7) 
Let be as in Lemma 1, so that X has the same distribution as (X * ). Similarly let be such that Y has the same distribution as (Y * ). Since

√ λX + √ 1 -λ Y is identically distributed as √ λ (X * ) + √ 1 -λ (Y * ), h( √ λX + √ 1 -λ Y ) -h( √ λX * + √ 1 -λ Y * ) = h √ λ (X * ) + √ 1 -λ (Y * ) -h( √ λX * + √ 1 -λ Y * ). (8) 
On the other hand, by Lemma 2,

λ h(X) -h(X * ) + (1 -λ) h(Y ) -h(Y * ) = λ h (X * ) -h(X * ) + (1 -λ) h (Y * ) -h(Y * ) = E{λ log (X * ) + (1 -λ) log (Y * )}. (9) 
Thus both sides of ( 7) have been rewritten in terms of the Gaussian X * and Y * . We now compare ( 8) and [START_REF] Verdú | A simple proof of the entropy-power inequality[END_REF]. Toward this aim we make the change of variable (X * , Y * ) → ( X , Ỹ ) where

X = √ λX * + √ 1 -λ Y * Ỹ = - √ 1 -λ X * + √ λY * . ( 10 
)
Again X, Ỹ are i.i.d. Gaussian and

X * = √ λ X - √ 1 -λ Ỹ Y * = √ 1 -λ X + √ λ Ỹ . (11) 
To simplify the notation define

ỹ ( x) = √ λ ( √ λ x - √ 1 -λ ỹ) + √ 1 -λ ( √ 1 -λ x + √ λ ỹ). (12) 
Then (8) becomes

h( √ λX + √ 1 -λ Y ) -h( √ λX * + √ 1 -λ Y * ) = h Ỹ ( X ) -h( X ). (13) 
Here Lemma 2 cannot be applied directly because Ỹ ( X) is not a deterministic function of X. But since conditioning reduces entropy,

h Ỹ ( X ) ≥ h Ỹ ( X ) Ỹ (14) 
Now for fixed ỹ, since and have triangular Jacobian matrices with positive diagonal elements, the Jacobian matrix of ỹ is also triangular with positive diagonal elements. Thus, by Lemma 2,

h Ỹ ( X ) Ỹ = ỹ -h( X ) = E{log ỹ ( X)} ( 15 
)
where ỹ is the Jacobian of the transformation ỹ . Since X and Ỹ are independent, averaging over Ỹ yields

h Ỹ ( X ) Ỹ -h( X ) = E{log Ỹ ( X)}. (16) 
Therefore, by ( 13)-( 14)

h( √ λX + √ 1 -λ Y ) -h( √ λX * + √ 1 -λ Y * ) ≥ E{log Ỹ ( X )}. ( 17 
)
On the other hand, (9) becomes

λ h(X) -h(X * ) + (1 -λ) h(Y ) -h(Y * ) = E{λ log ( √ λ X - √ 1 -λ Ỹ ) (18) 
+ (1 -λ) log ( √ 1 -λ X + √ λ Ỹ )} = n i=1 E λ log ∂ i ∂ x i ( √ λ X - √ 1 -λ Ỹ ) (19) 
+ (1 -λ) log ∂ i ∂y i ( √ 1 -λ X + √ λ Ỹ ) ≤ n i=1 E log λ ∂ i ∂ x i ( √ λ X - √ 1 -λ Ỹ ) (20) 
+ (1 -λ) ∂ i ∂y i ( √ 1 -λ X + √ λ Ỹ ) = n i=1 E log ∂ Ỹ i ∂ xi ( X ) = E log Ỹ ( X ) (21) ≤ h( √ λX + √ 1 -λ Y ) -h( √ λX * + √ 1 -λ Y * ) (22)
where in [START_REF] Wang | A new approach to the entropy power inequality, via rearrangements[END_REF] we have used Jensen's inequality λ log a + (1λ) log b ≤ log(λa + (1λ)b) on each component, in [START_REF] Rioul | On some almost properties[END_REF] the fact that the Jacobian matrix of ỹ is triangular with positive diagonal elements, and ( 22) is ( 17). This proves (2).

IV. THE CASE OF EQUALITY Equality in (2) holds if and only if both ( 14) and ( 20) are equalities. Equality in [START_REF] Wang | A new approach to the entropy power inequality, via rearrangements[END_REF] holds if and only if for all i = 1, 2 . . . , n, 

∂ i ∂ x i (X * ) = ∂ i ∂y i (Y * ) a.e. ( 23 
( X) is independent of Ỹ , thus ỹ ( X ) = ( X)
does not depend on the particular value of ỹ. Thus for all i, j = 1, 2, . . . , n,

0 = ∂( ỹ ( X )) i ∂ ỹ j = - √ λ √ 1 -λ ∂ i ∂ x j ( √ λ X - √ 1 -λ Ỹ ) + √ 1 -λ √ λ ∂ i ∂y j ( √ 1 -λ X + √ λ Ỹ ) (24) 
which implies

∂ i ∂ x j (X * ) = ∂ i ∂y j (Y * ) a.e., (25) 
hence ∂ i ∂ x j and ∂ i ∂y j are constant and equal for any i, j = 1, 2, . . . , n. Therefore, and are linear transformations, equal up to an additive constant. It follows that (X * ) and (Y * ) (hence X and Y ) are Gaussian with identical covariances. This ends the proof of the Theorem.

