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Phase reonstrution of spetrograms with linear unwrapping:appliation to audio signal restorationReonstrution de phases de spetrogrammes par déroulé linéaire :appliation à la restauration de signaux audioPaul Magron Roland Badeau Bertrand DavidInstitut Mines-Téléom, Téléom ParisTeh, CNRS LTCI, Paris, Frane<firstname>.<lastname>�teleom-paristeh.fr ∗AbstratThis paper introdues a novel tehnique for reonstruting the phase of modi�ed spetrograms of audiosignals. From the analysis of mixtures of sinusoids we obtain relationships between phases of suessive timeframes in the Time-Frequeny (TF) domain. To obtain similar relationships over frequenies, in partiularwithin onset frames, we study an impulse model. Instantaneous frequenies and attak times are estimatedloally to enompass the lass of non-stationary signals suh as vibratos. These tehniques ensure boththe vertial oherene of partials (over frequenies) and the horizontal oherene (over time). The methodis tested on a variety of data and demonstrates better performane than traditional onsisteny-based ap-proahes. We also introdue an audio restoration framework and observe that our tehnique outperformstraditional methods. Key wordsPhase reonstrution, sinusoidal modeling, linear unwrapping, phase onsisteny, audio restoration.RésuméCe rapport présente une nouvelle tehnique pour la reonstrution de phases de spetrogrammes modi�és.A partir de l'analyse de mélanges de sinusoïdes, on obtient des relations entre les phases trames suessivesdans le plan temps-fréquene (TF). Pour obtenir des relations similaires entre fréquenes, en partiulier ausein des trames d'attaque, nous étudions un modèle d'impulsion. Les fréquenes instantanées et les tempsd'attaque sont estimés loalement a�n de pouvoir représenter des signaux non stationnaires, tels que lesvibratos. Ces tehniques permettent d'assurer à la fois une ohérene vertiale entre les partiels (à traversles fréquenes) et horizontale (au ours du temps). Cette méthode est testée sur des données expérimentales,et montre de meilleurs résultats que l'approhe traditionnelle basée sur la onsistane. Nous proposonségalement d'introduire ette tehnique dans un ontexte de restauration de signaux audio, dans lequel unemeilleure performane qu'ave les méthodes traditionnelles est observée.Mots lésReonstrution de phase, mélanges de sinusoïdes, déeroulé linéaire, onsistane de phase, restauration designaux audio
∗This work is partly supported by the Frenh National Researh Ageny (ANR) as a part of the EDISON 3D projet (ANR-13-CORD-0008-02). 1



1 IntrodutionA variety of musi signal proessing tehniques at in the TF domain, exploiting the partiular struture ofmusi signals. For instane, the family of tehniques based on Nonnegative Matrix Fatorization (NMF) is oftenapplied to spetrogram-like representations, and has proved to provide a suessful and promising frameworkfor soure separation [1℄. Magnitude-reovery tehniques are also useful for restoring missing data in orruptedsignals [2℄.However, when it omes to resynthesize time signals, the phase reovery of the orresponding Short-TimeFourier Transform (STFT) is neessary. In the soure separation framework, a ommon pratie onsists inapplying Wiener-like �ltering (soft masking of the omplex-valued STFT of the original mixture). When thereis no prior on the phase of a omponent (e.g. in the ontext of audio restoration), a onsisteny-based approahis often used for phase reovery [3℄. That is, a omplex-valued matrix is iteratively omputed to be lose to theSTFT of a time signal. A reent benhmark has been onduted to assess the potential of soure separationmethods with phase reovery in NMF [4℄. It points out that onsisteny-based approahes provide poor resultsin terms of audio quality. Besides, Wiener �ltering fails to provide good results when soures overlap in theTF domain. Thus, phase reovery of modi�ed audio spetrograms is still an open issue. The High ResolutionNMF (HRNMF) model [5℄ has shown to be a promising approah, sine it models a TF mixture as a sum ofautoregressive (AR) omponents in the TF domain, thus dealing expliitly with a phase model.Another approah to reonstrut the phase of a spetrogram is to use a phase model based on the observationof fundamental signals that are mixtures of sinusoids. Contrary to onsisteny-based approahes using theredundany of the STFT, this model exploits the natural relationship between adjaent TF bins due to themodel. This approah is used in the phase vooder algorithm [6℄, although it is mainly dediated to timestrething and pith modi�ation of signals, and it requires the phase of the original STFT. More reently, [7℄proposed a omplex NMF framework with phase onstraints based on sinusoidal modeling. Although promising,this approah is limited to harmoni and stationary signals, and requires prior knowledge on fundamentalfrequenies and numbers of partials.In this paper, we propose a generalization of this approah that onsists in estimating the phase �eld ofmixtures of sinusoids from its expliit alulation. We then obtain an algorithm whih unwraps the phaseshorizontally (over time frames) to ensure the temporal oherene of the signal, and vertially (over frequenyhannels) to enfore spetral oherene between partials, whih are naturally observed in musial aoustis. Ourtehnique is suitable for a variety of pithed musi signals, suh as piano or guitar sounds. A dynami estimation(at eah time frame) of instantaneous frequenies extends the validity of this tehnique to non-stationary signalssuh as ellos and speeh. This tehnique is tested on a variety of signals and integrated in an audio restorationframework.The paper is organized as follows. Setion 2 presents the horizontal phase unwrapping model. Setion 3 isdediated to phase reonstrution on onset frames. Setion 4 presents a performane evaluation of this tehniquethrough various experiments. Setion 5 introdues an audio restoration framework using this phase reoverymethod. Finally, setion 6 draws some onluding remarks.2 Horizontal phase reonstrution2.1 Sinusoidal modelingLet us onsider a sinusoid of normalized frequeny f0 ∈ [− 1
2 ;

