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Abstract. Higher-order side-channel attacks are able to break the secu-
rity of cryptographic implementations even if they are protected with
masking countermeasures. In this paper, we derive the best possible
distinguishers (High-Order Optimal Distinguishers or HOOD) against
masking schemes under the assumption that the attacker can profile. Our
exact derivation admits simple approximate expressions for high and low
noise and shows to which extent the optimal distinguishers reduce to
known attacks in the case where no profiling is possible. From these re-
sults, we can explain theoretically the empirical outcome of recent works
on second-order distinguishers. In addition, we extend our analysis to
any order and to the application to masked tables precomputation. Our
results give some insight on which distinguishers have to be considered
in the security analysis of cryptographic devices.

Keywords: Side-channel analysis, higher-order masking, masking ta-
bles, higher-order optimal distinguisher (HOOD), template attack.

1 Introduction

In order to secure embedded devices against side-channel attacks, masking
schemes have been introduced. Recent works have shown provable protections
with a security parameter d, such that each sensitive variable is secured with d
random masks [4]. The computation is carried out in such a way that the knowl-
edge of any tuple of d intermediate variables does not disclose any information
on any sensitive variable. Accordingly, all distinguishers using up to d leakages
will fail to recover the correct key. A successful attack would be a (d+1)th-order
CPA, which uses combination functions to transform the measured leakage and
the prediction on each share into a single value in order to compute Pearson
correlation coefficients [4, 10, 13, 14, 18, 19, 23].
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Using combination functions to fit to a known tool like CPA looks more
like an engineering recipe than the optimal solution. Yet, it is shown by Prouff
et al. [16] that, in the case of second-order attacks, using the normalized prod-
uct combination function combined with an optimal prediction function is the
most efficient solution among all known combination functions. Even more, Stan-
daert et al. [20] showed that the information loss induced from the combination
functions vanishes for high noise.

In [14] Oswald and Mangard introduced several template-based attacks on
masking schemes. Among them is the so-called template-based DPA attack,
which extends the traditional template attack from Chari et al. [5] to first-order
masking schemes. Besides, their approach classifies measurements according to
the key, and not according to sensitive variables.

A slightly different scenario has been analyzed by Tunstall et al. in [22], where
the authors study the security of masking tables for software implementations
as defined in [1]. The authors suggested a two-stage CPA: first, for each indi-
vidual trace, extract the mask during the precomputation and, second, use this
knowledge about the mask to reveal the secret key using a vertical attack.

In this article we tackle the questions “what is the best possible distinguisher in
case of profiling?” and “how far are they from known practical distinguishers?”.

In particular, we derive optimal higher-order distinguishers against higher-
order masking schemes in case profiling is possible. Here, optimality means max-
imizing the success rate. Starting from second-order optimal distinguisher we
derive approximations for high and low noise and recover known attacks. In par-
ticular, we show to what extent the optimal second-order distinguisher can be
translated into a second-order CPA attack using combination functions. Given
these results for second-order we extend our analysis to (d + 1)th-order distin-
guisher against dth-order masking schemes.

Additionally, we investigate the scenario of masking tables as in [22]. We derive
the optimal attack against masking tables and again derive approximations for
the scenario of high and low noise which results in new attacks and compare it
to the two-stage CPA.

2 Preliminaries

2.1 Masking Countermeasure and Notations

Even though many different masking schemes have been investigated so far,
which clearly differ in their strength, the principle of attacking is equivalent. A
masking scheme is characterized by the number of random masks that are used
per sensitive variable. In the following we consider a dth-order masked implemen-
tation where we assume that the masks are uniformly distributed over a space
M. Calligraphic letters (e.g., X ) denote sets, capital letters (e.g., X) denote
random variables taking values in these sets, and the corresponding lowercase
letters (e.g., x) denote their realizations. Let k∗ denote the secret cryptographic
key, k any possible key hypothesis from the keyspace K, and T be the input or
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ciphertext of the cryptographic algorithm. The mapping f : (T ,K,M) → Fn
2

maps the input or ciphertext t ∈ T , a key hypothesis k ∈ K and the mask
m ∈ M to an internally processed variable in some space Fn

2 that is assumed to
relate to the measured leakage X , where n is the number of bits. Generally it is
assumed that f is known to the attacker. The measured leakage X can then be
written as

X = ϕ(f(T, k∗,M)) +N, (1)

whereN denotes an independent—not necessarily Gaussian—additive noise with
zero mean and where ϕ a device-specific deterministic function. In this paper we
start by assuming that ϕ is known to the attacker due to profiling to consider
the most powerful attack. We then show to which extend and scenarios this
assumption can be relaxed while still achieving the same efficiency of the attack.

Specifically, in a dth-order masking scheme the implementation is protected
with d masks with corresponding leakages

X(ω) = ϕ(ω)(f (ω)(T (ω), k∗,M (ω))) +N (ω), (2)

with ω ∈ {0, . . . , d} and M (ω) ∈ M(ω) where the M(ω) does not need to be
equal in general. Accordingly, a dth-order masking scheme can be broken using
(d + 1)th-order distinguishers by targeting d + 1 shares. For simplification we
denote Y (T (ω), k,M (ω)) = ϕ(ω)(f (ω)(T (ω), k,M (ω))).

Example 1 (First-order software masking). For example a first-order masking
scheme (d = 1) might leak with

X(0) = HW[M ] +N (0), (3)

X(1) = HW[Sbox[T ⊕ k∗]⊕M ] +N (1), (4)

with Sbox : F8
2 → F8

2 being the AES Substitution box and T (1) = T uniformly
distributed over F8

2 (and T (0) is non-existent). Thus, ϕ(0)(·) = ϕ(1)(·) = HW[·]
(the Hamming weight function), M (0) = M (1) = M , f (0)(T, k,M) = M and
f (1)(T, k,M) = Sbox[T ⊕ k]⊕M .

Example 2 (Tables pre-computation). Again when assuming a Hamming weight
leakage model, a masking scheme using Sbox recomputation [11] might leak with

X(ω) = HW[ω ⊕M ] +N (ω), ∀ω ∈ {0, 1, . . . , 2n − 1} ∼= Fn
2 (5)

X(2n) = HW[T ⊕ k∗ ⊕M ] +N (2n). (6)

A detailed description will be given in Sect. 5.

Definition 1 (Perfect masking (dth-order) [2]). Let us denote the random
variables F (ω)(t, k) = f (ω)(t, k,M (ω)) for ω ∈ {0, . . . , d} and a fixed pair (t, k).
A masking scheme is perfect at dth-order if the joint distribution of maximum d
of F (0)(t, k), . . . , F (d)(t, k) is identically distributed of any pair (t, k) ∈ T ×K.

