

Institut Mines-Télécom

Defining Perceived Information based on Shannon's Communication Theory

Cryptarchi 2016 June 21-24, 2016 La Grande Motte, France

Eloi de Chérisey, Sylvain Guilley, Olivier Rioul & Annelie Heuser Télécom ParisTech, Université Paris-Saclay, France.

Contents

Introduction

Motivation Assumptions and Notations

How to Define Perceived Information?

Markov Chain From MAP to PI

Application of Shannon's Theory

Minimum Number of Traces Worst Possible Case for Designers Link with Perceived Information

Conclusion

Introduction

Motivation Assumptions and Notations

How to Define Perceived Information?

Markov Chain From MAP to PI

Application of Shannon's Theory

Minimum Number of Traces Worst Possible Case for Designers Link with Perceived Information

Conclusion

Motivation

- Consolidate the state of the art about Perceived Information (PI) metrics;
- Continue the work of Annelie Heuser presented last year at CryptArchi;
- Establish clear and coherent definitions for PI based on optimal distinguishers and Shannon's theory;

Motivation

- Consolidate the state of the art about Perceived Information (PI) metrics;
- Continue the work of Annelie Heuser presented last year at CryptArchi;
- Establish clear and coherent definitions for PI based on optimal distinguishers and Shannon's theory;
- Deduce tests in order to evaluate the success of an attack;

Motivation

- Consolidate the state of the art about Perceived Information (PI) metrics;
- Continue the work of Annelie Heuser presented last year at CryptArchi;
- Establish clear and coherent definitions for PI based on optimal distinguishers and Shannon's theory;
- Deduce **tests** in order to evaluate the success of an attack;
- Introduce communication channels in Side-Channel Analysis (SCA).
- Is Shannon's channel capacity useful in SCA?

Assumptions and Notations

What is an attack?

Two phases: *profiling* phase & *attacking* phase.

Assumptions and Notations

What is an attack?

- Two phases: *profiling* phase & *attacking* phase.
- Profiling phase: secret key k̂ is known. A vector of q̂ textbytes t̂ is given and q̂ traces x̂ are measured;
- Attacking phase: secret key k̃ is unknown. A vector of q̃ textbytes t̃ is given and q̃ traces x̃ are measured;

Assumptions and Notations

What is an attack?

- Two phases: *profiling* phase & *attacking* phase.
- Profiling phase: secret key k̂ is known. A vector of q̂ textbytes t̂ is given and q̂ traces x̂ are measured;
- Attacking phase: secret key k̃ is unknown. A vector of q̃ textbytes t̃ is given and q̃ traces x̃ are measured;
- The leakages follow some **unknown** distribution P;
- **Estimate** \mathbb{P} based on either $\hat{\mathbf{x}}, \hat{\mathbf{t}}$ or $\tilde{\mathbf{x}}, \tilde{\mathbf{t}}$.

Assumptions and Notations (Cont'd)

Consider the following sets and variables.

- $\hat{\mathcal{X}} \text{ and } \tilde{\mathcal{X}} \text{ for } \hat{x} \text{ and } \tilde{x}.$
- $\quad \blacksquare \ \hat{\mathcal{T}} \text{ and } \tilde{\mathcal{T}} \text{ for } \hat{t} \text{ and } \tilde{t}.$

Assumptions and Notations (Cont'd)

Consider the following sets and variables.

- $\hat{\mathcal{X}} \text{ and } \tilde{\mathcal{X}} \text{ for } \hat{x} \text{ and } \tilde{x}.$
- $\quad \blacksquare \ \hat{\mathcal{T}} \text{ and } \tilde{\mathcal{T}} \text{ for } \hat{t} \text{ and } \tilde{t}.$
- **Random variable** \hat{X} , \tilde{X} , \hat{T} and \tilde{T} .
- **Random vectors** $\hat{\mathbf{X}}$, $\tilde{\mathbf{X}}$, $\hat{\mathbf{T}}$ and $\tilde{\mathbf{T}}$.
- Generic notation x (either profiling or attacking)

Recall our notational conventions:

- profiling phase with a hat $\hat{\bullet}$.
- attacking phase with a tilde $\tilde{\bullet}.$

Leakage Equivalent Flow-Graph

Markov Chain

We have the following Markov Chain given $\ensuremath{\mathbf{T}}$:

$$K \longrightarrow \mathbf{Y} \longrightarrow \mathbf{X} \longrightarrow \bar{K}$$

The attacker receives X.

