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Sequential Decision Algorithms for
Measurement-Based Impromptu Deployment
of a Wireless Relay Network Along a Line

Arpan Chattopadhyay, Marceau Coupechoux, and Anurag Kumar, Fellow, IEEE

Abstract—We are motivated by the need, in some applications,
for impromptu or as-you-go deployment of wireless sensor net-
works. A person walks along a line, starting from a sink node
(e.g., a base-station), and proceeds towards a source node (e.g., a
sensor) which is at an a priori unknown location. At equally spaced
locations, he makes link quality measurements to the previous
relay, and deploys relays at some of these locations, with the aim
to connect the source to the sink by a multihop wireless path. In
this paper, we consider two approaches for impromptu deploy-
ment: (i) the deployment agent can only move forward (which
we call a pure as-you-go approach), and (ii) the deployment agent
can make measurements over several consecutive steps before
selecting a placement location among them (the explore-forward
approach). We consider a very light traffic regime, and formulate
the problem as a Markov decision process, where the trade-off
is among the power used by the nodes, the outage probabilities
in the links, and the number of relays placed per unit distance.
We obtain the structures of the optimal policies for the pure
as-you-go approach as well as for the explore-forward approach.
We also consider natural heuristic algorithms, for comparison.
Numerical examples show that the explore-forward approach
significantly outperforms the pure as-you-go approach in terms
of network cost. Next, we propose two learning algorithms for the
explore-forward approach, based on Stochastic Approximation,
which asymptotically converge to the set of optimal policies,
without using any knowledge of the radio propagation model.
We demonstrate numerically that the learning algorithms can
converge (as deployment progresses) to the set of optimal policies
reasonably fast and, hence, can be practical model-free algorithms
for deployment over large regions. Finally, we demonstrate the
end-to-end traffic carrying capability of such networks via field
deployment.

Index Terms—As-you-go deployment, impromptu wireless net-
works, measurement based deployment, relay placement.
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I. INTRODUCTION

A WIRELESS sensor network (WSN) typically comprises
sensor nodes (sources of measurements), a base station

(or sink), and wireless relays for multihop communication
between the sources and the sink. There are situations in which
a WSN needs to be deployed (i.e., the relays and the sensors
need to be placed) in an impromptu or as-you-go fashion. One
such situation is in emergencies, e.g., situational awareness
networks deployed by first-responders such as fire-fighters or
anti-terrorist squads. As-you-go deployment is also of interest
when deploying multihop wireless networks for sensor-sink
interconnection over large terrains, such as forest trails (see
[2] for an application of multi-hop WSNs in wildlife moni-
toring, and [3, Section 5] for application of WSN in forest fire
detection), where it may be difficult to make exhaustive mea-
surements at all possible deployment locations before placing
the relay nodes. As-you-go deployment would be particularly
useful when the network is temporary and needs to be quickly
redeployed at a different place (e.g., to monitor a moving
phenomenon such as groups of wildlife).1
Our work is motivated by the need for as-you-go deploy-

ment of a WSN over large terrains, such as forest trails, where
planned deployment (requiring exhaustive measurements over
the deployment region) would be time consuming and diffi-
cult. Abstracting the above-mentioned problems, we consider
the problem of deployment of relay nodes along a line, be-
tween a sink node (e.g., the WSN base-station) and a source
node (e.g., a sensor) (see Fig. 1), where a single deployment
agent (the person who is carrying out the deployment) starts
from the sink node, places relay nodes along the line, and places
the source node where required. In applications, the location at
which sensor placement is required might only be discovered as
the deployment agent walks (e.g., in an animal monitoring ap-
plication, by finding a concentration of pugmarks, or a watering
hole).
In the perspective of an optimal planned deployment, we

would need to place relay nodes at all potential locations (for
example, with reference to Fig. 1, this would mean placing re-
lays at all the four dots in between the source and the sink)
and measure the qualities of all possible links in order to de-
cide where to place the relays. This approach would provide the
global optimal solution, but the time and effort required might
not be acceptable in the applications mentioned earlier. With
impromptu deployment, the next relay placement locations de-
pend on the radio link qualities to the previously placed nodes;

1In remote places, cellular network coverage may not be available or practi-
cable. Hence, a multi-hop WSN is required for monitoring purposes.
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Fig. 1. A wireless relay network, placed along a line, connecting a source to a
sink. The dots (filled and unfilled) denote potential locations for node placement,
and are successively meters apart. The deployed network comprises two relays
(filled dots) placed at two of the potential locations; the solid arrows show the
path from the source to the sink. The dotted arrows show some more possible
links between pairs of potential locations.

these link qualities and also the source location are discovered
as the agent walks along the line. Such an approach requires
fewer measurements compared to planned deployment, but, in
general, is suboptimal.
In this paper, we mathematically formulate the problems of

impromptu deployment along a line as optimal sequential deci-
sion problems. The cost of a deployment is evaluated as a linear
combination of three components: the sum transmit power along
the path, the sum outage probability along the path, and the
number of relays deployed; we provide amotivation for this cost
structure. We formulate relay placement problems to minimize
the expected average cost per-step. Our channel model accounts
for path-loss, shadowing, and fading.
We explore deployment with two approaches: (i) the pure

as-you-go approach and (ii) the explore-forward approach. In
the pure as-you-go approach, the deployment agent can only
move forward; this approach is a necessity if the deployment
needs to be quick. Due to shadowing, the path-loss over a link
of a given length is random, and a more efficient deployment
can be expected if link quality measurements at several loca-
tions along the line are compared and an optimal choice is made
among these; we call this approach explore-forward. Explore-
forward would require the deployment agent to retrace his steps;
but this might provide a good compromise between deployment
speed and deployment efficiency.
We formulate each of these problems as a Markov decision

process (MDP), obtain the optimal policy structures, illustrate
their performance numerically and compare with reasonable
heuristics. Next, we propose several learning algorithms and
prove that each of them asymptotically converges to the optimal
policy if we seek to minimize the long run average cost per
unit distance. We also demonstrate the convergence rate of
the learning algorithms via numerical exploration. Finally, we
demonstrate the end-to-end traffic carrying capability of such
networks via field deployment.

A. Related Work

Until recently, problems of impromptu deployment of wire-
less networks have been addressed primarily by heuristics and
by experimentation. Howard et al., in [4], provide heuristic
algorithms for incremental deployment of sensors in order to
cover the deployment area; their problem is related to that of
self-deployment of autonomous robot teams. Souryal et al.,
in [5], address the problem of impromptu wireless network
deployment by experimental study of indoor RF link quality
variation; a similar approach is taken in [6]also. The authors of
[7] describe a breadcrumbs system for aiding firefighting inside
buildings. Their work addresses the same class of problems

as ours, with the requirement that the deployment agent has
to stay connected to previously placed nodes in the deploy-
ment process. Their work considers the trade-off between link
qualities and the deployment rate, but does not provide any
optimality guarantee of their deployment schemes. Their next
work [8] provides a reliable multiuser breadcrumbs system.
Bao and Lee, in [9], study the scenario where a group of
first-responders, starting from a command centre, enter a large
area where there is no communication infrastructure, and as
they walk they place relays at suitable locations in order to stay
connected among themselves and with the command centre.
However, these approaches are based on heuristic algorithms,
rather than on rigorous formulations; hence they do not provide
any provable performance guarantee.
In our work we have formulated impromptu deployment as a

sequential decision problem, and have derived optimal deploy-
ment policies. Recently, Sinha et al. ([10]) have provided an
algorithm based on an MDP formulation in order to establish
a multi-hop network between a sink and an unknown source
location, by placing relay nodes along a random lattice path.
Their model uses a deterministic mapping between power and
wireless link length, and, hence, does not consider statistical
variability (due to shadowing) of the transmit power required
to maintain the link quality over links having the same length.
The statistical variation of link qualities over space requires
measurement-based deployment, in which the deployment
agent makes placement decisions at a point based on the mea-
surement of the power required to establish a link (with a given
quality) to the previously placed node.
We view the current paper as a continuation of our papers [11]

(which provides the first theoretical formulation of measure-
ment-based impromptu deployment) and [12] (which provides
field deployment results using our algorithms).