Note that dth-order security implies 1st, 2nd, . . . , (d− 1)th-order security.
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Proposition 1. If a masking scheme is perfect, then whatever function ψ,∑
m(ω)∈M(ω) ψ(f (ω)(t, k,m(ω))) is constant for any pair (t, k) for any 0 ≤ ω ≤ d.

Proof. Let t̃, k̃ be any value in T and K, respectively. As the masking
scheme is perfect up to dth-order (which implies 1st-order) the distribution of
f (ω)(t, k,M (ω)) is equivalent to f (ω)(t̃, k̃,M (ω)), hence ψ(f (ω)(t, k,M (ω))) and
ψ(f (ω)(t̃, k̃,M (ω))) have the same distribution. In particular, the sum of realiza-
tions is identical. )*

In our setup we assume that the attacker is able to measure q i.i.d. mea-
surements. All values indexed by i ∈ {1, . . . , q} are in bold face (e.g. a =
(a1, . . . , aq) ∈ Aq for ai ∈ A). Values indexed by the intermediate variable index

(ω) (a(ω) ∈ A) are denoted by a(!) = (a(0), . . . , a(d)) ∈ Ad+1. Moreover, a(ω)
i ∈ A

and a(!) ∈ Aq×(d+1).
Note that contrary to a, the vectors along (ω) can be linked, e.g.,

⊕d
ω=0 M

(ω)

= 0 in Example 1 or ∀ω ∈ {0, . . . , 2n−1}∪{2n},M (ω) = M (0) in Example 2. Thus
the set of admissible masks, denoted byM(!), is a subset of the Cartesian product
over all M(ω). Additionally, regarding the noise, we have that ∀(i,ω) ,= (i′,ω′),

N (ω)
i is independent of N (ω′)

i′ .
We write P(m) = P(M = m) for discrete probability distributions, p for densi-

ties, andwhen the randomvariableX is conditioned by the eventY = y, we use the
notationpk(X |Y = y) to recall thatydepends ona (fixed)keyguessk.As themodel
is knownby the attacker,we also have: pk(X |Y = y) = pk(X |T = t,M = m) when
y = y(t, k,m). Indeed, owing to Eq. (2), Y is a sufficient statistic for k [8]. We then
use pk(x|t,m) to denote p(X = x|Y = ϕ(f(t, k,m))). We denote the scalar prod-
uct betweenx and y by 〈x|y〉 =

∑q
i=1 xiyi, the Euclidean normby ‖x‖2 =

√
〈x|x〉

and the componentwise product by x ·y = (x1y1, . . . , xqyq). Given a function g(k),
we use the notation argmaxk g(k) to denote the value of k that maximizes g(k).
Finally, E : E → {0, 1} denotes the indicator function of the set E.

2.2 Combination Functions for Higher-Order CPA Attacks

In order to conduct a second-order CPA attack, two kinds of combination func-
tions, i.e., cX : X d+1 → R and cY : T d+1 → R, are required. However, this seems
to be more inspired from an engineering perspective –an “act from necessity”–
than a sound mathematical tool to maximize the success. That the use of
combination functions comes with information loss was already pointed out by
Mangard and Oswald and Mangard [14] and Standaert et al. [20]. The history
and selection of combination functions is indeed epic, where the literature mostly
concentrated on second-order CPA (d = 1).

The most prominent function to combine the leakages is the product combining
function cprodX (X(0), X(1)) = X(0) ·X(1) introduced by Chari et al. in [4] and the
absolute difference cdiffX (X(0), X(1)) = |X(0)−X(1)| by Messerges in [13]. Oswald
and Mangard [14] proposed (for e.g. the setting given in Example 1) an even
more exotic combination function and corresponding prediction function1:

1 Note that these are the corrected formulas given in [16].



348 N. Bruneau et al.

csinX (X(0), X(1)) = sin
(
(X(0) −X(1))2

)
(7)

csinY (T ) = −89.95 sin(HW[Y ])3 − 7.82 sin(HW[Y ])2 + 67.66 sin(HW[Y ]), (8)

where Y = Y (T, k, 0). Contrary to what was suggested in previous papers, Prouff
et al. [16] showed that all these combination functions should be accompanied by
coptY (T (0), T (1)) = E{c∗X(Y (0), Y (1))|T (0), T (1)} to maximize the absolute value of
correlation, where the expectation is taken over the mask M and c∗X denotes the
same combination function as cX but defined as a map Yd+1 → R. Moreover,
the normalized product function, i.e., cn-prodX (X(0), X(1)) = (X(0) − E{X(0)}) ·
(X(1) − E{X(1)}) is shown to be the most efficient of all known combination
functions when considering a Hamming weight leakage model.

3 Optimal Distinguisher for Second-Order Attacks

3.1 Motivation

As highlighted in Subsect. 2.2 the introduction of combination functions for
second-order CPA is more a necessary evil than an optimized procedure to max-
imize success. In [20] the authors empirically showed that a combination function
always goes hand in hand with information loss. However, the authors depicted
that for large noise the second-order CPA with the normalized product func-
tion cn-prodX (X(0), X(1)) becomes (nearly) equivalent to the maximum likelihood
distinguisher applied to the joint distribution.

This observation might not be obvious in theory since correlation is only an
appropriate statistical tool when the underlying noise is Gaussian. Unfortunately,
when multiplying two Gaussian distributions, as it is done for cn-prodX (X(0), X(1)),
does clearly not result in a Gaussian distribution.

Thus, our aim is to precisely state the higher-order optimal distinguisher
(HOOD) expression for second-order when the attacker has full information
about underlying the leakage and determine when this knowledge can be less-
ened to relate the expression to second-order CPA. This will help to understand
known empirical results [9,14,16,20]. In particular, we investigate low and high
noise scenarios to see which combination function from the pool described in
Subsect. 2.2 would be a reasonable choice.

3.2 Explicit Derivations

In [14] the authors state various template attacks against first-order masking
schemes. The most efficient is a straightforward extension of the classical tem-
plate attack [5] over all pairs (t, k). Our approach goes in a similar direction:
we utilize the joint distribution of both leakages X(0) and X(1) without using
a combination function, which gives us the optimal second-order distinguisher
maximizing the success rate.
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Theorem 2 (Second-order HOOD). If the model (i.e., ϕ(ω)) is known to the
attacker for all ω, then the second-order HOOD is

D2
opt(x

(!), t(!)) = argmax
k∈K

pk(x
(!)|t(!)) (9)

= argmax
k∈K

q∏

i=1

∑

m(")∈M(")

P(m(!))
1∏

ω=0

pk(x
(ω)
i |t(ω)

i ,m(ω)). (10)

Note that as the attacker knows the model he is able to compute the required
probability distributions and densities.