Extensions of similar ideas when X * , Y * need not be Gaussian can be found in [START_REF] Rioul | Optimal transportation to the entropy-power inequality[END_REF].

APPENDIX A

The differential entropy h(X) =f log f of a random vector X with density f is not always well-defined because the negative and positive parts of the integral might be both infinite, as in the example f (x) = 1/(2x log 2 x) for 0 < x < 1/e and e < x < +∞, and = 0 otherwise [START_REF] Rioul | Information theoretic proofs of entropy power inequalities[END_REF].

Proposition 1: Let X be an random vector with density f and finite second moments. Then h(X) =f log f is welldefined and < +∞.

Proof: Let Z be any Gaussian vector with density g > 0. On one hand, since X has finite second moments, the integral f log g is finite. On the other hand, since g never vanishes, the probability measure of X is absolutely continuous with respect to that of Z . Therefore, the divergence D( f g) is equal to the integral f log( f /g). Since the divergence is non-negative, it follows thatf log f =f log g -D( f g) ≤f log g is well-defined and < +∞ (the positive part of the integral is finite). APPENDIX B It is stated in [33, Appendix II A] that strong smoothness properties of distributions of Y = X + Z for independent Gaussian Z are "very well known in certain mathematical circles" but it seems difficult to find a reference.

The following result is stated for an arbitrary random vector X. It is not required that X have a density. It could instead follow e.g., a discrete distribution.

Proposition 2: Let X be any random vector and Z be any independent Gaussian vector with density g > 0. Then Y = X + Z has a bounded, positive, indefinitely differentiable (hence continuous) density that tends to zero at infinity, whose all derivatives are also bounded and tend to zero at infinity.

Proof:

Taking characteristic functions, E(e it•Y ) = E(e it•X ) • E(e it•Z
), where ĝ(t) = E(e it•Z ) is the Fourier transform of the Gaussian density g. Now ĝ(t) is also a Gaussian function with exponential decay at infinity and

|E(e it•Y )| ≤ |E(e it•X )|•|E(e it•Z )| ≤ E(|e it•X |)|•| ĝ(t)| = | ĝ(t)|.
Therefore, the Fourier transform of the probability measure of Y (which is always continuous) also has exponential decay at infinity. In particular, this Fourier transform is integrable, and by the Riemann-Lebesgue lemma, Y has a bounded continuous density which tends to zero at infinity. Similarly, for any monomial 5 t α , (it) α E(e it•Y ) is integrable and is the Fourier transform of the αth partial derivative of the density of Y , which is, therefore, also bounded continuous and tends to zero at infinity.

It remains to prove that the density of Y is positive. Let Z 1 , Z 2 be independent Gaussian random vectors with density φ equal to that of Z / √ 2 so that Z has the same distribution as Z 1 + Z 2 . By what has just been proved, X + Z 1 follows a continuous density f . Since Y has the same distribution as (X + Z 1 ) + Z 2 , its density is equal to the convolution product f * φ (y) = R φ(z) f (y -z) dz. Now φ is positive, and for any y ∈ R n , R φ(z) f (yz) dz = 0 would imply that f vanishes identically, which is impossible.

APPENDIX C FIRST PROOF OF LEMMA 1

We use the notation f for densities (p.d.f.'s). In the first dimension, for each

x * 1 ∈ R, define 1 (x * 1 ) such that 1 (x * 1 ) -∞ f X 1 = x * 1 -∞ f X * 1 . (26) 
Since the densities are continuous and positive, 1 is continuously differentiable and increasing; differentiating gives

f X 1 ( 1 (x * 1 )) ∂ 1 ∂ x * 1 (x * 1 ) = f X * 1 (x * 1 ) (27 
) 5 Here we use the multi-index notation t α = t

α 1 1 t α 1 1 • • • t αn n .
which proves the result in one dimension: X 1 has the same distribution as 1 (X * 1 ) where