B. Organization
The system model and notation have been described in

Section II. Impromptu deployment with a pure as-you-go
approach has been discussed in Section III. Section IV presents
our work on the explore-forward approach. A numerical com-
parison between these two approaches are made in Section V.
Section VI and Section VII describe the learning algorithms
for the explore-forward approach approach. Numerical results
are provided in Section VIII on the rate of convergence of
the learning algorithms. Experimental results demonstrating
the traffic carrying capability of the deployed networks are
provided in Section IX, followed by the conclusion.

II. SYSTEM MODEL AND NOTATION

The line is discretized into steps of length (Fig. 1), starting
from the sink. Each point, located at a distance of an integer
multiple of from the sink, is considered to be a potential loca-
tion where a relay can be placed. As the single deployment agent
walks along the line, at each step or at some subset of steps, he
measures the link quality from the current location to the pre-
vious node; these measurements are used to decide the location
and transmit power of the next relay.
As shown in Fig. 1, the sink is called Node 0, the relay closest

to the sink is called Node 1, and the relays are enumerated as
nodes as we walk away from the sink. The link
whose transmitter is Node and receiver is Node is called
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link . A generic link is denoted by . The length of each
link is an integer multiple of .

A. Channel Model and Outage Probability
We consider the usual aspects of path-loss, shadowing, and

fading to model the wireless channel. The received power of a
packet (say the -th packet, ) in a particular link (i.e., a
transmitter-receiver pair) of length is given by:

(1)

where is the transmit power, is the path-loss at the refer-
ence distance , is the path-loss exponent, denotes the
fading random variable seen by the -th packet (e.g., it is an ex-
ponentially distributed random variable for the Rayleigh fading
model), and denotes the shadowing random variable.
captures the variation of the received power over time, and it
takes independent values over different coherence times.
The path-loss between a transmitter and a receiver at a given

distance can have a large spatial variability around the mean
path-loss (averaged over fading), as the transmitter is moved
over different points at the same distance from the receiver; this
is called shadowing. Shadowing is usually modeled as a log-
normally distributed, random, multiplicative path-loss factor;
in dB, shadowing is distributed with values of standard devi-
ation as large as 8 to 10 dB. Also, shadowing is spatially un-
correlated over distances that depend on the sizes of the objects
in the propagation environment (see [13]); our measurements
in a forest-like region of our Indian Institute of Science (IISc)
campus established log-normality of the shadowing and gave
a shadowing decorrelation distance of 6 meters (see [12]). In
this paper, we assume that the shadowing at any two different
links in the network are independent, i.e., is independent
of for . This is a reasonable assumption if is
chosen to be at least the decorrelation distance (see [13]) of the
shadowing. Thus, from our experiments in the forest-like region
in the IISc campus, we can safely assume independent shad-
owing at different potential locations if is greater than 6 m. In
this paper, is assumed to take values from a set . We will
denote by the probability mass function or probability
density function of , depending on whether is a countable
set or an uncountable set (e.g., log-normal shadowing).
A link is considered to be in outage if the received signal

power (RSSI) drops (due to fading) below (e.g.,
below 88 dBm, a figure that we have obtained via experimen-
tation for the popular TelosB “motes,” see [14]). Since practical
radios can only be set to transmit at a finite set of power levels,
the transmit power of each node can be chosen from a discrete
set, , where . For
a link of length , a transmit power and any particular real-
ization of shadowing , the outage probability is denoted
by , which is increasing in and decreasing in ,
(according to (1)).

depends on the fading statistics. For a link
with shadowing realization , if the transmit power is , the
received power of a packet will be .
Outage is the event . If is ex-
ponentially distributed with mean 1 (i.e., for Rayleigh
fading), then we have,

. The outage
probability of a randomly chosen link of given length and given

Fig. 2. Illustration of pure as-you-go deployment with and . In
this “snap-shot” of the deployment process, the deployment agent has already
placed Relay 1 and Relay 2 at distances and , has set their transmit powers
to and , thereby achieving outage probabilities and (links
shown by solid arrows). Having placed Relay 2, he skips the next location (since

); based on measurements made at the next location (dashed arrow), the
algorithm advises him to not place a relay and move on. The diagram shows
the agent in the process of evaluating the next location at distance from
Relay 2 (dotted arrow). Based on these measurements, the deployment agent
will decide whether to place a relay at ; if a relay is not placed here, it
must be placed at the next location, since .

transmit power is a random variable, where the randomness
comes from shadowing . Outage probability can be mea-
sured by sending a sufficiently large number of packets over a
link and calculating the percentage of packets whose RSSI is
below .

B. Deployment Process and Related Notation
In this paper, we consider two approaches for deployment.
Pure as-you-go Deployment: After placing a relay, the agent

skips the next steps, and sequentially measures the outage
probabilities from locations to
the previously placed node, at all transmit power levels .
As the agent explores the locations
and makes link quality measurements,2 at each step he decides
whether to place a relay there, and if the decision is to place
a relay, then he also decides the transmit power for the placed
relay. This has been depicted in Fig. 2. In this process, if he has
walked steps away from the previous relay, or if he
encounters the source location, then he must place a node.
and will be fixed before deployment begins.
Explore-Forward Deployment: After placing a node, the de-

ployment agent skips the next locations and mea-
sures the outage probabilities to the previous node from loca-
tions , at each power level from the set
. Then, based on these measurements3 of the outage

probability values, he places the relay at location
, sets its transmit power to , and repeats

the same process for placing the next relay. This procedure is
illustrated in Fig. 3. If the source location is encountered within

steps from the previous node, then the source is placed.

Choice of and : If the propagation environment is very
good, or if we need to place a limited number of relays over a
long line, it is very unlikely that a relay will be placed within
the first few locations from the previous node. In such cases, we
can skip measurements at locations and make mea-
surements from locations . In general, the

2At a distance from the previous node, he measures the outage probabilities
from the current location to the previous node, where

is the realization of the shadowing in the link being evaluated.
3Let us denote by the realization of shadowing in the potential link

between the -th location (starting from the previously placed node) and
the previous node (see Fig. 3). The agent measures the outage probabilities

in order to make a placement decision.
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Fig. 3. Illustration of explore-forward deployment with and . In
this “snap-shot” of the deployment process, the deployment agent has already
placed Relay 1 and Relay 2 at distances and , has set their transmit powers
to and , thereby achieving outage and (links shown by solid
arrows). Having placed Relay 2, he skips the next location (since ). The
agent then evaluates the next two locations (dotted arrows) . Then,
based on the measurements at these two locations, the algorithm determines
which of them to place the relay at and which power level to use.

choice of and will depend on the constraints and require-
ments for the deployment. Larger will result in faster explo-
ration, but very large will result in very high outage in each
link. For a fixed , a large results in more measurements, but
we can expect a better performance.

