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From Almost Gaussian to Gaussian Bounding Differences of Differential Entropies

We consider lower and upper bounds on the difference of differential entropies of a Gaussian random vector and an almost Gaussian random vector after both are "smoothed" by an arbitrarily distributed random vector of finite power. These bounds are important to prove the optimality of corner points in the capacity region of Gaussian interference channels. The upper bound, presented in MaxEnt-2014, follows from the data processing inequality (DPI). For the lower bound we consider a class of almost Gaussian distributions and use the DPI and a symmetry argument. We also show a counterexample that disproves a conjecture we proposed in MaxEnt-2014 regarding a certain difference of integrals.

I. INTRODUCTION

The bounding problem we consider is motivated by the Gaussian interference channel. For simplification, we consider the degraded Gaussian interference channel. This model is shown in Fig. 1. The channel outputs are given by Y 1 = X 1 + Z 1 and Y 2 = X 1 + X 2 + Z 1 + Z 2 , where X 1 and X 2 are independent input signals constrained to have average powers P 1 and P 2 , respectively, and Z 1 and Z 2 are Gaussian noise variables with variances equal to 1 and N 2 , respectively. The receivers are interested in messages sent by their respective transmitters. Thus X 1 encodes a message addressed to receiver 1 and X 2 sends a message to receiver 2.

II. PRELIMINARIES

The capacity of an additive white Gaussian noise channel Y = X + Z, with X constrained to power P and Z distributed according to N (0, N ), is well known to be C = 1 2 log 2 (1 + P/N ) bits per transmission, or bits per dimension.

The degraded interference channel of Fig. 1 has outputs given by

Y 1 = X 1 + Z 1 Y 2 = X 1 + X 2 + Z 1 + Z 2 . ( 1 
)
We denote vectors by boldface letters and scalar random variables by capital Roman letters. H(•) is used to denote Shannon's entropy and h(•) denotes differential entropy. I(•;•) denotes mutual information.

One of the corner points of the capacity region of this channel is known as the Sato point. Its coordinates are

(R 1 , R 2 ) = ( 1 2 log(1 + P 1 ), 1 2 log(1 + P2 1+P1+N2 
)), the rate pair produced when transmitter 1 occupies the channel at its maximum possible rate and transmitter 2 takes up whatever is leftover, considering X 1 's signal as noise [START_REF] Sato | On degraded Gaussian two-user channels[END_REF]. Fig. 2 shows the two corner points in the achievable rate region of the degraded Gaussian interference channel. The Sato point is the star in the lower right. It is a point in the curved boundary of the capacity region of the associated broadcast channel with power P = P 1 + P 2 , also graphed in Fig. 2.

The corner point in the other side of the achievable region (the upper left star), known as the missing corner point [START_REF] Kramer | Review of rate regions for Interference Channels[END_REF], is produced when transmitter 2 takes up the channel at its maximum possible rate and requires that transmitter 1 do not inflict a reduction in its rate (R 2 ) by more than an infinitesimal amount. The point coordinates are

(R 1 , R 2 ) = ( 1 2 log(1 + P1 1+P2+N2 ), 1 2 log(1 + P2 1+N2 ))
. Thus R 1 is the capacity of a Gaussian channel with signal power P 1 and noise power 1 + P 2 + N 2 , and R 2 is the capacity of a channel with signal power P 2 and noise power 1 + N 2 . To establish that this is a corner point in the capacity region of the degraded channel we need to demonstrate that all communication between X 1 and Y 1 will be fully decoded by Y 2 as well, even if this is not a requirement of the interference channel model.

The difficulty in demonstrating this bound arises from a lack of a Fano type inequality that requires the conditional equivocation of X 1 given Y 2 , H(X 1 |Y 2 ), to be n times a small number that goes to zero as the probability of error decoding X 1 at Y 2 goes to zero, with n being the code length. This Fano type inequality does not exist because Y 2 is not required to decode X 1 in the interference channel model.

To produce a Fano type inequality that leads to the desired demonstration, we consider the difference between H(X 1 |Y 2 ) and H(X 1 |Y 3 ), where Y 3 is an auxiliary random vector produced by the sum of X 1 and an independent Gaussian noise vector of covariance (1+N 2 +P 2 )I, I being the identity matrix. This motivates the title of this paper. We need to bound the difference in the equivocation of X 1 when it is seen at Y 2 , a signal that is produced by X 1 added to the almost Gaussian signal Z 1 + Z 2 + X 2 , and when it is seen at the output of a channel with X 1 as the input and additive white Gaussian noise of power (1+N 2 +P 2 ). To simplify the model we let Y 3 be given by

Y 3 = X 1 + Z 1 + Z 2 + Z 3 , where Z 3 is Gaussian with variance P 2 .
Consider scalar variables for a moment. By the chain rule we have