∂ 1 ∂ x * 1 is positive.
In the first two dimensions, for each x

* 1 , x * 2 in R, define 2 (x * 1 , x * 2 ) such that 2 (x * 1 ,x * 2 ) -∞ f X 1 ,X 2 ( 1 (x * 1 ), • ) ∂ 1 ∂ x * 1 (x * 1 ) = x * 2 -∞ f X * 1 ,X * 2 (x * 1 , • ). ( 28 
)
Again 2 is continuously differentiable and increasing in x * 2 ; differentiating gives

f X 1 ,X 2 ( 1 (x * 1 ), 2 (x * 1 , x * 2 )) ∂ 1 ∂ x * 1 (x * 1 ) ∂ 2 ∂ x * 2 (x * 1 , x * 2 ) = f X * 1 ,X * 2 (x * 1 , x * 2 ) (29 
) which proves the result in two dimensions. Continuing in this manner we arrive at

f X 1 ,X 2 ,...,X n ( 1 (x * 1 ), 2 (x * 1 , x * 2 ), . . . , n (x * 1 , x * 2 , . . . , x * n )) × ∂ 1 ∂ x * 1 (x * 1 ) ∂ 2 ∂ x * 2 (x * 1 , x * 2 ) • • • ∂ n ∂ x * n (x * 1 , x * 2 , . . . , x * n ) = f X * 1 ,X * 2 ,...,X * n (x * 1 , x * 2 , . . . , x * n ) (30) 
which shows that X = (X 1 , X 2 , . . . , X n ) has the same distribution as (X * 1 , X * 2 , . . . , X * n ) = 1 (X * 1 ), 2 (X * 1 , X * 2 ), . . . , n (X * 1 , X * 2 , . . . , X * n ) . The Jacobian matrix of has the form 

J (x * 1 , x * 2 , . . . , x * n ) =       ∂ 1 ∂ x * 1 0 • • • 0 ∂ 2 ∂ x * 1 ∂ 2 ∂ x *
∂ n ∂ x * 1 ∂ n ∂ x * 2 • • • ∂ n ∂ x * n       (31) 
where all diagonal elements are positive since by construction each k is increasing in x * k .

APPENDIX D SECOND PROOF OF LEMMA 1

We use the notation F for distribution functions (c.d.f.'s). We also note F X 2 |X 1 (x 2 |x 1 ) = P(X 2 ≤ x 2 | X 1 = x 1 ) and let F -1 X 2 |X 1 (•|x 1 ) be the corresponding inverse function in the argument x 2 for a fixed value of x 1 . Such inverse functions are well-defined since it is assumed that X is a random vector with continuous, positive density.

The inverse transform sampling method is well known for univariate random variables but its multivariate generalization is not.

Lemma 3 (Multivariate Inverse Transform Sampling Method (see, e.g., [START_REF] Caster | Combining second-order belief distributions with qualitative statements in decision analysis[END_REF]Algorithm 2])): Let U = (U 1 , U 2 , . . . , U n ) be uniformly distributed on [0, 1] n . The vector (U ) with components

1 (U 1 ) = F -1 X 1 (U 1 ) 2 (U 1 , U 2 ) = F -1 X 2 |X 1 (U 2 | 1 (U 1 )) . . . n (U 1 , U 2 , . . . , U n ) = F -1
X n |X 1 ,...,X n-1 (U n | 1 (U 1 ), . . . , n-1 (U 1 , . . . , U n-1 )) (32) has the same distribution as X.

e 2 n

 2 h(X +Y ) ≥ e 2 n h(X ) + e 2 n h(Y )

2 • • • 0 .

 20 . . . . . . . . . . . . . . . . . . . .

  1 Proofs of the equivalence can be found in numerous

	papers, e.g., [5, Ths. 4, 6, and 7], [9, Lemma 1], [12, Prop. 2],
	and [14, Th. 2.5].

A nice discussion of general necessary and sufficient conditions for the EPI (1) can be found in [15, Secs. V and VI].

Throughout this paper we assume that Gaussian random vectors are nondegenerate (have non-singular covariance matrices).

[START_REF] Lieb | Proof of an entropy conjecture of Wehrl[END_REF] A similar observation was done in[START_REF] Carlen | Entropy production by block variable summation and central limit theorems[END_REF] in a different context of the Ornstein-Uhlenbeck semigroup (instead of the heat semigroup).
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Proof: By inverting

, it is easily seen that an equivalent statement is that the random vector F X 1 (X 1 ),

Similarly, for any k > 0 and fixed x 1 , . . . ,

The result follows by the chain rule.

Proof of Lemma 1: By Lemma 3, X has the same distribution as (U ), where each k (u 1 , u 2 , . . . , u k ) is increasing in u k . Similarly X * has the same distribution as (U ), where both and have (lower) triangular Jacobian matrices J , J with positive diagonal elements. Then X has the same distribution as ( -1 (X * )). By the chain rule for differentiation, the transformation • -1 has Jacobian matrix

. This product of (lower) triangular matrices with positive diagonal elements and is again (lower) triangular with positive diagonal elements.