1
2 ], origin phase φ0 ∈ [−π;π] and amplitude A > 0:

∀n ∈ Z, x(n) = Ae2iπf0n+iφ0 . (1)The expression of the STFT is, for eah frequeny hannel k ∈ J−F−1
2 ; F−1

2 K (with F the odd-valued Fouriertransform length) and time frame t ∈ Z:
X(k, t) =

N−1
∑

n=0

x(n+ tS)w(n)e−2iπ k

F
n (2)
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where w is a N sample-long analysis window and S is the time shift (in samples) between suessive frames. Let
W (f) =

∑N−1
n=0 w(n)e−2iπfn be the disrete time Fourier transform of the analysis window for eah normalizedfrequeny f ∈ [− 1

2 ;
1
2 ]. Then the STFT of the sinusoid (1) is:

X(k, t) = Ae2iπf0St+iφ0W

(

k

F
− f0

)

. (3)The unwrapped phase of the STFT is then:
φ(k, t) = φ0 + 2πSf0t+ ∠W

(

k

F
− f0

) (4)where ∠z denotes the argument of the omplex number z. This leads to a relationship between two suessivetime frames:
φ(k, t) = φ(k, t− 1) + 2πSf0. (5)More generally, we an ompute the phase of the STFT of a frequeny-modulated sinusoid. If the frequenyvariation is low between two suessive time frames, we an generalize the previous equation:

φ(k, t) = φ(k, t− 1) + 2πSf0(t). (6)Instantaneous frequeny must then be estimated at eah time frame to enompass variable frequeny signalssuh as vibratos, whih ommonly our in musi signals (singing voie or ello signals for instane).2.2 Instantaneous frequeny estimationQuadrati interpolation FFT (QIFFT) is a powerful tool for estimating the instantaneous frequeny near amagnitude peak in the spetrum [8℄. It onsists in approximating the shape of a spetrum near a magnitudepeak by a parabola. This paraboli approximation is justi�ed theoretially for Gaussian analysis windows, andused in pratial appliations for any window type. The omputation of the maximum of the parabola leads tothe instantaneous frequeny estimate. Note that this tehnique is suitable for signals where only one sinusoidis ative per frequeny hannel.The frequeny bias of this method an be redued by inreasing the zero-padding fator [9℄. For a Hannwindow without zero-padding, the frequeny estimation error is less than 1 %, whih is hardly pereptible inmost musi appliations aording to the authors.2.3 Regions of in�ueneWhen the mixture is omposed of one sinusoid, the phase must be unwrapped in all frequeny hannels aordingto (5) using the instantaneous frequeny f0. When there is more than one sinusoid, frequeny estimation isperformed near eah magnitude peak. Then, the whole frequeny range must be deomposed in several regions(regions of in�uene [6℄) to ensure that the phase in a given frequeny hannel is unwrapped with the appropriateinstantaneous frequeny.At time frame t, we onsider a magnitude peak Ap in hannel kp. The magnitudes (resp. the frequenyhannels) of neighboring peaks are denoted Ap−1 and Ap+1 (resp. kp−1 and kp+1). We de�ne the region ofin�uene Ip of the p-th peak as follows:
Ip =

[

Apkp−1 +Ap−1kp

Ap +Ap−1
;
Apkp+1 +Ap+1kp

Ap +Ap+1

]

. (7)The greater Ap is relatively to Ap−1 and Ap+1, the wider Ip is. Note that other de�nitions of regions ofin�uene exist, suh as hoosing the limit between two peaks as the hannel of lowest energy [6℄.
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3 Onset phase reonstrution3.1 Impulse modelImpulse signals are useful to obtain a relationship between phases over frequenies (vertial unwrapping) [10℄.Although they do not aurately model attak sounds, they provide simple equations that an be furtherimproved for more omplex signals. The model is:
∀n ∈ Z, x(n) = Aδn−n0