Estimations of the Probability Distribution $\mathbb P$

Definition (Profiled Estimation: OffLine)

$$\forall x, t \quad \hat{\mathbb{P}}(x, t) = \frac{1}{\hat{q}} \sum_{i=1}^{\hat{q}} \mathbb{1}_{\hat{x}_i = x, \hat{t}_i = t}$$
(1)

Estimations of the Probability Distribution $\mathbb P$

Definition (Profiled Estimation: OffLine)

$$\forall x, t \quad \hat{\mathbb{P}}(x, t) = \frac{1}{\hat{q}} \sum_{i=1}^{\hat{q}} \mathbb{1}_{\hat{x}_i = x, \hat{t}_i = t}$$
(1)

Definition (On-the-fly Estimation: OnLine)

$$\forall x, t \quad \tilde{\mathbb{P}}(x, t) = \frac{1}{\tilde{q}} \sum_{i=1}^{\tilde{q}} \mathbb{1}_{\tilde{x}_i = x, \tilde{t}_i = t}$$

(2)

Optimal Distinguisher

Theorem (Optimal Distinguisher)

The optimal distinguisher [2] is the maximum a posteriori (MAP) distinguisher defined by

$$\mathcal{D}_{\mathsf{Opt}}(\tilde{\mathbf{x}}, \tilde{\mathbf{t}}) = \arg \max \mathbb{P}(k | \tilde{\mathbf{x}}, \tilde{\mathbf{t}})$$
(3)

Optimal Distinguisher

Theorem (Optimal Distinguisher)

The optimal distinguisher [2] is the maximum a posteriori (MAP) distinguisher defined by

$$\mathcal{D}_{\mathsf{Opt}}(\tilde{\mathbf{x}}, \tilde{\mathbf{t}}) = \arg \max \mathbb{P}(k | \tilde{\mathbf{x}}, \tilde{\mathbf{t}})$$
 (3)

As $\mathbb P$ is unknown, we may replace it by $\hat{\mathbb P}$ in the distinguisher :

$$\mathcal{D}(\tilde{\mathbf{x}}, \tilde{\mathbf{t}}) = \arg \max \hat{\mathbb{P}}(k | \tilde{\mathbf{x}}, \tilde{\mathbf{t}})$$
(4)

Contents

Introduction

Motivation Assumptions and Notations

How to Define Perceived Information?

Markov Chain From MAP to PI

Application of Shannon's Theory

Minimum Number of Traces Worst Possible Case for Designers Link with Perceived Information

Conclusion

SCA Seen as a Markov Chain

Theorem (SCA as a Markov Chain)

The following is a Markov Chain:

$$(K,\mathbf{T})\longrightarrow (\mathbf{Y},\mathbf{T})\longrightarrow (\mathbf{X},\mathbf{T})\longrightarrow (\bar{K},\mathbf{T})$$

In other words: as T is known everywhere we can put it at every stage. Therefore, Mutual Information I(K, T; X, T) is a relevant quantity.

Mutual Information

Theorem (i.i.d. Channel)

For an i.i.d. channel, we have:

$$I(K, \mathbf{T}; \mathbf{X}, \mathbf{T}) = q \cdot I(K, T; X, T)$$
(5)

The relevant quantity becomes I(K,T;X,T).

Proof.