C. Traffic Model
In order to develop the problem formulation, we assume that

the traffic is so low that there is only one packet in the network
at a time; we call this the “lone packet model.” Hence, there are
no simultaneous transmissions to cause interference. This per-
mits us to easily write down the communication cost on a path
over the deployed relays. However, this assumption does not
trivialize the deployment problem, since the deployment must
still take into account the stochastic shadowing and fading in the
links, and the effects of these factors on the number of nodes de-
ployed and the powers they use.
The lone packet traffic model is realistic for sensor networks

that carry low duty cycle measurements, or just carry an occa-
sional alarm packet. For example, recently there has been an
effort to design passive infra-red (PIR) sensor platforms that
can detect intrusion of a human or animal, and also can classify
whether the intruder is a human or an animal ([15]). The data
rate generated by such a platform deployed in a forest will be
very low. The authors in [2, Section 3.2] use only a 1.1% duty
cycle for a multi-hop wireless sensor network used for the pur-
pose of wildlife monitoring. The sensors gather data from RFID
collars on the animals; hence, the traffic to be supported by the
network is light. Lone packet model is also realistic for condi-
tion monitoring/industrial telemetry applications ([16]) as well,
where the time between successive measurements is very large.
Infrequent data model is common in machine-to-machine com-
munication ([17]). Table 1 and Table 3 of [18] illustrate sensors
whose sampling rate and the size of the sampled data packets are
small; it shows data rate requirement as small as several bytes
per second for habitat monitoring.
Even though the network is designed for the lone packet

traffic, it will be able to carry some amount of positive traffic.
See Section IX for experimental evidence of this claim; a
five-hop line network deployed using one algorithm proposed
in this paper, over a 500 m long line in a forest-like environ-
ment, was able to carry 127 byte packets at a rate of 4 packets
per second, with end-to-end packet loss probability less than
1%, which is sufficient for the applications mentioned above.
Lone packet model is also valid when interference-free com-

munication is achieved via multi-channel access. Recently there
have been efforts to use multiple channels available in 802.15.4

radio in a network; see [19]–[22]. In a line topology, this reduces
to frequency reuse after certain hops, which, in turn, mitigates
interference in the network. Thus, as with the lone packet as-
sumption, the availability of multiple channels, and appropriate
channel allocation over the network, eliminates the need to op-
timize over link schedules.
It has been proved that design with the lone packet model can

be the starting point for a design with desired positive traffic (see
[23]). Network design for carrying a given positive traffic rate
is left as a future research work.

D. Network Cost Structure
In this section we develop the cost that we use to evaluate the

performance of a given deployment policy. Given the current
location of the deployment agent with respect to the previous
relay, and given the measurements made to the previous relay, a
policy will provide the placement decision (in the case of pure
as-you-go deployment, whether or not to place the relay, and
if place then at what power, and in the case of explore-forward
deployment, where among the locations to place the relay and
at which power).
Let us denote the number of placed relays up to steps (i.e.,
meters) from the sink by ; define . Since

deployment decisions are based on measurements to already
placed relays, and since the path-loss over a link is a random
variable (due to shadowing), we see that is a random
process. In this paper we have assumed that each node for-
wards each packet to the immediately previously placed relay
(e.g., with reference to Fig. 1, the source forwards all packets to
Relay 2, which, in turn, forwards all packets to Relay 1, etc.).
See [11] for the considerably more complex possibility of relay
skipping while forwarding packets.
When the node is placed, the deployment policy also pre-

scribes the transmit power that this node should use, say, ;
then the outage probability over the link , so created, is
denoted by (see Fig. 2 and Fig. 3). We evaluate the cost
of the deployed network, up to distance, as a linear combi-
nation of three cost measures:
(i) The number of relays placed, i.e., .
(ii) The sum outage, i.e., . The motivation for

this measure is that, for small values of , the sum-
outage is approximately the probability that a packet sent
from the point to the source encounters an outage along
the path from the point back to the sink.

(iii) The sum power over the hops, i.e., .
These three costs are combined into one cost measure by

combining them linearly and taking expectation (under a policy
), as follows:

(2)

The multipliers and can be viewed as
capturing the emphasis we wish to place on the corresponding
measure of cost. For example, a large value of will aim for a
network deployment with smaller end-to-end expected outage.
We can view as the cost of placing a relay.
A Motivation for the Sum Power Objective: In case all the

nodes have wake-on radios, the nodes normally stay in sleep
mode, and each sleeping node draws a very small current from
the battery (see [24]). When a node has a packet, it sends a
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wake-up tone to the intended receiver. The receiver wakes up
and the sender transmits the packet. The receiver sends an ACK
packet in reply. Clearly, the energy spent in transmission and
reception of data packets governs the lifetime of a node, given
that the ACK size is negligible. We assume that a fixed mod-
ulation scheme is used, so that the transmission bit rate over
all links is the same (e.g., in IEEE 802.15.4 radios, that are
commonly used for sensor networking, the standard modulation
scheme provides a bit rate of 250 Kbps). We also assume a fixed
packet length. Let be the transmission duration of a packet
over a link, and suppose that the node uses
power during transmission. Let denote the packet recep-
tion power expended in the electronics at any receiving node. If
the packet generation rate at the source is very small, the life-
time of the -th node is
seconds ( is the total energy in a fresh battery). Hence, the
rate at which we have to replace the batteries in the network
from the sink up to distance steps is given by

. The term can be absorbed
into . Hence, the battery depletion rate is proportional to

.

E. Deployment Objective
We assume that the distance to the source from the sink is

a priori unknown, and its distribution is also unknown. Hence,
we assume that (deployment along a line of infinite
length) and develop deployment policies that seek to minimize
the average cost per step. This setting can be useful in practice
when is large (e.g., a long forest trail). Also, if we seek to
create networks along multiple trails in a forest, and if deploy-
ment is done serially along multiple trails, then this is effectively
equivalent to deployment along a single long line, provided that
the trails have statistically identical radio propagation environ-
ment. Note that, in case we deploy serially along multiple lines
but use this formulation, it means that we seek to optimize the
per-step cost averaged over multiple lines.
1) Unconstrained Problem: Motivated by the cost structure

and the model, we seek to solve the following:

(3)

where is a placement policy, and is the set of all possible
placement policies (to be formalized later). We formulate (3) as
a long-term average cost Markov decision process (MDP).
2) Connection to a Constrained Problem: Note that, (3) is

the relaxed version of the following constrained problem where
we seek to minimize the mean power per step subject to a con-
straint on the mean outage per step and a constraint on the mean
number of relays per step:

(4)
The following standard result tells us how to choose the La-

grange multipliers and (see [25], Theorem 4.3):
Theorem 1: Consider the constrained problem (4). If there

exists a pair , and a policy such that
is the optimal policy of the unconstrained problem (3) under

and the constraints in (4) are met with equality
under , then is an optimal policy for (4) also.

III. PURE AS-YOU-GO DEPLOYMENT

A. Markov Decision Process (MDP) Formulation
Here we seek to solve problem (3), for the pure as-you-go

approach. When the agent is steps away from the previous
node , he measures the outage prob-
abilities on the link from the current
location to the previous node, where is the realization of
the shadowing random variable in the link being evaluated.
He uses the knowledge of and the outage probabilities to
decide whether to place a node at his current location, and
what transmit power to use if he places a relay. In
this case, we formulate the impromptu deployment problem
as a Markov Decision Process (MDP) with state space

. At state
, the action is either to place a relay and

select a transmit power, or not to place. When ,
the only feasible action is to place and select a transmit power

. If, at state , a relay is placed and it is set to use
transmit power , a hop-cost of
is incurred.4
A deterministic Markov policy is a sequence of mappings

from the state space to the action space, and it is called
a stationary policy if for all . Given the state (i.e., the
measurements), the placement decision is made according to the
policy.

B. Formulation for
Under the pure as-you-go approach, we will first minimize

the expected total cost for , and then take
; this approach provides the policy structure for the average

cost problem (see [26], Chapter 4).
In the case, the deployment process re-

generates (probabilistically) after placing a relay, because of the
memoryless property of the geometric distribution, and because
of the fact that deployment of a new node will involve measure-
ment of qualities of new links not measured before, and the new
links have i.i.d. shadowing independent of the previously mea-
sured links. The (special) state of the system at such regener-
ation points is denoted by (apart from the states of the form

). When the source is placed at the end of the line, the
process terminates. Suppose is the (random) number of re-
lays placed, and node is the source node (as shown in
Fig. 1). We first seek to solve the following:

(5)

We will first investigate this approach assuming finite .