Proof. Let us denote the key guess of any second-order distinguisher by k̂ =
argmaxk∈K D2(x(!), t(!)). Then, using a frequentist approach we start from the
success probability PS over all possible secret keys k

PS =
1

|K|
∑

k∈K
P(k̂ = k) =

1

|K|
∑

k∈K

∑

t(")

P(t(!)) P(k̂ = k|T(!) = t(!)) (11)

=
1

|K|
∑

k∈K

∑

t(")∈T q×(d+1)

P(t(!))
∫

X q×(d+1)

pk(x
(!)|t(!)) k=k̂ dx

(!) (12)

=
1

|K|
∑

k∈K

∑

t(")∈T q×(d+1)

P(t(!))
∫

X q×(d+1)

pk̂(x
(!)|t(!)) dx(!). (13)

In Eq. (11), we have to compute P(k̂ = k|t(!)) where k̂ = k̂(x(!), t(!)) =
argmaxk∈KD2(x(!), t(!)) is a function of x(!) and t(!). This is therefore a prob-
ability on the random variable X(!) knowing T(!) = t(!), which follows the
density pk(x(!)|t(!)). Like for every probability taken on a random variable with
density, the required probability is the integral of density over the events. So
P(k̂(x(!), t(!)) = k|t(!)) =

∫
pk(x(!)|t(!)) dx(!), where the integral is taken over

all x(!) such that k̂(x(!), t(!)) = k; this is the indicator function inside the inte-
gral in Eq. (12).

Now, P(t(!)) is independent of the key. Thus, for each given sequence x(!), t(!)

maximizing the success rate amounts to choose k = k̂ such that pk(x(!)|t(!)) is
maximized. Moreover,

pk(x
(!)|t(!)) =

q∏

i=1

pk(x
(!)
i |t(!)i ) (14)

=
q∏

i=1

∑

m(")∈M(")

P(m(!)) pk(x
(!)
i |t(!)i ,m(!)) (15)

=
q∏

i=1

∑

m(")∈M(")

P(m(!))
1∏

ω=0

pk(x
(ω)
i |t(ω)

i ,m(ω)). (16)

We used from (15) to (16) that N (ω)
i is i.i.d. across the values of i = {1, . . . , q}

and independent for ω = {0, 1}. Accordingly, argmaxk∈K of Eq. (16) forms the
optimal distinguisher D2

opt(x
(!), t(!)). )*
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Remark 1. To simplify our notation, we assume in the following that the masks
at each order are drawn from the same spaceM, with uniform probability P(M =
m) = 1/|M| and only one text byte is manipulated with the masks, as in software

implementations (cf. Ex. 1). That is, ∀i t(0)i = t(1)i = ti and, moreover, there is
only one mask m(0) = m(1) = m. Accordingly, Eq. (10) simplifies to

D2
opt(x

(!), t) = argmax
k∈K

q∏

i=1

∑

m∈M
pk(x

(0)
i |ti,m) · p(x(1)

i |ti,m). (17)

However, all our results hereafter can be easily extended to the scenario without
simplifications.

As it is most often assumed that the noise distribution at the manipulation of
each share is Gaussian (e.g., [14, 16]), we further deduce Eq. (17) for Gaussian
noise.

Proposition 3 (Second-order HOOD for Gaussian noise). Assuming that

N (ω) ∼ N (O,σ(ω)2) then the second-order optimal distinguisher becomes

D2,G
opt (x

(0),x(1), t) = argmax
k∈K

q∏

i=1

∑

m∈M

exp

{
−1
2

(
−2x(0)

i y(0)(ti, k,m) + y(0)(ti, k,m)2

σ(0)2

+
−2x(1)

i y(1)(ti, k,m) + y(1)(ti, k,m)2

σ(1)2

)}
. (18)

Proof. In this case pk(x
(ω)
i |ti,m) is the 1D Gaussian density with mean y(ω)

(ti, k,m) and standard deviation σ(ω). Removing all constants gives us the re-
quired formula. )*

As a next step we give approximations for high noise and low noise.

Corollary 4 (Second-order HOOD for high Gaussian noise). When con-
sidering that E{y(T,m, k)} = E{ϕ(f(T,m, k))} is independent of the choice of
k ∈ K (owing to Proposition 1)2, which is given in case of high noise since a large
number of measurements q is considered, then the distinguishing rule simplifies
to

D2,G,σ↑
opt (x(!), t) = argmax

k∈K

q∏

i=1

∑

m∈M

exp

{
x(0)
i y(0)(ti, k,m)

σ(0)2
+

x(1)
i y(1)(ti, k,m)

σ(1)2

}
.

(19)

Proof. In Eq. (18) we can now remove the terms y(ω)(ti, k,m)2 for ω = {0, 1}
because, E{y(T,m, k)} = E{ϕ(f(T,m, k))} is independent of k ∈ K. This gives
Eq. (19). )*
2 This assumption has been also made in [21].
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Remark 2. We see that the exact optimal distinguishing expression (Eq. (18))
operates in the direct scale, such that the function ϕ (including its scaling
factor) and thus the exact relationship between X and Y has to be known.
Whereas the distinguisher for high noise (Eq. (19)) operates in the propor-
tional scale3, thus the relationship between X and Y has only to be known
up to an irrelevant affine law. That is to say, the attacker shall know that
X(ω) = a(ω)ϕ(ω)(f (ω)(T (ω), k,m))+b(ω)+N (ω) with unknown a(ω), b(ω) ∈ R. For
more information on direct and proportional scales we refer the reader to [24].

Remark 2 already gives a hint about a possible relationship between the
second-order HOOD and second-order CPA for high noise, which we will dis-
cuss in the next subsection.

Proposition 5 (Second-order HOOD for low Gaussian noise). Assuming
that both shares have the same low noise standard deviation σ = σ(0) = σ(1) then
the optimal distinguisher reduces at first order to

D2,G,σ↓
opt (x(!), t) = argmin

k∈K

q∑

i=1

max
m∈Fn2

(x(0)
i − y(0)(ti, k,m))2 + (x(1)

i − y(1)(ti, k,m))2.