H(X 1 |Y 2 ) = H(X 1 ) + h(Y 2 |X 1 ) -h(Y 2 ) = H(X 1 ) + h(Z 1 + Z 2 + X 2 ) -h(Y 2 ) (2) 
and

H(X 1 |Y 3 ) = H(X 1 ) + h(Y 3 |X 1 ) -h(Y 3 ) = H(X 1 ) + h(Z 1 + Z 2 + Z 3 ) -h(Y 3 ). (3) 
Subtracting gives

H(X 1 |Y 3 ) -H(X 1 |Y 2 ) = h(Z 1 + Z 2 + Z 3 ) -h(Z 1 + Z 2 + X 2 ) + h(Y 2 ) -h(Y 3 ). (4) 
Since the Gaussian distribution maximizes entropy given a power constraint, and from the hypothesis related to the extreme point where R 2 is maximal, we have that h(Z

1 +Z 2 + Z 3 ) -h(Z 1 + Z 2 + X 2
) is bounded below by zero and above by a diminishing 1 [START_REF] Costa | On the Gaussian interference channel[END_REF] (the almost Gaussian assumption). Now we consider the vector version of (4). We have that

h(Y 2 ) -h(Y 3 ) ≤ H(X 1 |Y 3 ) -H(X 1 |Y 2 ) ≤ n 1 + h(Y 2 ) -h(Y 3 ) (5) 
It is clear that, to bound the difference of equivocations H(X 1 |Y 3 ) -H(X 1 |Y 2 ), we need to obtain upper and lower bounds for the difference of differential entropies

h(Y 3 )-h(Y 2
). An earlier attempt to bound this difference [START_REF] Costa | On the Gaussian interference channel[END_REF]Appendix B] resulted in a bound with a faster than linear dependence on n, as noted in [START_REF] Sason | On achievable rate regions for the Gaussian interference channel[END_REF], which impaired the usefulness of the bound.

In [START_REF] Costa | From almost Gaussian to Gaussian[END_REF], we presented an upper bound based on the data processing inequality (DPI) for h(Y 3 ) -h(Y 2 ), which is repeated below for convenience.

III. UPPER BOUND

We obtain an upper bound on h(Y 3 ) -h(Y 2 ). Since X 2 needs to communicate with Y 2 , we have from Fano's inequality that H(X 2 |Y 2 ) ≤ n 2 , where 2 goes to zero as the probability of error disappears. As X 1 and X 2 are independent, we observe that

I(X 1 ; Y 2 ) = I(X 1 ; Y 2 |X 2 ) -I(X 1 ; X 2 |Y 2 ) ≥ I(X 1 ; Y 2 |X 2 ) -n 2 = H(X 1 ) -H(X 1 |X 1 + Z 1 + Z 2 ) -n 2 = I(X 1 ; X 1 + Z 1 + Z 2 ) -n 2 ≥ I(X 1 ; Y 3 ) -n 2 , (6) 
by the DPI. Equivalently,

h(Y 3 ) -h(Y 2 ) ≤ h(Y 3 |X 1 ) -h(Y 2 |X 1 ) + n 2 = h(Z 1 + Z 2 + Z 3 ) -h(Z 1 + Z 2 + X 2 ) + n 2 ≤ n( 1 + 2 ), (7) 
by the almost Gaussian assumption.

IV. TOWARDS A LOWER BOUND

We now consider a lower bound for the difference h(Y 3 )h(Y 2 ). Let f denote the probability density function of Z 1 + Z 2 + X 2 , the almost Gaussian density, and let g denote the Gaussian density of Z 1 + Z 2 + Z 3 . We assume that the covariance matrices of f and g are identical and that 0 ≤ h(g)-h(f ) ≤ n 1 . We also write f = g+∆f , at this point making no particular assumptions about ∆f . Then we can expand the Kullback-Leibler (KL) divergence of f from g as

D(f g) = h(g) -h(f ) + (g -f ) log g = h(g) -h(f ) ≤ n 1 ,
using the assumption of equal covariance matrices. Now we assume that X 1 has density p, arbitrary except for the finite power, and consider the effect of smoothing f and g by the addition of X 1 . Strictly, X 1 may not have a density as it is typically drawn from a finite set of codewords (a "porcupine" distribution). We assume the existence of p for ease of notation since Gaussian smoothing guarantees the existence of all considered probability densities. We denote the convolution of g and p by g * p. By the DPI we have that

0 ≤ D(f * p g * p) ≤ D(f g) ≤ n 1 . (8) 
Expanding as before we get

0 ≤ h(g * p) -h(f * p) + (g * p -(g + ∆f ) * p) log(g * p) ≤ n 1 , (9) 
or

0 ≤ h(g * p) -h(f * p) -(∆f * p) log(g * p) ≤ n 1 . (10) Equivalently, 0 ≤ h(Y 3 ) -h(Y 2 ) -(∆f * p) log(g * p) ≤ n 1 . ( 11 
)
This inequality is key to getting the desired lower bound.