C. Bellman Equation
Let us denote the optimal expected cost-to-go at state

and at state be and respectively. Note that here
we have an infinite horizon total cost MDP with a finite state

4We have taken as a typical state for simplicity of representa-
tion; so long as the channel model given by (1) is valid, we can also take

as a typical state. This happens because the cost of
an action depends on the state only via the outage probabilities.
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space and finite action space. The assumption P of Chapter 3
in [26] is satisfied, since the single-stage costs are nonnegative.
Hence, by the theory developed in [26], we can focus on the
class of stationary deterministic Markov policies.
By Proposition 3.1.1 of [26], the optimal value function
satisfies the Bellman equation which is given by, for all

,

(6)
These equations are understood as follows. If the current state

is and the line has not ended
yet, we can either place a relay and set its transmit power to

, or we may not place. If we place, the cost
is incurred at the current step, and

the cost-to-go from there is . If we do not place a relay, the
line will end with probability in the next step, in which case a
cost will be incurred.
If the line does not end in the next step, the next state will be a
random state and a mean cost of will
be incurred. At state the only possible decision is to
place a relay. At state , the deployment agent starts walking
until he encounters the source location or location ;
if the line ends at step (with probability

), a cost of is
incurred. If the line does not end within steps (this event
has probability ), the next state will be .

D. Value Iteration
The value iteration for (5) is obtained by replacing in (6)

by on the L.H.S (left hand side) and by on the
R.H.S (right hand side), and by taking for all states.
The standard MDP theory says that for all states
as .

E. Policy Structure: OptAsYouGo Algorithm
Lemma 1: is increasing in , and , de-

creasing in , and jointly concave in and . is
increasing and jointly concave in and .

Proof: See Appendix A.
Next, we propose an optimal algorithm OptAsYouGo (Op-

timal algorithm with pure As-You-Go approach).
Algorithm 1: (OptAsYouGo Algorithm): At state

(where ), place a relay if and only
if , where

is a threshold increasing in . If

the decision is to place a relay, the optimal power to be se-
lected is given by . At
state , select transmit power

.
Theorem 2: Under the pure as-you-go approach,

Algorithm 1 provides the optimal policy for Problem (3).
Proof: See Appendix A.

Remark: The trade-off in the impromptu deployment
problem is that if we place relays far apart, the cost due to
outage increases, but the cost of placing the relays decreases.
The intuition behind the threshold structure of the policy is
that if at distance we get a good link with the combination of
power and outage less than a threshold, then we should accept
that link because moving forward is unlikely to yield a better
link. is increasing in . Since is increasing
in for any , and since shadowing is i.i.d across links, the
probability of a link (to the previous node) having desired QoS
decreases as we move away from the previous node. Hence,
the optimal policy will try to place relays as soon as possible if
is large, and this explains why is increasing in . Note

that the threshold does not depend on , due to the fact
that shadowing is i.i.d. across links.

F. Computation of the Optimal Policy
Let us write

, and . Also,
for each stage of the value iteration, define

and .
Multiplying both sides of the value iteration by and
summing over , we obtain an iteration in terms of

and this iteration does not involve . Since
for each , and as

, we can argue that
for all (by Monotone Convergence Theorem) and

. Then we can compute
by knowing itself (see the expression of in
Algorithm 1); we need not keep track of the cost-to-go values

for each state , at each stage . Here we
simply need to keep track of . Similar iterations were
proposed in [11] (Section III-A-5).

G. Average Cost Problem: Optimality of OptAsYouGo
Note that the problem (5) can be considered as an infinite

horizon discounted cost problem with discount factor .
Hence, keeping in mind that we have finite state and action
spaces, we observe that for the discount factor sufficiently
close to 1, i.e., for sufficiently close to 0, the optimal policy
for problem in (5) is optimal for the problem in (3) (see
[26, Proposition 4.1.7]). In particular, the optimal average
cost per step with pure as-you-go approach, , is given by

(see [26, Section 4.1.1]), where is
the optimal cost for problem (5) under pure as-you-go with the
probability of the line ending in the next step is .
In case is a Borel subset of , we still have a finite

action space, and bounded, nonnegative cost per step. By
[27, Theorem 5.5.4], one can show that the optimal average
cost per step is again . As , we will
obtain a sequence of optimal policies (i.e., mappings from the
state space to the action space), and a limit point of them will
be an average cost optimal policy.
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H. HeuAsYouGo: A Suboptimal Pure As-You-Go Heuristic
Algorithm 2: (HeuAsYouGo): The power used by the relays

is set to a fixed value. At each potential location, the deploy-
ment agent checks whether the outage to the previous relay
meets a certain predetermined target with this fixed transmit
power level. After placing a relay, the next relay is placed at
the last location where the target outage is met; or place at
the -st location (after the previously placed relay) in
the unlikely situation where the target outage is violated in the

-st location itself. If the agent reaches the -th
step and if all previous locations violate the outage target, he
must place the next relay at step .
HeuAsYouGo is a modified version of the heuristic deploy-

ment algorithm proposed in [5]. HeuAsYouGo is not exactly a
pure as-you-go algorithm since it sometimes requires the agent
to move one step back in case the outage target is violated.

IV. EXPLORE FORWARD DEPLOYMENT

A. Semi-Markov Decision Process (SMDP) Formulation
Let us recall explore-forward deployment from Section II-B;

we denote by the realization of shadowing in the
potential link between the -th location (starting from
the previously placed node) and the previous node (see
Fig. 3). The agent measures the outage probabilities

from locations
at all available transmit power levels from the set

, in order to make a placement decision.
Here we seek to solve the unconstrained problem

(3). We formulate our problem as a Semi-Markov De-
cision Process (SMDP) with state space and action
space . The vector

, i.e., the shadowing from
locations, is the state in our SMDP. In the state , an

action is taken
where is the distance of the next relay (from the previous
relay) that would be placed and is the transmit power
that this relay will use. In this case, a hop-cost of

is incurred. After placing a relay,
the next state becomes with
probability (since shadowing is
i.i.d. across links).
Let us denote, by the vector , the (random) state at

the -th decision instant, and by the action at the
-th decision instant. For a deterministic Markov policy

, let us define the functions
and as follows: if

, then and .

B. Policy Structure: Algorithm OptExploreLim
Note that, is i.i.d across . The state space is

a Borel space and the action space is finite. The hop cost and
hop length (in number of steps) are uniformly bounded across
all state-action pairs. Hence, we can work with stationary deter-
ministic policies (see [28] for finite state space, i.e., finite ,
and [29] for a general Borel state space, i.e., when is a Borel
set). Under our current scenario, the optimal average cost per
step, , exists (in fact, the limit exists) and is same for all states

. For simplicity, we work with finite , but the policy
structure holds for Borel state space also.

We next present a deployment algorithm called
“OptExploreLim,” an optimal algorithm for limited
exploration.
Algorithm 3: (OptExploreLim Algorithm:): In the state

which is captured by the measurements for
, , place the new relay according to

the stationary policy as follows:

(7)
where (or ) is the optimal average cost per
step for the Lagrange multipliers .
Theorem 3: The policy given by Algorithm 3 is optimal

for the problem (3) under the explore-forward approach.
Proof: The optimality equation for the SMDP is given by

(see [28], Equation 7.2.2):

(8)

is the optimal differential cost corresponding to state .
The structure of the optimal policy is obvious from (8), since

does not depend on .
Later we will also use the notation or to

denote the OptExploreLim policy under the pair ,
since here .
Remark 1: The same optimal policy structure will hold for a

Borel state space, by the theory presented in [29].
Remark 2: The optimal decision depends on state only via

the outage probabilities which can be easily measured.
Remark 3: For an action , a cost

will be incurred. On the other
hand, is the reference cost over steps. The policy
minimizes the difference between these two for each link.
Remark 4: The policy requires the deployment agent to know
, and computation of will require perfect knowledge of

propagation environment (e.g., the path-loss exponent in (1),
the distribution of shadowing, etc.); see Section IV-C.
Theorem 4: is jointly concave, increasing

and continuous in and .
Proof: See Appendix B.