(20)

Proof. Starting from Eq. (18) and using y(ω)
i = y(ω)(ti, k,m) we have

k̂ = argmax
k∈K

q∏

i=1

∑

m∈Fn
2

exp

{
− 1

σ(0)2
(x(0)

i − y(0)i )2 − 1

σ(1)2
(x(1)

i − y(1)i )2
}
. (21)

Now as σ = σ(0) = σ(1) and as the sum over exponential reduces at first order
to the minimum we have the first order approximation for σ → 0

= argmax
k∈K

q∏

i=1

min
m∈Fn

2

exp
{
−(x(0)

i − y(0)i (ti, k,m))2 − (x(1)
i − y(1)i (ti, k,m))2

}
.

Applying the logarithm that is strictly monotonous increasing yields

= argmax
k∈K

q∑

i=1

min
m∈Fn

2

(
−(x(0)

i − y(0)i (ti, k,m))2 − (x(1)
i − y(1)i (ti, k,m))2

)
(22)

= argmin
k∈K

q∑

i=1

max
m∈Fn

2

(
(x(0)

i − y(0)i (ti, k,m))2 + (x(1)
i − y(1)i (ti, k,m))2

)
. )*

Interestingly, one can see directly from Eq. (20) that the optimal distinguisher
for low noise cannot be rewritten as correlation with any combination functions
and moreover that it operates in the direct scale. Even more, the nature of
distinguisher seems not very intuitive.

3 But not anti-proportional scale, or in other words, the “sign” has to be known.
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3.3 Comparison with Second-Order CPA

Proposition 6 (Relationship between second-order HOOD for high
noise and second-order CPA). The second-order HOOD for high noise can
be approximated as

D2,G,σ↑
opt ≈ argmax

k
〈x(0) · x(1)|

∑

m∈M
y(0)(t, k,m)y(1)(t, k,m)〉, (23)

which is all the more equivalent as the noise gets larger. Accordingly, as the noise
is larger, the closer the optimal distinguishing rule to second-order CPA with

cn-prodX (X(0), X(1)) = (X(0) − E{X(0)}) · (X(1) − E{X(1)}) and (24)

coptY (Y (!)) = E{c∗X(Y (0)(T, k,M), Y (1)(T, k,M))|T }. (25)

Proof. We use the first order Taylor expansion exp{ε} = 1+ε+O(ε2). Note that
this approximation is all the better as ε is close to zero and thus as the argument

of exp{·} his high. Starting from Eq. (19) and using y(ω)
i = y(ω)(ti, k,m), we have

D2,G,σ↑(x(0),x(1), t) = argmax
k

q∏

i=1

∑

m∈M

exp

{
1

σ(0)2
x(0)
i y(0)

i

}
exp

{
1

σ(1)2
x(1)
i y(1)

i

}

≈ argmax
k

q∏

i=1

∑

m∈M

(
1 +

1

σ(0)2
x(0)
i y(0)

i

)(
1 +

1

σ(1)2
x(1)
i y(1)

i

)
(26)

= argmax
k

q∏

i=1

∑

m∈M

(
1 +

1

σ(0)2σ(1)2
x(0)
i y(0)

i x(1)
i y(1)

i +
1

σ(0)2
x(0)
i y(0)

i +
1

σ(1)2
x(1)
i y(1)

i

)
.

(27)

In Eq. (27), owing to the perfect masking definition, the terms
∑

m∈M x(0)
i y(0)i

and
∑

m∈M x(1)
i y(1)i are constant (const(0) and const(1)). Additionally, as the

logarithm function is increasing, we consider the logarithm of the product, and
we use the approximation ln{1 + ε} = ε + O(ε2), (reciprocal of the previous
Taylor’s expansion of the exponential function), which is again all the better as
ε is close to zero and thus for high noise. Accordingly,

D2,G,σ↑(x(0),x(1), t) ≈ argmax
k

ln
q∏

i=1

∑

m∈M

(
1 +

1

σ(0)2σ(1)2
x(0)
i y(0)(ti, k,m)·

x(1)
i y(1)(ti, k,m) +

1

σ(0)2
x(0)
i y(0)(ti, k,m) +

1

σ(1)2
x(1)
i y(1)(ti, k,m)

)
(28)

= argmax
k

q∑

i=1

ln

{
1 +

∑

m∈M

1

σ(0)2σ(1)2
x(0)
i y(0)i x(1)

i y(1)i + const(0) +const(1)
}

≈ argmax
k

q∑

i=1

x(0)
i x(1)

i

∑

m∈M
y(0)(ti, k,m)y(1)(ti, k,m) + const(0) +const(1)

= argmax
k

〈x(0) · x(1)|
∑

m∈M
y(0)(t, k,m)y(1)(t, k,m)〉. (29)
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Note that we can remove the const(0), const(1) as they do not depend on the
key guess. For large number of measurements (resulting from large noise) the
argmaxk∈K of the correlation coefficient can be simplified as

argmax
k∈K

〈x− x|y(k)〉
‖x− x‖2 · ‖y(k)− y(k)‖2

≈ argmax
k∈K

〈x− x|y(k)〉. (30)

Accordingly, if x(0) and x(1) are centered, then in Eq. (29) cn-prodX = x(0) ·x(1),
and coptY =

∑
m∈M y(0)(t, k,m)y(1)(t, k,m) is the optimal prediction function.

)*

As correlation is a measure in the proportional scale, we can relax our assump-
tions made about the knowledge of the attacker. More precisely, he does not need
to know y(0) and y(1) exactly but any linear transformation l(ω)(y(ω)) = ay(ω)+b,
as it is most often assumed in the literature [16, 20]. Yet, in Prop. 6 we do not
recover the absolute value of the correlation, thus, for second-order CPA the
“sign” must be known and taking the absolute value does not result in an equiv-
alence for high noise, which is also empirically validated in our experiments in
Subsect. 3.4.

Remark 3. Prouff et al. illustrated in [16] that for large noise the improved (i.e.,
centered) product combining function has the best efficiency among the known
combination functions, which is inline with our findings in Prop. 6. Moreover,
we can claim that the improved product combining function is the most efficient
among all combining functions for high noise as it becomes equivalent to the
optimal second-order distinguisher. Moreover, our study is not restricted to a
particular HW or HD leakage model scenario as in the previous studies.

Remark 4. The determination of optimal combination functions is a vivid re-
search topic. As already mentioned, the optimality of the centered product
amongst all combination functions has been conjectured by Prouff et al. in [16].
Afterwards, mathematical arguments for optimality were given by Carlet et
al. [3], and independently by Ding et al. in [7].