Using independence,

$$\begin{split} I(K,\mathbf{T};\mathbf{X},\mathbf{T}) &= H(\mathbf{X},\mathbf{T}) - H(\mathbf{X},\mathbf{T}|K,\mathbf{T}) \\ &= q \cdot H(X,T) - H(\mathbf{X}|K,\mathbf{T}) \\ &= q \cdot H(X,T) - qH(X|K,T) \\ &= q \cdot I(K,T;X,T) \end{split}$$

The Role of Perceived Information

Mutual Information I(K, T; X, T) is important in order to evaluate the attack. We have:

$$I(K,T;X,T) = \underbrace{H(K,T)}_{=H(K)+H(T)} - \underbrace{H(K,T|X,T)}_{=H(K|X,T)}$$
(6)

The Role of Perceived Information

Mutual Information I(K, T; X, T) is important in order to evaluate the attack. We have:

$$I(K,T;X,T) = \underbrace{H(K,T)}_{=H(K)+H(T)} - \underbrace{H(K,T|X,T)}_{=H(K|X,T)}$$
(6)

giving

$$I(K,T;X,T) = H(K) + H(T) - \sum_{k} \mathbb{P}(k) \sum_{t} \mathbb{P}(t) \sum_{x} \mathbb{P}(x|k,t) \log \mathbb{P}(k|x,t)$$
(7)

The Role of Perceived Information (Cont'd)

Issues

- $\blacksquare \mathbb{P}(k|x,t) \text{ is unknown!}$
- It has to be estimated: $\hat{\mathbb{P}}$ and $\tilde{\mathbb{P}}$.
- How to use $\hat{\mathbb{P}}$ and $\tilde{\mathbb{P}}$ in order to estimate the Mutual Information?

The Role of Perceived Information (Cont'd)

Issues

- $\blacksquare \mathbb{P}(k|x,t) \text{ is unknown!}$
- It has to be estimated: $\hat{\mathbb{P}}$ and $\tilde{\mathbb{P}}$.
- How to use $\hat{\mathbb{P}}$ and $\tilde{\mathbb{P}}$ in order to estimate the Mutual Information?

Answer

We define the **Perceived Information** as the estimation of Mutual Information using the MAP distinguisher.

Deriving the Perceived Information

The MAP distinguishing rule is given by $MAP = \arg \max \hat{\mathbb{P}}(k|\tilde{\mathbf{x}}, \tilde{\mathbf{t}})$ $= \arg \max \prod \hat{\mathbb{P}}(k|x_i, t_i)$ i=1 $= \arg \max \prod \hat{\mathbb{P}}(k|x,t)^{\tilde{n}_{x,t}}$ r t $= \arg \max \sum \tilde{\mathbb{P}}(x,t|k) \log \hat{\mathbb{P}}(k|x,t)$ x.t $= \arg \max \sum_{i} \tilde{\mathbb{P}}(t|k) \sum_{i} \tilde{\mathbb{P}}(x|k,t) \log \hat{\mathbb{P}}(k|x,t)$

The Role of Perceived Information (Cont'd)

One obtains

$$\mathsf{MAP} = \arg\max\sum_{t} \tilde{\mathbb{P}}(t|k) \sum_{x} \tilde{\mathbb{P}}(x|k,t) \log \hat{\mathbb{P}}(k|x,t)$$
(8)

Summing over $\mathbb{P}(k)$ and adding H(K)+H(T) yields the form

$$H(K) + H(T) + \sum_{k} \mathbb{P}(k) \sum_{t} \tilde{\mathbb{P}}(t) \sum_{x} \tilde{\mathbb{P}}(x|k,t) \log \hat{\mathbb{P}}(k|x,t)$$

The Role of Perceived Information (Cont'd)

One obtains

$$\mathsf{MAP} = \arg\max\sum_{t} \tilde{\mathbb{P}}(t|k) \sum_{x} \tilde{\mathbb{P}}(x|k,t) \log \hat{\mathbb{P}}(k|x,t)$$
(8)

Summing over $\mathbb{P}(k)$ and adding H(K) + H(T) yields the form

$$H(K) + H(T) + \sum_{k} \mathbb{P}(k) \sum_{t} \tilde{\mathbb{P}}(t) \sum_{x} \tilde{\mathbb{P}}(x|k,t) \log \hat{\mathbb{P}}(k|x,t)$$

To be compared with MI:

$$H(K) + H(T) + \sum_{k} \mathbb{P}(k) \sum_{t} \mathbb{P}(t) \sum_{x} \mathbb{P}(x|k,t) \log \mathbb{P}(k|x,t)$$

Definition of Perceived Information

This leads to the following definition.