Let us consider a sub-class of stationary deployment policies
(parameterized by , and ) given by:

(9)
where is not necessarily equal to .
Under the class of policies given by (9), let

denote the sequence of inter-node
distances, transmit powers and link outage probabilities that
the optimal policy yields during the deployment process. By
the assumption of i.i.d. shadowing across links, it follows that

is an i.i.d. sequence.
Let , and

denote the mean power per link, mean
outage per link and mean placement distance (in steps)
respectively, under the policy given by (9), where is not
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necessarily equal to . Also, let ,
and denote the optimal

mean power per link, the optimal mean outage per link and the
optimal mean placement distance (in steps) respectively, under
the OptExploreLim algorithm (i.e., policy
when in (9) is replaced by ). By the Re-
newal-Reward theorem, the optimal mean power per step, the
optimal mean outage per step, and the optimal mean number of
relays per step are given by ,

and .
Theorem 5: For a given , the mean number of relays

per step under the OptExploreLim algorithm (Algorithm 3),
, decreases with . Similarly, for

a given , the mean outage probability per step,
, decreases with under

the optimal policy.
Proof: See Appendix B.

Remark: The proof of Theorem 5 is quite general; the results
hold for the pure as-you-go approach also.
Theorem 6: For Problem (3), under the optimal policy (with

explore-forward approach) characterized by (i.e., under
the OptExploreLim algorithm), we have

.
Proof: See Appendix B.

C. Policy Computation
We adapt a policy iteration (from [28]) based algorithm to

calculate . The algorithm generates a sequence of stationary
policies (note that the notation was used for a dif-
ferent purpose in Section IV-A; here each is a stationary,
deterministic, Markov policy), such that for any ,

maps a state into some action.
Define the sequence of functions as follows: if

, then and .
Algorithm 4: The policy iteration algorithm is as follows:

Step 1) (Initialization): Start with an initial policy .
Step 2) (Policy Evaluation): Calculate the average cost

corresponding to the policy , for . is
equal to the quantity (by the Renewal Reward The-
orem) given by the expression at the bottom of the
page.

Step 3) (Policy Improvement): Find a new policy by
solving the following:

(10)
If and are same (i.e., if ), then stop and

declare , . Otherwise, go to Step 1.
Remark: By the theory in [28], this policy iteration will con-

verge (to ) in a finite number of iterations, for finite state
and action spaces. For a general Borel state space (e.g., for

log-normal shadowing), only asymptotic convergence to can
be guaranteed.
Computational Complexity: The finite state space has cardi-

nality . Then, addition operations are required to
compute from the policy evaluation step. However, careful
manipulation leads to a drastic reduction in this computational
requirement, as shown by the following theorem.
Theorem 7: In the policy evaluation step in Algorithm 4, we

can reduce the number of computations in each iteration from
to .
Proof: See Appendix B.

D. HeuExploreLim: An Intuitive but Suboptimal Heuristic
A natural heuristic for (3) under the explore-forward ap-

proach is the following HeuExploreLim Algorithm (Heuristic
Algorithm for Limited Explore-Forward):
Algorithm 5: (HeuExploreLim Algorithm): Under the ex-

plore-forward setting as discussed in Section IV, at state ,
make the decision according to the following rule:

Under any stationary deterministic policy , let us denote the
cost of a link by (a random variable) and the length of a link
by (under any stationary deterministic policy , the deploy-
ment process regenerates at the placement points).
Lemma 2: HeuExploreLim solves .
Proof: See Appendix B.

Remark: This heuristic is not optimal. Our optimal policy
given in Theorem (3) solves . How-
ever, HeuExploreLim solves , which is, in
general, different from . Note that

if and only if the variance of
is zero. But this does not happen due to the variability in

shadowing over space.

V. COMPARISON BETWEEN EXPLORE-FORWARD AND PURE
AS-YOU-GO APPROACHES

Let us denote the optimal average cost per step (for a given
and ) under the explore-forward and pure as-you-go

approaches by and .
Theorem 8: .
Proof: See Appendix C.

Next, we numerically compare various deployment algo-
rithms, in order to select the best algorithm for deployment.

A. Parameter Values Used in the Numerical Comparisons
We consider deployment for a given and a given ,

for the objective in (3). We provide numerical results for de-
ployment with iWiSe motes ([30]) (based on the Texas Instru-
ment (TI) CC2520 which implements the IEEE 802.15.4 PHY
in the 2.4 GHz ISM band, yielding a bit rate of 250 Kbps, with
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a CSMA/CA medium access control (MAC)) equipped with
9 dBi antennas. The set of transmit power levels is taken to
be dBm, which is a subset of the transmit
power levels available in the chosen device. For the channel
model as in (1), our measurements in a forest-like environment
inside the Indian Institute of Science Campus gave path-loss
exponent and (i.e., 1.7 dB); see [12].
Shadowing was found to be log-normal; with

, where . Shadowing decorrelation
distance was found to be 6 meters. Fading is assumed to be
Rayleigh; .
We define outage to be the event when the received signal

power of a packet falls below (i.e.,
97 dBm); for a commercial implementation of the PHY/MAC

of IEEE 802.15.4, 97 dBm received power corresponds to
a 2% packet loss probability for 127 byte packets for iWiSe
motes, as per our measurements.
We consider deployment along a line with step size

meters, , . Given , we chose is the
following way. Define a link to be good if its outage probability
is less than 3%, and choose to be the largest integer such that
the probability of finding a good link of length is more than
20%, when the highest transmit power is used (this will ensure
that the agent does not measure very long links having poor
outage probabilities). For the parameters , ,

, and 5 dBm transmit power, turned out to be 5.
If is increased further, the probability of getting a good link
will be very small.

B. Numerical Comparison Among Deployment Policies

Assuming these parameter values, we computed (by
MATLAB) the mean power per step (in mW), mean outage
per step, mean placement distance (in steps), mean cost per
step and mean number of measurements made per step, for
the four deployment algorithms presented so far. The results
are shown in Table I. In order to make a fair comparison, we
used the mean power per node for OptAsYouGo as the fixed
node transmit power for HeuAsYouGo, and the mean outage
per link of OptAsYouGo as the target outage for HeuAsYouGo.
The mean number of measurements per step is defined as the
ratio of the mean number of links evaluated for deployment
of one node and the mean placement distance (in steps). The
numerator of this ratio is for explore-forward algorithms
(since ). OptAsYouGo makes one measurement per step,
but HeuAsYouGo makes more than one measurements per step
since the agent often evaluates a bad link, takes one step back
and places the relay.5
We notice that the average per-step cost (COST in Table I)

of OptExploreLim (OEL) is the least. OEL uses the least mean
power per step (POW column), places nodes the widest apart
(DIST column), and the mean outage per step (OUT column) is
second to lowest. On the other hand, OEL requires about twice
as many measurements per step as compared to OptAsYouGo.6
Hence, we can conclude that the algorithms based on the ex-
plore-forward approach significantly outperform the algorithms

5For planned deployment, wewill have to evaluate all possible potential links;
from each potential location, we need to measure link quality to pre-
ceding potential locations, which is not feasible.

6Amore detailed comparison among the algorithms can be found inAppendix
C, along with elaborate discussion.