Remark 5. As underlined in [20], the function to be maximized in Eq. (23) is a
straightforward generalization of Pearson’s correlation coefficient to the case of
three random variables: X(0), X(1), and E{y(0)(T, k,M)y(1)(T, k,M)|T }, where
the expectation is taken over M .

3.4 Experimental Validation

For our experimental validation we used simulations of a first-order masking
scheme where each share is leaking in the Hamming weight model to be able
to directly compare our results to previous publications conducting the same
setting [16,20] (see Example 1). We simulated the noise arising from a Gaussian
distributions N ∼ N (0,σ2) for σ = σ(0) = σ(1) ∈ {0.5, 4}. To be reliable we
conducted 500 independent experiments with uniformly distributed k∗ to com-
pute the empirical success rate. Moreover, when plotting the empirical success
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(a) σ = 0.5 (b) σ = 4

Fig. 1. Success rate for second-order attacks

rate, we additionally highlight the standard deviation of the success rate by error
bars. If the error bars do not overlap, we can unambiguously conclude that one
distinguisher is better than the other [12].

For our simulations we calculated the second-order HOOD and second-order
CPA with the normalized product and the absolute difference combination func-
tion as described in Subsect. 2.2. For a low value of σ, D2,G

opt (HOOD) clearly out-
performs 2nd-order CPA (2O-CPA) independent of the combination functions
(see Fig. 1a), which is inline with our theoretical analysis and the empirical anal-
ysis in [20]. For high values of σ, the second-order HOOD and second-order CPA
with the normalized product combining function become equivalently efficient
(see Fig. 1b), which coincides with Prop. 6. Note that as said before, taking the
absolute value of the correlation is not equivalent to HOOD, which is confirmed
in Fig. 1b.

4 Higher-Order Optimal Distinguisher (HOOD) for Any
Order

The claim in [16] that the normalized product combining function cn-prodX in
combination with coptY is optimal4 was only done for d = 1. We now extent
our investigation to (d + 1)th-order distinguishers in order to analyze if the
assumption can straightforwardly be generalized.

Theorem 7 (General HOOD). When ϕ(ω) : Fn
2 → R is known for all ω,

N (ω)
i i.i.d. across values of i = {1, . . . , q} and independent across the values of

ω = {0, . . . , d}, then the general higher-order optimal distinguisher is

Dd
opt(x

(!), t(!)) = argmax
k∈K

q∏

i=1

∑

m(")∈M(")

P(m(!))
d∏

ω=0

pk(x
(ω)
i |t(ω)

i ,m(ω)). (31)

4 Note again, that the authors used the absolute correlation coefficient of the correct
key as a measure of optimality; not the success rate.
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Proof. The proof is a straightforward extension of proof of Theorem 2. )*

Proposition 8 (HOOD for Gaussian noise). Under the same assumptions

as in Theorem 7 and additionally assuming Gaussian noise, i.e., N (ω)
i ∼N (0,σ2

ω),
Eq. (31) becomes

Dd,G
opt (x

(!), t) = argmax
k∈K

q∑

i=1

log





∑

m(")∈M(")

exp
{ d∑

ω=0

1

σ(ω)2

(
x(ω)
i y(ω)

i − 1
2
y(ω)
i

2)}



 .

(32)

Proof. As pk(x
(ω)
i |ti,m) = pk,N(ω)(x

(ω)
i − y(ω)(ti, k,m)) we have

argmax
k∈K

q∏

i=1

∑

m(")∈M(")

P(m(!))
d∏

ω=0

pk(x
(ω)
i |ti,m(ω)) (33)

= argmax
k∈K

q∏

i=1

∑

m(")∈M(")

P(m(!))
d∏

ω=0

1√
2πσ(ω)

exp
{
− 1

2σ(ω)2
(x(ω)

i − y(ω)(ti, k,m))2
}
.

Now, removing all key-independent constants yields

argmax
k∈K

q∏

i=1

∑

m∈M

d∏

ω=0

exp

{
− 1

2σ(ω)2
(x(ω)

i − y(ω)(ti, k,m))2
}

Now, as the product of exp{·} is the exp{·} of the sum and expanding the square

and removing the key-independent factor x(ω)2

i gives the required equation. )*

Proposition 9 (HOOD for high Gaussian noise). For high Gaussian noise
(low SNR) we can further approximate the HOOD to

Dd,G,σ↑
opt (x(!), t) = argmax

k

q∏

i=1

∑

m∈M
exp

{
d∑

ω=0

1

σ(ω)2
x(ω)
i y(ω)

}
, (34)

and as σ(ω) becomes large Eq. (34) becomes closer to (d+1)th-order CPA with

cn-prodX (X(!)) =
d∏

ω=0

(X(ω) − E{X(ω)}) and coptY (Y (!)) = E{c∗X(Y (!)(M,k))}.

Proof. As in the case of d = 1, we use the first-order Taylor expansion exp{ε} =
1 + ε+O(ε2). Starting from Eq. (32), we have

Dd,G,σ↑(x(0),x(1), t) = argmax
k

m∏

i=1

∑

m∈M

d∏

ω=0

exp

{
1

2σ(ω)2
x(ω)
i y(ω)

i

}
(35)

≈ argmax
k

m∏

i=1

∑

m∈M

d∏

ω=0

(
1 +

1

2σ(ω)2
x(ω)
i y(ω)

i

)
. (36)
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Now, in Eq. (36) when factorizing the product over ω all the terms not depend-

ing on all shares 1, . . . , d simultaneously, i.e.,
∏d

ω=0 x
(ω)
i y(ω)

i , do not depend on
the key due to the perfect masking definition. Moreover, following the same
argumentation as for Prop. 6, we recover that if ∀ω x(ω) are centered, then
cn-prodX =

∏d
ω=0 x

(ω), and coptY =
∑

m∈M
∏d

ω=0 y
(ω)(t, k,m) is the optimal pre-

diction function for higher-order CPA. )*

Proposition 9 shows that the normalized production combination function
combined with the optimal prediction function is therefore not only optimal for
dth-order CPA in case of d = 1 but for any value of d.

Proposition 10 (HOOD for low Gaussian noise). For low noise variance
σ = σ(0) = · · · = σ(d) the optimal distinguisher (Eq. (32)) is simplified to

Dd,G,σ↓
opt (x(!), t) = argmin

k∈K

q∑

i=1

max
m∈M

d∑

ω=0

(x(ω)
i − y(ω)

i )2 (37)

= argmin
k∈K

q∑

i=1

max
m∈M

‖x(!)
i − y(!)i ‖22. (38)

Proof. The proof is a straightforward extension of the proof for Prop. 5. )*

5 HOOD for Precomputation Masking Tables

5.1 Classical Attacks

We now consider the attack of a masking scheme using Sbox recomputation as
described in [11]. Appendix A provides a description of the underlying algorithm.