In [START_REF] Costa | From almost Gaussian to Gaussian[END_REF], in order to establish the lower bound, we conjectured that the positive integral given by D(f g) + D(g f ) = (f -g) log f would maintain its sign after smoothing by p. This conjecture turns out to be false and we present a counterexample in the Appendix.

V. LOWER BOUND FOR A CLASS OF DISTRIBUTIONS f

To establish the required lower bound, we can map the loci of authorized points for the quantities h(Y 3 ) -h(Y 2 ) and -(∆f * p) log(g * p) in a graph, as shown in Fig. 3. The valid points are laid on a diagonal strip of width n 1 and the upper bound on h(Y 3 ) -h(Y 2 ) further restricts the allowed values to the left of the n( 1 + 2 ) mark in the horizontal axis. We now look at the characteristics of the deviation function ∆f . Notice that ∆f = x∆f =

x 2 ∆f = 0, as the first order moments of f and g are identical 1 . It is known that D(f g) = 0 if and only if f = g almost everywhere. The smoothing produced by the additive Gaussian noise takes care of excluding problematic convergence behavior. Since D(f g) = (f -g) ≤ n 1 , we assume that ∆f will converge pointwisely to 0 as n → ∞ and 1 → 0. Thus we consider the class of densities f = g + ∆f for which |∆f | g. Because of the assumption that ∆f converges to 0, we argue that this condition will be prevalent among all qualifying distributions f . Considering this class of distributions, we note that the capacities of the channel from X 2 to Y 2 (with X 1 = 0) induced by distributions f + ∆f and f -∆f are the same, up to second order terms. This can be seen by expanding

0 ≤ h(g) -h(g + ∆f ) = -g log g + (g + ∆f ) log(g + ∆f ) = g log g + ∆f g + ∆f log g + ∆f g , (12) 
1 We assume, without loss of generality, that EX 2 = EZ 3 = 0.

where we used the fact that ∆f log g = x 2 ∆f = 0. For ∆f g we can use Taylor series expansion to obtain

h(g) -h(g + ∆f ) = ∆f -(∆f ) 2 2g + (∆f ) 2 g + o( (∆f ) 2 g ) = (∆f ) 2 2g + o( (∆f ) 2 g ) ≤ n 1 . (13) 
Similarly we have

0 ≤ h(g) -h(g -∆f ) = (∆f ) 2 2g + o( (∆f ) 2 g ) ≤ n 1 . ( 14 
)
To visualize the fact that f + ∆f and f -∆f induce the same achievable rates, we can imagine a hypersphere of radius n(1 + N 2 + P 2 ). The typical set of the X 2 codewords plus the Gaussian noise will be in the shell of this hypersphere with positive deviations from g at positions that are related to codeword locations in the √ nP 2 -radius codebook hypersphere. So changing f + ∆f to f -∆f is similar to replacing crests by troughs in the bumpy hyperspherical shell, which amounts to a simple rotation in the X 2 codebook.

We now note that any valid bound for functions of ∆f will also imply a symmetric bound corresponding to -∆f as these two deviation functions from g are equally able to produce achievable rates. Considering that the vertical ordinate -(∆f * p) log(g * p) depends of f only through ∆f , we can, by symmetry, further limit the authorized points in the plane to those lying below the n( 1 + 2 ) mark in the vertical axis. Finally we observe that the authorized region for the points is situated in the square box of sides 2n( 1 + 2 ) centered at the origin, as depicted in Fig. 4. Thus we have the desired lower bound on h(Y 3 ) -h(Y 2 ).
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Fig. 4. Bounded supports for horizontal and vertical ordinates.

These arguments are good indication that we can indeed limit the support of h(Y 3 ) -h(Y 2 ) to a vanishing interval around the origin. This is valid for the class of distributions f = g + ∆f for which ∆f g, that is, close to the limit as f → g, but with no restrictions on the interfering distribution p of X 1 .

VI. CONCLUSION

In this paper we investigate upper and lower bounds for a difference of differential entropies that arise in the study of Gaussian interference channels. The upper bound follows from the DPI and was presented earlier in [START_REF] Costa | From almost Gaussian to Gaussian[END_REF]. The lower bound is established for a class of distributions f such that, for high values of n, the deviation ∆f from g is negligible. The argued bounds on the difference of differential entropies lead to upper and lower bounds on H(X 1 |Y 3 )-H(X 1 |Y 2 ). This provides a Fano type inequality that allows us to apply the lower bound on equivocation given in [START_REF] Costa | On the Gaussian interference channel[END_REF]Appendix C] to establish the validity of the second corner point of the Z-Gaussian interference channel. This lower bound on equivocation is a consequence of the concavity of the entropy power with increasing Gaussian smoothing. As in [START_REF] Costa | On the Gaussian interference channel[END_REF], this result can be extended to the corner points in the standard Gaussian interference channel with less than strong interference, i.e., with interference gains in the interval (0, 1).