TABLE I
NUMERICAL COMPARISON AMONG VARIOUS ALGORITHMS FOR

AND . ABBREVIATIONS: OEL—OPTEXPLORELIM,
HEL—HEUEXPLORELIM, OAYG—OPTASYOUGO, HAYG—HEUASYOUGO.
POW—MEAN POWER (IN mW UNIT) PER STEP, OUT—MEAN OUTAGE PER
STEP, DIST—MEAN PLACEMENT DISTANCE, COST—MEAN COST PER STEP,

MEAS—MEAN NUMBER OF MEASUREMENTS PER STEP

based on the pure-as-you-go approach, at the cost of slightly
more measurements per step. Hence, for applications that do not
require very rapid deployment, such as deployment along a long
forest trail for wildlife monitoring, explore-forward is a better
approach to take. Thus, for the learning algorithms presented
later, we will consider only the explore-forward approach. How-
ever, under the requirement of fast deployment (e.g., emergency
deployment by first responders), pure as-you-go or deployment
without measurements (as in [10]) might be more suitable.

VI. OPTEXPLORELIMLEARNING: LEARNING WITH
EXPLORE-FORWARD, FOR GIVEN AND

Based on the discussion in Section V, we proceed, in the rest
of this paper, with developing learning algorithms based on the
policy OptExploreLim (to solve problem (3)). We observe that
the optimal policy (given by Algorithm 3) can be completely
specified by the optimal average cost per step , for given
values of and . But the computation of requires
policy iteration. Policy iteration requires the channel model pa-
rameters and , and it is computationally intensive. In prac-
tice, these parameters of the channel model might not be avail-
able. Under this situation, the agent measures

before deploying each relay, but
he has to learn the optimal average cost per step in the process
of deployment, and, use the corresponding updated policy each
time he places a new relay. In order to address this requirement,
we propose an algorithm which will maintain a running estimate
of , and update it each time a relay is placed. The algorithm is
motivated by the theory of Stochastic Approximation (see [31]),
and it uses, as input, the measurements made for each place-
ment, in order to improve the estimate of . We prove that, as
the number of deployed relays goes to infinity, the running es-
timate of average network cost per step converges to almost
surely.
After the deployment is over, let us denote the length,

transmit power and outage values of the link between node
and node by , and . After placing the

-st node, we will place node , and consequently ,
and will be decided by the following algorithm.
Algorithm 6: (OptExploreLimLearning): Let be the es-

timate of the optimal average cost per step after placing the -th
relay (sink is node 0), and let be the initial estimate. In the
process of placing relay , if the measured outage prob-
abilities are ,
then place relay using the following policy:
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After placing relay , update as follows (using the
measurements made in the process of placing relay ):

(11)
is a decreasing sequence such that ,

and . One example is .
Theorem 9: If we employ Algorithm 6 in the deployment

process, we will have almost surely.
Proof: By Theorem 6, under OptExploreLim, we have

; this
leads to the stochastic approximation update in Algorithm 6.
The detailed proof can be found in Appendix D.
While Algorithm 6 utilizes the general stochastic approxima-

tion update, Algorithm 7 ensures that the iterate is the actual
average network cost per step up to the -th relay.
Algorithm 7: Start with any . Let, for , be

the average cost per step for the portion of the network already
deployed between the sink and the -th relay, i.e.,

Place the -st relay according to the following policy:

Corollary 1: Under Algorithm 7 in the deployment process,
we will have almost surely.

Proof: See Appendix D.

VII. OPTEXPLORELIMADAPTIVELEARNING WITH
CONSTRAINTS ON OUTAGE PROBABILITY AND

RELAY PLACEMENT RATE
In Section VI, we provided a stochastic approximation al-

gorithm for relay deployment, with given multipliers and
, without knowledge of the propagation parameters. Let

us recall that Theorem 1 tells us how to choose the Lagrange
multipliers and (if they exist) in (3) in order to solve
the problem given in (4). However, we need to know the radio
propagation parameters (e.g., and ) in order to compute an
optimal pair (if it exists) so that both constraints
in (4) are met with equality. In real deployment scenarios, these
propagation parameters might not be known. Hence, in this sec-
tion, we provide a sequential placement and learning algorithm
such that, as the relays are placed, the placement policy itera-
tively converges to the set of optimal policies for the constrained
problem displayed in (4). The policy is of the OptExploreLim
type, and the cost of the deployed network converges to the op-
timal cost. We modify the OptExploreLimLearning algorithm
so that a running estimate gets updated each
time a new relay is placed. The objective is to make sure that
the running estimate eventually converges
to the set of optimal tuples as the

deployment progresses. Our approach is via two time-scale sto-
chastic approximation (see [31, Chapter 6]).

A. OptExploreLim: Effect of Multipliers and
Consider the constrained problem in (4) and its relaxed

version in (3). We will seek a policy for the problem in (4)
in the class of OptExploreLim policies (see (7)). Clearly,
there exists at least one tuple for which there exists
a pair such that, under the optimal
policy , both constraints are met with equality.
In order to see this, choose any and
consider the corresponding optimal policy
(provided by OptExploreLim). Suppose that the mean outage
per step and mean number of relays per step, under the policy

, are and , respectively. Now, if we set the
constraints and in (4), we obtain one instance
of such a tuple .
On the other hand, there exist pairs which are not fea-

sible. One example is the case (i.e., inter-node
distance is always ), along with

, where is the maximum available
transmit power level at each node. In this case, the outage con-
straint cannot be satisfied while meeting the constraint on the
mean number of relays per step, since even use of the highest
transmit power at each node will not satisfy the per-step
outage constraint.
Definition 1: Let us denote the optimal mean power per step

for problem (4) by , for a given . The set is
defined as follows:

where the optimal average cost per step of the unconstrained
problem (3) under OptExploreLim is .

can possibly be empty (in case is not a fea-
sible pair). Hence, we make the following assumption which en-
sures the non-emptiness of .
Assumption 1: The constraint parameters and in (4) are

such that there exists at least one pair for
which .
Remark: Assumption 1 implies that the constraints are con-

sistent (in terms of achievability). If , it
would imply that both of the constraints are active. If ,
it would imply that we can keep the mean outage per step strictly
less than by using the minimum available power at each node,
while meeting the constraint on the relay placement rate. The
optimal policy in Algorithm 3, under , will place re-
lays with inter-relay distance steps, and use the min-
imum available power level at each node. implies
that the outage constraint cannot be met even with the highest
power level at each node, under the relay placement rate con-
straint. Similar arguments apply to .
We now establish some structural properties of .
Theorem 10: If is non-empty, then:
• Suppose that there exists , such that the
policy satisfies both constraints in (4) with
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equality. Then, there does not exist
satisfying (i) ,
and (ii) or

.
• If there exists a such that

, then, ,
we have .
Proof: See Appendix E, Section A.

Assumption 2: The shadowing random variable has a con-
tinuous probability density function (p.d.f.) over ; for
any , . One example could be
log-normal shadowing.
Theorem 11: Suppose that Assumption 2 holds. Under the

OptExploreLim algorithm, the optimal mean power per step
, the optimal mean number of

relays per step and the optimal mean outage
per step , are continuous in

and .
Proof: See Appendix E, Section B.

Remark: Note that, by Theorem 11, we need not do any ran-
domization (see [32] for reference) among deterministic poli-
cies in order to meet the constraints with equality.

B. OptExploreLimAdaptiveLearning Algorithm
Algorithm 8: This algorithm iteratively updates

after each relay is placed. Let
be the iterates after placing the -th relay

(the sink is called node 0), and let be the
initial estimates. In the process of deploying the -th relay,
if the shadowing (which is measured indirectly only via

for and ) is
, then place the -th relay according

to the following policy:

(12)
After placing the -th relay, let us denote the transmit power,

distance (in steps) and outage probability from relay to relay
by , and . After placing the

-th relay, make the following updates (using the measurements
made in the process of placing the -th relay):

(13)

where denotes the projection of on the interval
. and need to be chosen carefully; the reason is

explained in the discussion later in this section (along with a
brief discussion on how and have to be chosen).

and are two decreasing sequences such that
, , , ,

and . In particular, we can

use and where , ,
.