It is noteworthy that the traditional approach to reduce the multiplicity of
leakage samples by a combination cX : X d → R would fail in the setup of mask-
ing tables. Indeed, the combination functions are usually considered symmetric
into its arguments, meaning that any swap of the inputs does not affect the
combination. This (tacit) hypothesis has been made, for instance, for

– the absolute difference cdiffX (X(!)) = (|X(0) −X(1)| = |X(1) −X(0)|), and
– the centered product cn-prodX (X(!)) = ((X(0) − E{X(0)})(X(1) −E{X(1)}) =
(X(1) − E{X(1)})(X(0) − E{X(0)})).

We assume here that the attacker applies the combination function on the
leakages occurring during the Sbox recomputation (see Alg. 1), i.e., the attacker
gains 2n leakages

X(0) = ϕ(0)(M) +N (0) (39)

X(1) = ϕ(1)(M ⊕ 1) +N (1) (40)

...

X(2n−1) = ϕ(2n−1)(M ⊕ (2n − 1)) +N (2n−1), (41)
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and would apply e.g., cdiffX (X(!)) or cn-prodX (X(!)). Additionally, he measures
the leakage X(2n) = ϕ(2n)(T ⊕ k ⊕M) +N (2n) and finally combines it with the
previous combined leakages as c̄X(X(2n), cX(X(0), . . . , X(2n−1))).

Following the methodology in [16] and assuming an equal leakage function on
each share5, i.e., ϕ = ϕ(0) = · · · = ϕ(2n), the optimal function to combine the
predictions would then be

coptY = E{c̄∗X(c∗X(ϕ(M),ϕ(M ⊕ 1), . . . ,ϕ(M ⊕ (2n − 1))),ϕ(t⊕ k ⊕M))} (42)

=
1

2n

∑

m∈Fn
2

c̄∗X(c∗X(ϕ(m),ϕ(m ⊕ 1), . . . ,ϕ(m⊕ (2n − 1))),ϕ(t⊕ k ⊕m))

=
1

2n

∑

m′∈Fn
2

c̄∗X(c∗X(ϕ(m′ ⊕ k), . . . ,ϕ(m′ ⊕ k ⊕ (2n − 1))),ϕ(t⊕m′)) (43)

=
1

2n

∑

m′∈Fn
2

c̄∗X(c∗X(ϕ(M ′),ϕ(m′ ⊕ 1), . . . ,ϕ(M ′ ⊕ (2n − 1))),ϕ(t⊕m′)).

(44)

In Eq. (43), we change m for m′ = m⊕ k and in Eq. (44), the input terms at
position ζ are replaced with those at position ζ ⊕ k (because of the symmetry
property of c). Accordingly, coptY does not depend on the key k and is even
constant as the same operation can be done on t⊕k, therefore higher-order CPA
fails.

Of course, the Sbox precomputation masking scheme can be attacked by vari-
ous attacks (e.g., the classic means, collision attacks, second-order attacks) that
concentrate on specific stages of Alg. 1. However, a better attack would consist
in using altogether all the leakages from the Sbox recomputation with one (or
more) of the samples used during the computation proper (starting from line 8,
when the key is involved). One example of such strategy has been exposed in [22],
which we label as 2-stage CPA attack.

Definition 2 (2-stage CPA attack [22])

2×CPAmt(x, t) = argmax
k∈K

ρ(x(2n), y(2
n)(t, k, m̂)), (45)

where ∀i m̂i is the mask that maximizes the correlation between x(ω)
i and y(ω)

i =
ω ⊕ mi for ω ∈ [0, 2n[. This attack is a synergy between a horizontal and a
vertical attack. For each trace (separately ∀i), the first attack in Eq. (45) consists
in recovering the mask during the precomputation (lines 2 to 5 in Appendix A).
Second, a regular CPA using a model in which both the plaintext t and the
mask m are assumed as public knowledge is launched. Even if the mask m̂
is not recovered correctly for each trace (since 2n leakage samples during the
precomputation can be seen as small), it can be expected that the value of the

5 This assumption is reasonable for software implementation, which is the adequate
scenario for masking tables.
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mask is recovered by the first horizontal attack probabilistically well enough for
it to be biased, i.e., better guessed than random. This gives a rough idea of the
proof of soundness for this attack.

Nonetheless, this attack is probably not the most efficient, as it uses separately
the information available from the Sbox precomputation and from the leakage of
the AES algorithm proper. The next subsection investigates the optimal attack
and gives approximation for high and low noise.

5.2 HOOD for Precomputation Masking Tables

When using masking tables (Alg. 1) the attacker first has all leaking samples

during the precomputation, i.e., y(ω)
i = ϕ(ω ⊕m) that are independent of i for

0 ≤ ω ≤ (2n − 1), and, second, the leakage arising from the combination of the

mask m, plaintext ti and the key, i.e., y(2
n)

i = ϕ(ti ⊕ k ⊕ m). Thus, all terms
for ω ,= 2n do not depend on the key and the higher-order optimal distinguisher
from Eq. (32) can be further deduced.

Theorem 11 (HOOD for masking tables). When ϕ : Fn
2 → R is known,

N (ω)
i ∼ N (0,σ2

ω) and i.i.d. across values of i = {1, . . . , q} and independent
across the values of ω = {0, . . . , 2n}, then the higher-order optimal distinguisher
against masking tables takes the form

Dmt,G
opt (x(!), t) =

argmax
k∈K

q∑

i=1

log





∑

m∈Fn
2

exp





∑

ω∈Fn
2

1

σ(ω)2

(
x(ω)
i ϕ(ω ⊕m)− 1

2
ϕ2(ω ⊕m)

)

+
1

σ(2n)2

(
x(2n)
i ϕ(ti ⊕m⊕ k)− 1

2
ϕ2(ti ⊕m⊕ k)

)}}
. (46)

Proof. Straightforward computation from Eq. (32) yields

argmax
k∈K

q∏

i=1

∑

m∈Fn
2

∏

ω∈Fn
2

exp

{
1

σ(ω)2

(
x(ω)
i y(ω)

i − 1

2
y(ω)
i

2
)}

(47)

= argmax
k∈K

q∑

i=1

log





∑

m∈Fn
2

exp





∑

ω∈Fn
2

1

σ(ω)2

(
x(ω)
i y(ω)

i − 1

2
y(ω)
i

2
)