(8)where δ is equal to one if n = n0 (the so-alled attak time) and zero elsewhere and A > 0 is the amplitude. ItsSTFT is equal to zero exept within attak frames:
X(k, t) = Aw(n0 − St)e−2iπ k

F
(n0−St). (9)We an then obtain a relationship between the phases of two suessive frequeny hannels within an onsetframe, assuming that w ≥ 0:

φ(k, t) = φ(k − 1, t)−
2π

F
(n0 − St). (10)The similarity between (10) and (5) was expeted beause the impulse is the dual of the sinusoid in the TFdomain. This omparison naturally leads to estimating parameter n0 (the "instantaneous" attak time) in eahfrequeny hannel as we previously estimated f0 (the instantaneous frequeny) in eah time frame (f. equation(6)). This leads to the following vertial unwrapping equation:

φ(k, t) = φ(k − 1, t)−
2π

F
(n0(k)− St). (11)3.2 Attak time estimationIn order to estimate n0(k), we look at the magnitude of the STFT of the impulse in a frequeny hannel k:

|X(k, t)| = Aw(n0(k)− St). (12)We then hoose n0 suh that the STFT magnitude of the impulse over onset frames has a shape similar tothat of the analysis window. For instane, a least-squares estimation method an be used. Syntheti mixturesof impulses are perfetly reonstruted with this tehnique. Alternatively, we an also estimate n0(k) with atemporal QIFFT and update the phase with (11).4 Experimental evaluation4.1 Protool and datasetsThe MATLAB Tempogram Toolbox [11℄ provides a fast and reliable onset frames detetion from spetrograms.We use several datasets in our experiments:A: 30 mixtures of piano notes from the Midi Aligned Piano Sounds (MAPS) database [12℄,B: 30 piano piees from the MAPS database,C: 12 string quartets from the SCore Informed Soure Separation DataBase (SCISSDB) [13℄,D: 40 speeh exerpts from the Computational Hearing in Multisoure Environments (CHiME) database [14℄.The data is sampled at Fs = 11025 Hz and the STFT is omputed with a 512 sample-long Hann windowand 75 % overlap. The Signal to Distortion Ratio (SDR) is used for performane measurement. It is omputedwith the BSS Eval toolbox [15℄ and expressed in dB. The popular onsisteny-based Gri�n and Lim (GL)algorithm [3℄ is also used as a referene. We run 200 iterations of this algorithm (performane is not furtherimproved beyond). It is initialized with known phase values if any or random values if not, and results areaveraged on 30 initializations. Simulations are run on a 3.60GHz CPU proessor and 16Go RAM omputer.4
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phase vocoder
QIFFTFigure 4.1: Spetrogram of a mixture with vibrato (left) and instantaneous frequenies in the 2800 Hz hannel(right)Dataset Error GL PUA 0.38 −6.9 2.5B 0.36 −12.6 1.7C 0.41 −9.7 5.3D 0.52 −0.4 0.5Table 1: Frequeny estimation error (%) and reonstrution performane (SDR in dB) for various audiodatasets4.2 Horizontal phase reonstrutionA �rst experiment onsists in estimating instantaneous frequenies on syntheti mixtures of damped sinusoids,whih parameters (in partiular the frequenies) are user-de�ned. Frequeny estimation error with QIFFT isbelow the threshold of 0.2 %, ommonly referred to as the maximal human auditory resolution.Figure 4.1 illustrates the instantaneous frequenies estimated with the phase vooder tehnique [6℄, used asa referene, and with our algorithm on a vibrato. Idential results are obtained. Our method is thus suitable forestimating variable instantaneous frequeny signals as well as stationary omponents. We omputed the averagefrequeny error between phase vooder and QIFFT estimates for the datasets presented in setion 4.1. Theresults presented in the �rst olumn of Table 1 on�rm that QIFFT provides an aurate frequeny estimation.Table 1 also presents reonstrution performane (assuming onset phases are known) for both Gri�n andLim (GL) and our Phase Unwrapping (PU) algorithms. Our approah signi�antly outperforms the traditionalGL method: both stationary and variable frequeny signals are reonstruted aurately. In addition, ouralgorithm is faster than the GL tehnique: on a 3min 48s piano piee, the reonstrution is performed in 18swith our approah and in 623s with GL algorithm.4.3 Onset phase reonstrutionOnset phases an be reonstruted with n0-estimation using the impulse magnitude (PU-Impulse) or withQIFFT (PU-QIFFT). We also test random phases values (PU-Rand, no vertial oherene), zero phases(PU-0, partials in phase) and alternating partial phases between 0 and π (PU-Alt, phase-opposed partials).These hoies are justi�ed by the observation of the relationship between partials in musial aoustis [16℄. Thephase of the partials is then fully reovered with horizontal unwrapping. We test these methods on dataset A.Results presented in Table 2 show that all our approahes provide better results than GL algorithm on this lassof signals. Onset phase unwrapping with n0-estimation based on QIFFT provides the best result, ensuring someform of vertial oherene. In partiular, we pereptually observe that this approah provides a neat perussiveattak. 5