Definition (Perceived Information)

$$PI(K,T;X,T) = H(K) + H(T) + \sum_{k} \mathbb{P}(k) \sum_{t} \tilde{\mathbb{P}}(t) \sum_{x} \tilde{\mathbb{P}}(x|k,t) \log \hat{\mathbb{P}}(k|x,t)$$
(9)

Interpretation of PI

Interpretation

We defined PI under the prism of Mutual Information estimation, with the MAP distinguisher base for the estimated distributions.

PI has been first proposed by[1] in order to check if the estimated distribution of a chip is relevent or not. They tested $\hat{\mathbb{P}}$ under $\mathbb{P} \to \sum_k \mathbb{P}(k) \sum_t \mathbb{P}(t) \sum_x \mathbb{P}(x|k,t) \log \hat{\mathbb{P}}(k|x,t)$. In our case, we test $\hat{\mathbb{P}}$ under $\tilde{\mathbb{P}} \to \text{Eq. 9}$, meaning that we define PI as a way to check whether online and offline distributions are coherent. We have chosen this particular Mutual Information I(K,T;X,T) as it will be very usefull for the next computations.

Contents

Introduction

Motivation

Assumptions and Notations

How to Define Perceived Information?

Markov Chain From MAP to PI

Application of Shannon's Theory

Minimum Number of Traces Worst Possible Case for Designers Link with Perceived Information

Conclusion

A Lower Bound

Consider the Markov Chain defined earlier:

$$(K,\mathbf{T})\longrightarrow (\mathbf{Y},\mathbf{T})\longrightarrow (\mathbf{X},\mathbf{T})\longrightarrow (\bar{K},\mathbf{T})$$

Theorem (Minimum Number of Traces)

With such a Markov Chain, we have the universal inequality

$$q \ge \frac{n\mathbb{P}_s - H_2(\mathbb{P}_s)}{I(X;Y|T)} \tag{10}$$

This inequation is true whatever the attack and the leakage. In fact, it is a weak inequality, but is gives the minimum nuber of traces to have a chance to reach a certain success.

Sketch of Proof

By the Data Processing Inequality (DPI) in Information Theory: $I(K,{\bf T};\bar{K},{\bf T})\leq I({\bf Y},{\bf T};{\bf X},{\bf T})$

The l.h.s. in the DPI takes the form

$$\begin{split} I(K,\mathbf{T};\bar{K},\mathbf{T}) &= H(K,\mathbf{T}) - H(K,\mathbf{T}|\bar{K},\mathbf{T}) \\ &= H(K) + q \cdot H(T) - H(K|\bar{K},\mathbf{T}) \\ &\geq H(K) + q \cdot H(T) - H(K|\bar{K}) \end{split}$$

By the information -theoretic inequality of Fano, we get:

 $I(K, \mathbf{T}; \bar{K}, \mathbf{T}) \ge H(K) + qH(T) - n(1 - \mathbb{P}_s) - H_2(\mathbb{P}_s)$

Where \mathbb{P}_s is the probability of success : $\mathbb{P}_s = \mathbb{P}(K = \bar{K})$.

Sketch of Proof (Cont'd)

The r.h.s. in the DPI takes the form

$$\begin{split} I(\mathbf{Y}, \mathbf{T}; \mathbf{X}, \mathbf{T}) &= q \cdot I(Y, T; X, T) \\ &= q \cdot (H(Y, T) - H(Y, T | X, T)) \\ &= q \cdot (H(T) + H(Y | T) - H(T | X, T) - H(Y | X, T)) \\ &= q \cdot (H(T) + I(X; Y | T)) \end{split}$$

Combining we obtain:

$$H(K) + qH(T) - n(1 - \mathbb{P}_s) - H_2(\mathbb{P}_s) \le q(H(T) + I(X; Y|T))$$

where H(K) = n for equiprobable keys. This proves the theorem

AWGN Case

We consider an Additive White Gaussian Noise N such that X = Y + N.