 (48)

Now plugging the respective leakages as described in Subsect. 5.2 gives

= argmax
k∈K

q∑

i=1

log





∑

m∈Fn
2

exp





∑

ω∈Fn
2

1

σ(ω)2

(
x(ω)
i ϕ(ω ⊕m)− 1

2
ϕ2(ω ⊕m)

)

+
1

σ(2n)2

(
x(2n)
i ϕ(ti ⊕m⊕ k)− 1

2
ϕ2(ti ⊕m⊕ k)

)}}
. )* (49)
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Proposition 12 (HOOD for masking tables for low SNR). For large
Gaussian noise (or low SNR) the distinguisher becomes

Dmt,G,σ↑
opt (x(!), t) =

argmax
k∈K

∑

ω∈Fn
2

1

σ(ω)2

q∑

i=1





x(ω)
i x(2n)

i

∑
m ϕ(ω ⊕m)ϕ(ti ⊕ k ⊕m)

− 1
2x

(2n)
i

∑
m ϕ(ti ⊕ k ⊕m)ϕ(ω ⊕m)2

− 1
2x

(ω)
i

∑
m ϕ(ω ⊕m)ϕ(ti ⊕ k ⊕m)2

+ 1
4

∑
m ϕ(ω ⊕m)2ϕ(ti ⊕ k ⊕m)2




. (50)

Proof. Due to the lack of space we neglect the term argmaxk∈K in front of
each line. Starting from Eq. (32) we use again the first-order Taylor expansion
exp{ε} = 1 + ε+O(ε2). So,

q∏

i=1

∑

m∈Fn
2

2n∏

ω=0

(
1 +

1

σ(ω)2

(
x(ω)
i y(ω)

i − 1

2
y(ω)
i

2)
+

1

2σ(ω)4

(
x(ω)
i y(ω)

i − 1

2
y(ω)
i

2)2)
.

Furthermore, an expansion at second-order gives

q∏

i=1

∑

m∈Fn
2

(
1 +

2n∑

ω=0

1

σ(ω)2

(
x(ω)
i y(ω)

i − 1

2
y(ω)
i

2)
+

1

2σ(ω)4

(
x(ω)
i y(ω)

i − 1

2
y(ω)
i

2)2

+
2n∑

ω )=ω′

1

σ(ω)2σ(ω′)2

(
x(ω)
i y(ω)

i − 1

2
y(ω)
i

2)(
x(ω′)
i y(ω

′)
i − 1

2
y(ω

′)
i

2))
. (51)

From the perfect masking condition (see Prop. 1), the first-order term

∑

m∈Fn
2

2n∑

ω=0

1

σ(ω)2

(
x(ω)
i y(ω)

i − 1

2
y(ω)
i

2)
=

2n∑

ω=0

1

σ(ω)2

(
x(ω)
i

∑

m∈Fn
2

y(ω)
i − 1

2

∑

m∈Fn
2

y(ω)
i

2)

is constant as well as

∑

m∈Fn
2

2n∑

ω=0

1

2σ(ω)4

(
x(ω)
i y(ω)

i − 1

2
y(ω)
i

2)2
(52)

=
2n∑

ω=0

1

2σ(ω)4

(
x(ω)
i

2 ∑

m∈Fn
2

y(ω)
i

2
+

1

4

∑

m∈Fn
2

y(ω)
i

4
− x(ω)

i

∑

m∈Fn
2

y(ω)
i

3)
. (53)

The other terms in ω,ω′ can be written as

2
2n∑

ω<ω′

1

σ(ω)2σ(ω′)2

(
x(ω)
i x(ω′)

i

∑

m∈Fn
2

y(ω)
i y(ω

′)
i − 1

2
x(ω′)
i

∑

m∈Fn
2

y(ω
′)

i y(ω)
i

2

−1

2
x(ω)
i

∑

m∈Fn
2

y(ω)
i y(ω

′)
i

2
+

1

4

∑

m∈Fn
2

y(ω)
i

2
y(ω

′)
i

2)
. (54)
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Moreover, all terms involving only combinations of ω < d = 2n do not depend
on the key, thus we can further simplify to the required equation

∑

ω∈Fn
2

1

σ(ω)2

(
q∑

i=1

x(ω)
i x(2n)

i

∑

m∈Fn
2

y(ω)y(2
n) − 1

2
x(2n)
i

∑

m∈Fn
2

y(2
n)y(ω)2 (55)

−1

2
x(ω)
i

∑

m∈Fn
2

y(ω)y(2
n)2 +

1

4

∑

m∈Fn
2

y(ω)2y(2
n)2



 . )*

Proposition 13 (Relationship between HOOD and CPA for masking
tables). When all noise variances are equal, i.e., σ = σ(ω) ∀ω, Eq. (50) further
simplifies to

Dmt,G,σ↑
opt (x(!), t) = argmax

k∈K

∑

ω∈Fn
2

q∑

i=1

(
x(ω)
i x(2n)

i

∑

m∈Fn
2

ϕ(ω ⊕m)ϕ(ti ⊕ k ⊕m)

− 1

2
x(ω)
i

∑

m∈Fn
2

ϕ(ω ⊕m)ϕ2(ti ⊕ k ⊕m)
)
, (56)

which becomes close to a combination of higher-order CPAs, i.e.,

Dmt,σ↑
C-CPA(x

(!), t) = argmax
k∈K

∑

ω∈Fn
2

ρ(cn-prodX (x(ω),x(2n)), coptY (y(ω),y(2n))) (57)

− 1

2
ρ(x(ω), coptY (y(ω),y(2n)2)).