In conclusion, we make reference to two recent papers [START_REF] Sason | On the corner points of the capacity region of a two-user Gaussian interference channel[END_REF], [START_REF] Bustin | The effect of maximal rate codes on the interfering message rate[END_REF] that also address this intriguing limiting problem. APPENDIX A. THE SIGN OF (f * p -g * p) log(f * p)

In our MaxEnt paper [START_REF] Costa | From almost Gaussian to Gaussian[END_REF], we conjectured that the positive integral given by D(f g) + D(g f ) = (f -g) log f ≥ 0 would maintain its sign after smoothing by p. This conjecture turns out to be false and we present below a counter-example in one dimension (n = 1) in which (f * p -g * p) log(f * p) assumes negative values.

We use the Hermite coordinate system described in [START_REF] Abbe | A coordinate system for Gaussian networks[END_REF]. Let f = (1 + H)g P and p = (1 + H )g Q , where g P and g Q denote zero-mean Gaussian densities of variances P and Q, respectively. Here H and H are polynomials of even degree, expressed as sums of Hermite polynomials of order ≥ 3 in the corresponding Hilbert space L 2 (g P ) and L 2 (g Q ), respectively. Because of the degrees are even, the quantity can be set to some small positive value such that both f and p are non negative. Also, since H and H are orthogonal to polynomials of degree ≤ 2 in their corresponding Hilbert spaces, f and p share the same moments up to second order as g P and g Q , respectively. Thus f = p = 1, xf (x) dx = xp(x) dx = 0, and x 2 f (x) dx = P , x 2 p(x) dx = Q.

We now compute f * p and g * p using an extended version of [START_REF] Abbe | A coordinate system for Gaussian networks[END_REF]Theorem 2] which is stated in the last section of [START_REF] Abbe | A coordinate system for Gaussian networks[END_REF]. For completeness we provide a short proof in the next section of this Appendix. One obtains

f * p = (1 + H + H + 2 H )g P +Q , g * p = (1 + H )g P +Q , (15) 
for appropriately computed polynomial terms H, H and H . Expanding to second-order terms, this leads to

(f * p -g * p) log(f * p) = 2 H 2 + H | H + o( 2 ), (16) 
with norm and inner product defined in L 2 (g P +Q ). This quantity can be negative because the inner product can be sufficiently negative to more than cancel the squared norm of H. Consider, for example, P = Q = 1, and H = H 3 + δH 4 and H = -2H 3 + δH 4 , where δ equals some arbitrarily small positive value (intended to yield even degree polynomials [START_REF] Abbe | A coordinate system for Gaussian networks[END_REF]) and H 3 and H 4 are Hermite polynomials of degrees 3 and 4, respectively. Then a simple calculation yields H 2 + H | H = 1 2 2 -3 + δ 2 2 -4 -2 • 2 -3 + δ 2 2 -4 = (-1 + δ 2 )/8 which is negative. This disproves our conjecture regarding the sign of (f * p -g * p) log(f * p). [START_REF] Abbe | A coordinate system for Gaussian networks[END_REF] Theorem 1. Let H P k (x) = 1 √ k! H k x/ √ P , k ∈ N, be the Hermite orthonormal basis of L 2 (g P ) as defined in [START_REF] Abbe | A coordinate system for Gaussian networks[END_REF]. Then

B. A SHORT PROOF OF THE EXTENDED THEOREM 2 IN

(H P k •g P ) * (H Q l •g Q ) = k + l k P k Q l (P + Q) k+l •H P +Q k+l •g P +Q . (17) 
Proof: By the definition of the Hermite polynomial, the kth order derivative of g P is given by g 

H P k •g P * H Q l •g Q = (-1) k+l P k/2 Q l/2 √ k!l! g (k) P * g (l) Q = (-1) k+l P k/2 Q l/2 √ k!l! g (k+l) P +Q = P k/2 Q l/2 √ k!l!
(k + l)! (P + Q) (k+l)/2 H P +Q k+l g P +Q
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 1 Fig. 1. Degraded Gaussian interference channel.
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 2 Fig. 2. Achievable rate region for the degraded Gaussian interference channel.

Fig. 3 -Fig. 3 .

 33 Fig.3

  2 H P k • g P where the constant term is due to the normalization in the definition of H P k . Using this definition and the well-known relation g P * g Q = g P +Q , we obtain
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