Method SDR (dB)GL −7.9PU-Impulse −4.0PU-QIFFT −2.6PU-Rand −4.3PU-0 −4.7PU-Alt −3.5Table 2: Signal reonstrution performane of di�erent methods on dataset A
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Phase unwrapping
GriffinLim
Corrupted

Figure 4.2: Reonstrution performane of di�erent methods and perentages of orruption on dataset A4.4 Complete phase reonstrutionWe onsider unaltered magnitude spetrograms from dataset A. A variable perentage of the STFT phases israndomly orrupted. We evaluate the performane of our algorithm to restore the phase both on onset andnon-onset frames.Figure 4.2 on�rms the potential of this tehnique. Our method produed an average inrease in SDR of
6dB over the orrupted data. It also performs better than the GL algorithm when a high perentage of theSTFT phases must be reovered.However, note that this experiment onsists in phase reonstrution of onsistent spetrograms (i.e positivematries that are the magnitude of the STFT of a time signal): GL algorithm is then naturally advantaged inthis ase. Realisti appliations (f. next setion) involve the restoration of both phase and magnitude, whihleads to inonsistent spetrograms.The goal of audio inpainting is to restore orrupted or missing value of a signal. Sine orruption an bedone in the temporal domain or in the TF domain, we will study those two approahes.First, we will partially reover phase from a onsistent spetrogram (the STFT magnitude is not modi�ed).Seondly, we will reonstrut whole parts of STFT (both magnitude and spetrogram). Finally, a time signalis orrupted with liks and we ompare restoration with a temporal method, our approah, and HR NMFalgorithm [5℄.5 Appliation of phase reonstrution to audio restoration%subsetionTemporal orruption: lik removalA ommon alteration of musi signals is the presene of noise on short time periods (a few samples) alledliks. We orrupt time signals with liks that represent less than 1 % of the total duration. Cliks are obtainedby di�erentiating a 10 sample-long Hann window.Magnitude restoration of missing bins is performed by linear interpolation of the log-magnitudes in eahfrequeny hannel. Figure 5.1 illustrates this tehnique. Phase reovery is then performed with our method6



Time (s)

F
re

qu
en

cy
 (

H
z)

0 1 2

1000

2000

3000

4000

5000

Time (s)
0 1 2

1000

2000

3000

4000

5000

Time (s)
0 1 2

1000

2000

3000

4000

5000

Figure 5.1: Restoration of spetrogram by linear interpolation of the log-magnitudes on a piano notesDataset AR HRNMF GL PUA 11.4 16.9 8.6 11.7B 4.3 10.9 5.9 7.1C 8.2 10.6 6.6 7.1D 8.3 10.9 8.9 9.4Table 3: Signal restoration performane (SDR in dB) for various methods and datasets(PU) or alternatively with the GL algorithm. We ompare those results to the traditional restoration methodbased on autoregressive (AR) modeling of the time signal [18℄, and with HRNMF [5℄.Table 3 presents results of restoration. HRNMF provides the best results in terms of SDR. Though, ourapproah outperforms the traditional method and GL algorithm. Besides, we underline that the HRNMF modeluses the phase of the non-orrupted bins, while our algorithm is blind. Lastly, our tehnique remains fasterthan HRNMF: for a 3min55s piano piee, restoration is performed in 99s with our algorithm and in 222s withHRNMF.6 ConlusionThe new phase reonstrution tehnique introdued in this work appears to be an e�ient and promisingmethod. The analysis of mixtures of sinusoids leads to relationships between suessive TF bins phases. Physialparameters suh as instantaneous frequenies and attak times are estimated dynamially, enompassing avariety of signals suh as piano and ellos sounds. The phase is then unwrapped in all frequeny hannelsfor onset frames and over time for partials. Experiments have demonstrated the auray of the unwrappingmethod, and we integrated it in an audio restoration framework. Better results than with traditional methodshave been reahed.The reonstrution of onset frames still needs to be improved as suggested by the variety of data. Furtherwork will fous on exploiting known phase data for reonstrution: missing bins an be inferred from observedphase values. Alternatively, time-invariant parameters suh as phase o�sets between partials [19℄ an be used.Suh developments will be introdued in an audio soure separation framework, where the phase of the mixturean be exploited.
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