Proof. If all the variances are equal we have

∑

ω∈Fn
2

ϕ2(ω ⊕m)

σ(ω)
=

1

σ

∑

ω∈Fn
2

ϕ2(ω ⊕m) =
1

σ

∑

ω∈Fn
2

ϕ2(ω). (58)

So, regarding the second term in Eq. (50) we have

∑

ω∈Fn
2

1

σ(ω)2

q∑

i=1

x(2n)
i

∑

m∈Fn
2

ϕ(ti ⊕ k ⊕m)ϕ(ω ⊕m)2 (59)

=
q∑

i=1

x(2n)
i

∑

m∈Fn
2

ϕ(ti ⊕ k ⊕m)
∑

ω∈Fn
2

1

σ(ω)2
ϕ(ω ⊕m)2 (60)

=
q∑

i=1

x(2n)
i

∑

m∈Fn
2

ϕ(ti ⊕ k ⊕m)
∑

ω∈Fn
2

1

σ2
ϕ(ω)2 (61)

=
q∑

i=1

x(2n)
i

∑

m∈Fn
2

ϕ(ti ⊕m)
∑

ω∈Fn
2

1

σ2
ϕ(ω)2, (62)
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which clearly does not depend on the key k. The same goes for the fourth term,
which proofs the first part. Now, rewriting Eq. (56) gives

argmax
k∈K

∑

ω∈Fn
2

〈x(ω)x(2n) |
∑

m∈Fn
2

ϕ(ω ⊕m)ϕ(t ⊕ k ⊕m)〉

−〈1
2
x(ω) |

∑

m∈Fn
2

ϕ(ω ⊕m)ϕ2(t⊕ k ⊕m)〉, (63)

and using the same argumentation as in the proof of Prop. 9 gives the required
formula from the second part. )*

Interestingly, instead of using one CPA to recover the mask and one to recover
the secret key (see Def. 2) we recover that the best methodology is to attack each
share ω < 2n with ω = 2n (minus a regulation term) and then use a combination
of all attacks. Note again that we can make the same relaxations about the
leakage model as done in Subsect. 3.3.

Remark 6. For low noise, we can straightforwardly use Prop. 10, which is vali-
dated in our empirical results.

5.3 Experimental Validation

To empirically validate our theoretical results we use simulations of a first order
masking scheme with precomputation tables. We target the xor operation in the
precomputation phase and the AddRoundKey of the algorithm (see line 3 and
line 8 of Alg. 1 in Appendix A).

Thus, we have the same leakages as depicted in Examples 2, where for com-
putationally reasons for all distinguishers we only target four bits (n = 4).

Remark 7. Targeting the AddRoundKey phase has some advantages. First, it
allows to perform the evaluation on only four bits without the loss of generality
of using a four bits Sbox. Second, in the Sbox precomputation algorithm of
Coron [6] the output masks are different for each entry of the Sbox and could
therefore not be combined with the mask of the precomputation table. However,
as in our analysis the attacker can still take advantage of the 2n leakages of
the masked inputs of the Sbox combined with the leakage of the AddRoundKey
operation.

Similarly to the previous experiments, T is uniformly distributed over F4
2 and

the noise is arising from a Gaussian distribution N ∼ N (0,σ2) for σ = σ(0) =
... = σ(16) ∈ {0.5, 5}. Again to compute the success rate we conducted 500
independent experiments with uniformly distributed k∗ and shaded the success
rate with error bars.

Figure 2 shows the success rates. For low noise (σ = 0.5) the optimal dis-
tinguisher (HOOD) and its approximation for low noise (HOOD-low) perform
similar and better than the 2nd-order CPA (2O-CPA) with normalized product
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(a) σ = 0.5 (b) σ = 5

Fig. 2. Success rate for masking tables

combination function and the 2-stage CPA in Eq. 45 (2xCPA). Naturally, all dis-
tinguishers outperform 2nd-order CPA as it only utilizes two leakages X(0) and
X(256). For higher noise (σ = 5) the HOOD and its approximation for high noise
(HOOD-high) perform better than the 2-stage CPA (2xCPA) and 2nd-order CPA.
Moreover it can be noticed that the distinguisher based on combinations of CPA
(Eq. (57)) (C-CPA) and the optimal ones are equally efficient. Accordingly, we
have empirically validated that our new distinguisher approximated from the
HOOD is valid for high noise and more efficient than the two-stage CPA. In
particular, it requires around 1000 traces less to reach P̂S = 90% for σ = 5.

6 Conclusions and Perspectives

We have found the optimal distinguishers for higher-order masking, and espe-
cially, analyzed the application of second-order distinguisher and distinguisher
against masking tables. This gives the first theoretical proof that for a high noise
non-profiled second-order CPA becomes as efficient as the optimal distinguisher
in terms of success rate. In particular, we explain that the normalized product
combining function with the optimal prediction function [16] is sound and the
optimal one among all (known and unknown) combination functions. We fur-
thermore extended this result to (d + 1)th-order distinguisher, which has not
been analyzed before. For low noise, the optimal distinguisher does not reduce
to any kind of correlation. In the application of masking tables we provide a
new distinguisher based on correlation whose again is as efficient as the optimal
distinguisher in case of high noise. Naturally, this new distinguisher outperforms
all known (non-profiled) distinguisher for this application. Given all these results
we theoretically and empirically show that for high noise the security analysis
with non-profiled distinguisher is sufficient as it coincides with the optimal dis-
tinguisher.
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These results raise various new perspectives. First of all, our methodology of
starting from the optimal distinguisher and deriving approximated distinguisher
could be applied to other scenarios. One application, for example, could be the
scenario used in [17]. Moreover, future work should deal with the exact analysis
of the impact of noise on the masking efficiency in a theoretical manner. This
comes along with an analysis of the impact of the number of shares, in particular,
with an investigation of the arguments done in [15,23] about exponential attack
complexity.
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A Algorithm of Masking Tables

input : t, one byte of plaintext, and k, one byte of key
output : The application of AddRoundKey and SubBytes on t, i.e.,

S(t⊕ k)

1 m ←R Fn
2 , m

′ ←R Fn
2 // Draw of random input and output masks ;

2 for ω ∈ {0, 1, . . . , 2n − 1} do // Sbox masking
3 z ← ω ⊕m // Masked input ;
4 z′ ← S[ω]⊕m′ // Masked output ;
5 S′[z] ← z′ // Creating the masked Sbox entry ;
6 end
7 t ← t⊕m // Plaintext masking ;
8 t ← t⊕ k // Masked AddRoundKey ;
9 t ← S′[t] // Masked SubBytes ;

10 t ← t⊕m′ // Demasking ;
11 return t

Algorithm 1. Beginning of a block cipher masked by Sbox precomputation

We have indicated the words length of all data as n, typically, n = 8 bit for
AES. Two random masks m and m′ are drawn initially from Fn

2 and all the data
manipulated by the algorithm will be exclusive-ored with one of the two masks.

Masking the plaintext is straightforward (see line 7). Key addition can be done
safely as a second step, as the plaintext is already masked (see line 8). Passing
through the Sbox is less obvious, as this operation is non-linear. Therefore, the
Sbox is recomputed masked, as shown on lines 2 to 5: a new table S′, that has
also size 2n × n bits, is required for this purpose. In the Sbox precomputation
step (lines 2 to 5), the key byte k is not manipulated. The leakage only concerns
the mask.