Note that, for , we have
. Let us define the set

which is a subset of .
Theorem 12: Under Assumption 1, Assumption 2 and under

proper choice of and , the iterates in
Algorithm 8 converge almost surely to as .

Proof: See Appendix E, Section C.
Remark: Algorithm 8 induces a nonstationary policy. But

Theorem 12 establishes that the sequence of policies generated
by Algorithm 8 converges to the set of optimal stationary, de-
terministic policies (for problem (4)).
Discussion of Theorem 12:
(i) Two timescales: The update scheme (13) can be rewritten

as a two-timescale stochastic approximation (see [31],
Chapter 6). Note that, , i.e., and

are adapted in a slower timescale compared to
(which is adapted in the faster timescale). The dynamics
behaves as if and are updated simultaneously
in a slow outer loop, and, between two successive updates
of and , we update in an inner loop for a long
time. Thus, the update equation views and
as quasi-static, while the and update equations
view the update equation as almost equilibrated.

(ii) Structure of the iteration: Note that,
is the excess outage compared to the allowed

outage for the -th link. If this quantity is positive
(resp., negative), the algorithm increases (resp.,
decreases) in order to reduce (resp., increase) the
outage probability in subsequent steps. Similarly, if

, the algorithm increases in order to
reduce the relay placement rate. The goal is to ensure

and
. In the faster timescale, our aim is
to ensure that

.
(iii) Outline of the proof: The proof proceeds in five steps.

We first prove the almost sure boundedness of .
Next, we prove that the difference between the sequences

and converges to 0 almost surely;
this will prove the desired convergence in the faster
timescale. This result has been proved using the theory
in [31, Chapter 6] and Theorem 9.
In order to ensure boundedness of the slower timescale it-
erates, we have used the projection operation in the slower
timescale. We pose the slower timescale iteration in the
same form as a projected stochastic approximation itera-
tion (see [33, Equation 5.3.1]).
In order to prove the desired convergence of the pro-
jected stochastic approximation, we show that our
iteration satisfies certain conditions given in [33] (see
[33, Theorem 5.3.1]).
Next, we argue (using Theorem 5.3.1 of [33]) that the
slower timescale iterates converge to the set of stationary
points of a suitable ordinary differential equation (o.d.e.).
But, in general, a stationary point on the boundary of the
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closed set in the plane may
not correspond to a point in .Hence, we will need
to ensure that if is a stationary point of the
o.d.e., then . In
order to ensure this, we need to choose and prop-
erly. The choice of and is rather technical, and
is explained in detail in Appendix E, Section C. Here
we will just provide the method of choosing and ,
without any explanation of why they should be chosen in
this way. The number has to be chosen so large that
under and for all , we will
have

for some small enough . We must also have
. The number has to be

chosen so large that for any , we will have
(provided that ).

The numbers and have to be chosen so large that
there exists at least one
such that .

(iv) Asymptotic behaviour of the iterates: If the pair
is such that one can be met with strict inequality and the
other can be met with equality while using the optimal
mean power per step for this pair , then one La-
grange multiplier will converge to 0. This will happen if

; we will have
(obvious from OptExploreLim with

) in this case. Here we will place all the relays at the
-th step and use the smallest power level at each

node. On the other hand, if the constraints are not feasible,
then either or (since conver-
gence to is not possible due to projection) or both will
happen.

may have multiple tuples. But simulation results
show that it has only one tuple in case it is nonempty.

C. Asymptotic Performance of Algorithm 8

Let us denote by the (nonstationary) deployment policy
induced by Algorithm 8. We will now show that is an
optimal policy for the constrained problem (4).
Theorem 13: Suppose that Assumption 1 and Assumption 2

hold. Then, under proper choice of and , the policy
solves the problem (4); i.e., we have:

Proof: See Appendix E, Section D.

VIII. CONVERGENCE SPEED OF LEARNING ALGORITHMS:
A SIMULATION STUDY

In this section, we provide a simulation study to demon-
strate the convergence rate of Algorithm 7 and Algorithm 8.
The simulations are provided for , ,

, , , , ,
(see Section II for notation and

Section V-A for parameter values).

Fig. 4. Demonstration of the convergence of OptExploreLimLearning (Algo-
rithm 7) as deployment progresses. has not been included here.

A. OptExploreLimLearning for Given and
Let us choose , . We assume that the

propagation environment in which we are deploying is char-
acterized by the parameters as in Section V-A (e.g., ,

). The optimal average cost per step, under these pa-
rameter values, is 0.8312 (computed numerically).
On the other hand, for , , and

, the optimal average cost per step is 0.4577, and it
is 1.7667 for , . These two cases correspond
to two different imperfect estimates of and available to the
agent before deployment starts.
Suppose that the actual , , but at the time

of deployment we have an initial estimate that , ;
thus, we start with . After placing the -th relay,
the actual average cost per step of the relay network connecting
the -th relay to the sink is ; this quantity is a random vari-
able whose realization depends on the shadowing realizations
over the links measured in the process of deployment up to the
-th relay. We ran 10000 simulations of Algorithm 7, starting

with different seeds for the shadowing random process, and es-
timating as the average of the samples of over these
10000 simulations. We also do the same for (op-
timal cost for , ).
The estimates of as a function of , for the

two initial values of , are shown in Fig. 4. Also shown, in
Fig. 4, is the optimal value for the true propaga-
tion parameters (i.e., , ). From Fig. 4, we
observe that approaches the optimal cost 0.8312 for the
actual propagation parameters, as the number of deployed re-
lays increases, and gets to within 10% of the optimal cost by the
time that 4 or 5 relays are placed, starting with two widely dif-
ferent initial guesses of the propagation parameters. Thus, Op-
tExploreLimLearning could be useful even when the distance
can be covered by only 4 to 5 relays.
Note that, each simulation yields one sample path of the

deployment process. We obtained the estimates of as
a function of (by averaging over 10000 sample paths); the
convergence speed will vary across sample paths even though

almost surely as .

B. OptExploreLimAdaptiveLearning
In this section, we will discuss how OptExploreLimAdap-

tiveLearning (Algorithm 8) performs for deployment over a
finite distance under an unknown propagation environment.
We assume that the true propagation parameters are given
in Section V-A (e.g., , ). If we know

12



the true propagation environment, then, under the choice
and , the optimal average cost per step

will be 0.8312, and this can be achieved by OptExploreLim
(Algorithm 3). The corresponding mean outage per step will
be (i.e., 0.1969%) and the mean
number of relays per step will be 1/2.2859.
Now, suppose that we wish to solve the constrained problem

in (4) with the targets (i.e., 0.1969%) and
, but we do not know the true propagation environ-

ment. Hence, the deployment will use OptExploreLimAdap-
tiveLearning with some choice of , and .
We seek to compare among the following three scenarios:

(i) and are completely known (we use OptExploreLim with
and in this case), (ii) imperfect estimates

of and are available prior to deployment, and OptExplore-
LimAdaptiveLearning is used to learn the optimal policy, and
(iii) imperfect estimates of and are available prior to deploy-
ment, but a corresponding suboptimal policy is used throughout
the deployment without any update. For convenience in writing,
we introduce the abbreviations OELAL and OEL for OptEx-
ploreLimAdaptiveLearning and OptExploreLim, respectively.
We also use the abbreviation FPWU for “Fixed Policy without
Update.” Now, we formally introduce the following cases that
we consider in our simulations:
(i) OEL: Here we know , , and use

OptExploreLim (Algorithm 3) with ,
, . OEL will meet both the constraints with
equality, and will minimize the mean power per step.