Theorem (Highest Mutual Information)

We show that:

$$\max_{T-Y-X} I(X;Y|T) = \max_{Y} I(X;Y) = \frac{1}{2} \log_2(1 + \mathsf{SNR})$$
(11)

Therefore, according to Eq. 10, in order to reach a full success rate ($\mathbb{P}_s = 1$), the attacker needs to get at least $q \ge \frac{2n}{\log_2(1+\text{SNR})}$ traces.

Link With Channel Capacity

Definition (Channel Capacity)

We can define the Channel Capacity by:

$$C = \max_{Y} I(X;Y) \tag{12}$$

As we saw earlier, in the case of an AWGN, the capacity of the channel is $C = \frac{1}{2} \log_2(1 + \text{SNR})$.

Protection Rule

In order to protect hardwares from leakages, according to Eq. 10, we have to ensure that C is as small as possible and therefore SNR **as small as possible**.

Link With Perceived Information

We now consider the worst possible case for the attacker: no model! Therefore, Y = K, T. The Mutual Information I(X;Y|T) becomes I(X;K,T|T).

Link With Perceived Information

We now consider the worst possible case for the attacker: no model! Therefore, Y = K, T. The Mutual Information I(X;Y|T) becomes I(X;K,T|T).

$$\begin{split} I(X;K,T|T) &= H(K,T|T) - H(K,T|X,T) \\ &= H(K) - H(K|X,T) \\ &= I(K,T;X,T) - H(T) \\ &= H(K) + \sum_k \mathbb{P}(k) \sum_t \mathbb{P}(t) \sum_x \mathbb{P}(x|k,t) \log \mathbb{P}(k|x,t) \end{split}$$

Including PI

Once again, I(X; K, T|T) is unknown. We use the PI estimation defined in Eq. 9

Inequality With PI

Estimation of I(X;Y|T)

The estimation of I(X; K, T|T) is:

$$H(K) + \sum_{k} \mathbb{P}(k) \sum_{t} \tilde{\mathbb{P}}(t) \sum_{x} \tilde{\mathbb{P}}(x|k,t) \log \hat{\mathbb{P}}(k|x,t) = PI(K,T;X,T) - H(T)$$
(13)

Now, rewriting Eq. 10 with the estimation:

$$q_{\mathsf{est}} \geq \frac{n\mathbb{P}_s - H_2(\mathbb{P}_s)}{PI(K,T;X,T) - H(T)}$$

If $PI(K,T;X,T) - H(T) \le 0$, it means that PI is not a correct estimation of MI. Calculations are not relevant in this case.

Contents

Introduction

Motivation

Assumptions and Notations

How to Define Perceived Information?

Markov Chain From MAP to PI

Application of Shannon's Theory

Minimum Number of Traces Worst Possible Case for Designers Link with Perceived Information

Conclusion

Conclusion

- A coherent definition of PI.
- SCA seen as a Markov Chain structure.
- Lower bounds of the number of traces Shannon limit.
- Implication with PI.

Questions?

eloi.de-cherisey@mines-telecom.fr

30 June 21-24, 2016

Télécom ParisTech

Defining PI Thanks to Shannon

References I

 François Durvaux, François-Xavier Standaert, and Nicolas Veyrat-Charvillon.
 How to Certify the Leakage of a Chip?
 In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.
 Proceedings, volume 8441 of Lecture Notes in Computer Science, pages 459–476. Springer, 2014.

References II

Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good Is Not Good Enough - Deriving Optimal Distinguishers from Communication Theory.

In Lejla Batina and Matthew Robshaw, editors, *Cryptographic* Hardware and Embedded Systems - CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture Notes in Computer Science, pages 55–74. Springer, 2014.