(ii) OELAL Case 1: OELAL Case 1 is the case where the
true and (which are unknown to the deployment agent)
are specified by Section V-A, but we use OptExploreLi-
mAdaptiveLearning with , and

, in order to meet the constraints specified
earlier in this subsection. Note that, under and

, the optimal mean cost per step is 0.5007
for , . Hence, we start with a wrong choice
of Lagrange multipliers, a wrong estimate of and , and
an estimate of the optimal average cost per step which cor-
responds to these wrong choices. The goal is to see how
fast the variables , and converge to the de-
sired target 0.8312, 100 and 1, respectively. We also study
how close to the desired target values are the quantities
such as mean power per step, mean outage per step and
mean placement distance for the relay network between
-th relay and the sink node.

(iii) OELAL Case 2: OELAL Case 2 is different from
OELAL Case 1 only in the aspect that is
used in OELAL Case 2. Note that, under and

, the optimal mean cost per step is 1.7679
for , .

(iv) FPWUCase 1: In this case, the true and are unknown
to the deployment agent. The deployment agent uses

, and throughout
the deployment process under the algorithm specified
by (7). Clearly, he chooses a wrong set of Lagrange
multipliers , , and he has a wrong
estimate , . The optimal average cost per
step is computed for these wrong choice
of parameters, and the corresponding suboptimal policy
is used throughout the deployment process without any

update; this will be used to demonstrate the gain in
performance by updating the policy under OptExploreLi-
mAdaptiveLearning, w.r.t. the case where the suboptimal
policy is used without any online update.

(v) FPWU Case 2: It differs from FPWU Case 1 only in the
aspect that we use in FPWU Case 2. Recall
that, under and , the optimal
mean cost per step is 1.7679 for , .

For simulation of OELAL, we chose the step sizes as fol-
lows. We chose , chose for the

update and for the update (note that,
both and are updated in the same timescale). We
simulated 10000 independent network deployments (i.e., 10000
sample paths of the deployment process) with OptExploreLi-
mAdaptiveLearning, and estimated (by averaging over 10000
deployments) the expectations of , , , mean power
per step , mean outage
per step and mean
placement distance , from the sink node to
the -th placed node. In each simulated network deployment,
we placed 20000 nodes, i.e., was allowed to go up to 20000.
Asymptotically the estimates are supposed to converge to the
values provided by OEL.
Observations From the Simulations: The results of the simu-

lations are summarized in Fig. 5. We observe that, the estimates
of the expectations of , , , mean power
per step up to the 20000th node, mean outage per step up to
the 20000th node, and mean placement distance (in steps) over
20000 deployed nodes are 0.8551, 104.0606, 1.0385, 0.2005,
0.2% (i.e., 0.002) and 2.2939 for the OELAL Case 1, whereas
those quantities are supposed to be equal to 0.8312, 100, 1,
0.1955, 0.1969% (i.e., 0.001969) and 2.2859, respectively. We
found similar results for OELAL Case 2 also. Hence, the quan-
tities converge very close to the desired values.We have shown
convergence only up to deployments in most cases, since
the convergence rate of the algorithms in the initial phase are
most important in practice.
All the quantities except expectation of and

(which are updated in a slower timescale) converge reasonably
close to the desired values by the time the 50th relay is placed,
which will cover a distance of roughly 2–3.5 km. distance.
FPWU Case 1 and FPWU Case 2 either violate some con-

straint or uses significantly higher per-step power compared to
OEL. But, by using the OptExploreLimAdaptiveLearning al-
gorithm, we can achieve per-step power expenditure close to
the optimal while (possibly) violating the constraints by small
amount; even in case the performance of OELAL is not very
close to the optimal performance, it will be significantly better
than the performance under FPWU cases (compare OELAL
Case 2 and FPWU Case 2 in Fig. 5).
The speed of convergence will depend on the choice of

the step sizes and ; optimizing the rate of convergence
by choosing optimal step sizes is left for future endeavours
in this direction. Also, note that, the choice of ,
and will have a significant effect on the performance of
the network over a finite length; the more accurate are the
estimates of and , and the better are the initial choice of

, and , the better will be the convergence speed
of OptExploreLimAdaptiveLearning.
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Fig. 5. Demonstration of the convergence of OptExploreLimAdaptiveLearning as deployment progresses. In the legends, “OEL” refers to the values that are
obtained if OptExploreLim is used; these are the target values for OptExploreLimAdaptiveLearning. Note that, we have used line styles for and
updates, that are different from the line styles of other four plots. Also note that, outage probabilities are shown in percentage and not in decimal.

IX. PHYSICAL DEPLOYMENT EXPERIMENTS

For completeness, we briefly summarize experimental results
that were reported in our conference paper [12]. We performed
an actual deployment experiment along a long tree-lined road
in our campus (not exactly a straight line, which is the reality
in a forest) with iWiSe motes equipped with 9 dBi antennas.
We chose , , steps, me-
ters, and . We used the packet error
rate (PER) of a link as a substitute for outage probability; this
does not violate the assumptions of our formulation. For ,

, , , the optimal average cost per
step is 1.0924 (computed numerically). Taking ,
we performed a real deployment experiment with OptExplore-
LimLearning. The deployed network (along with power levels,
outage probabilities and link lengths) is shown in Fig. 6. The
sink is denoted by the “house” symbol. The algorithm placed
relays at successive distances of 150 m, 50 m, 50 m, 100 m,
and 150 m, thereby covering 500 m until the source was placed.
The two short (50 m long) links are created due to significant
path-loss at the turn in the road. After deployment, we used the
last placed node as the source and sent periodic traffic (at various
rates) from the source to the sink. The end-to-end packet loss
probability increases with arrival rate (Fig. 6); this happens due
to carrier sense failures and collisions because of simultaneous
transmissions from different nodes. At very low arrival rate, the
loss probability is 0 (but the sum PER under the lone packet
model is not 0). This happens since there are link level retrans-
missions and since the outage durations are relatively short; in
case a packet encounters an outage in a link, the retransmission
attempts succeed with high probability. The results demonstrate
that, even though the design was for the lone packet model, the
network can carry 4 packets/second (packet size is 127 bytes)
with , which is sufficient for many applications.
Hence, network design with the lone packet model assumption
is reasonable for those applications.

X. CONCLUSION
We have developed several approaches for as-you-go deploy-

ment of wireless relay networks using on-line measurements,
under a very light traffic assumption. Each problem was formu-
lated as anMDP and its optimal policy structure was studied.We

Fig. 6. Actual deployment along a long tree-lined road in the Indian Institute
of Science Campus using OptExploreLimLearning with iWiSe motes,

, : five nodes (including the source) are placed; link lengths,
transmit powers, and % outage probabilities are shown; the plot shows varia-
tion of end-to-end loss probability with inter-packet duration, for periodic traffic
generated from the source. Picture and plot are taken from [12].

also studied a few learning algorithms that will asymptotically
converge to the corresponding optimal policies. Numerical and
experimental results have been provided to illustrate the perfor-
mance and trade-offs.
This work can be extended or modified in several ways:

(i) Networks that are robust to node failures and long term
link variations would either require each relay to have mul-
tiple neighbours (i.e., the deployment would need to be
multi-connected), or the nodes can choose their transmit
powers adaptively as the environment changes. (ii) It would
be of interest to develop deployment algorithms for 2 and
3 dimensional regions, where a team of agents cooperates to
carry out the deployment. (iii) We have assumed very light
traffic conditions in our design (what we call “lone packet”
traffic), but our experiments show that these designs can carry a
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useful amount of positive traffic. It will be of interest, however,
to develop deployment algorithms that can provide theoretical
guarantees to achieve desired traffic rates.
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