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Voltage bistability is demonstrated at low temperature in a biased unipolar GaAs/AlGaAs superlattice, using a
design based on tunneling from a charge reservoir into a Wannier-Stark ladder and competition between nearest
and next-nearest neighbor coherent injection channels. The static conduction characteristics are accounted for
by a density matrix approach of coherent injection in an inhomogeneous three-level system with resistive load.
Electrostatic retroaction on the energy levels is shown to provide an adequate nonlinear feedback mechanism
for bistability, as well as for other instability regimes including sustained Bloch oscillation above a retroaction
threshold.
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I. INTRODUCTION

In a biased semiconductor superlattice, electrons injected
in a Bloch state initially oscillate at the Bloch frequency, the
frequency of the energy quantum they acquire from the field
over one superlattice period [1]. They are then scattered and the
stationary regime of nonlinear electronic transport arises [2].
On one hand, THz emission relying on Bloch oscillation has
been demonstrated thanks to coherent injection of Bloch elec-
trons in bipolar structures, such as p-i-n junctions, by means
of ultrashort optical pulses [3–6]. Superlattice Bloch states
are excited quasi-instantaneously and well-defined oscillations
start. However, the time-resolved experiments show that the
Bloch oscillation is damped, and shortly after excitation THz
radiation emission dies out. Within the quantum picture, a
Bloch state is a superposition of localized eigenstates, the
Wannier-Stark states [7,8], which generates coherent quantum
oscillations and THz radiation. Electrons optically prepared
in a Bloch state fully relax into the stationary Wannier-
Stark states after a few coherence times and THz emission
ceases. On the other hand, Bloch oscillation has not been
observed in unipolar structures despite extensive experimental
investigation of nonlinear transport in superlattices, neither
with the aid of adequate high-frequency circuitry nor through
direct optical excitation as in bipolar structures.

In unipolar devices, miniband conduction and the miniband
negative differential velocity are well-established, in agree-
ment with the Esaki-Tsu law, which is derived from both
semiclassical and quantum transport [9–11]. In this regime
of nonlinear transport that does not involve Bloch oscillations,
the coherent oscillatory dynamics is averaged out. However,
oscillations of the charge density may be generated owing to
the negative differential velocity. High-performance electronic
devices such as oscillators and mixers have been developed,
up to the millimeter-wave range [12]. They are based on
convective instabilities of the electron density [13], with
dipolar domain buildup and propagation across a superlattice
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layer [14]. High-frequency limitations depend on the domain
transit time and the ratio g between the domain transit time
and the dielectric relaxation time.

In fact, an electronic oscillator based on sustained Bloch
oscillation turns out to be out of reach using the usual schemes
of ohmic injection of the electrons into a semiconductor
superlattice region [15]. The reason is that the coherence
time of the Wannier-Stark states (in the picosecond or
subpicosecond time scale, depending on the temperature)
is an upper limit for the Bloch period and is significantly
shorter than the transit times ever achieved in superlattice
oscillators (∼7 ps in Ref. [16]). In a Bloch oscillator, the
transit time must become smaller than the coherence time
in order to minimize the convective instability gain [17],
or at least be very significantly reduced in comparison to
the superlattice oscillators based on negative differential
velocity. An increase of the doping of the superlattice is then
required to maintain the condition g ∼ 1 for dipolar domain
instabilities [18–20], but this condition cannot be fulfilled
in practice for the resulting current densities lie beyond the
breakdown threshold. In addition, in such transit-time devices,
the electrons never build by themselves any coherent state
through a coherent superposition of Wannier-Stark states and,
in contrast to optically excited carriers, their motion cannot
generate radiation.

Instead of ohmic injection, resonant tunneling provides a
coherent injection mechanism from an injection region into
different states of an active region [21]. Such injection schemes
have been developed for the electrons in quantum cascade
lasers (QCLs) in order to reach population inversion [22].
The latter operate in the infrared, up to the THz range [23].
Let us stress however that tunneling injection plays a role
fundamentally different here from the one sought in QCLs. In a
QCL, injection aims at concentrating the current into the upper
state of the laser transition, while the other accessible states
are regarded as parasitic channels. Under vanishing inversion
conditions, the gain spectrum takes a dispersive shape [24–27],
thus reflecting a stationary transport mechanism based on
sequential tunneling between successive Wannier-Stark
subbands with transverse momentum exchange [28]. On the
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contrary, an electronic oscillator based on sustained Bloch
oscillation requires an inversionless injection scheme where
an electron is injected into several Wannier-Stark states
simultaneously and oscillates in the coherent superposition of
the states. These Bloch oscillations may lead to the emission
of THz radiation before decoherence damps them [29]. Such
an out-of-equilibrium regime is expected to take place when
electron transport is faster in the coherent injection channels
than in the superlattice miniband, i.e., when the Bloch
oscillations in the superposition of states occurs before the
stationary transport regime is established in the superlattice.

Here, we investigate a purely electronic injection scheme
into two consecutive Wannier-Stark states of a miniband simul-
taneously. More precisely, electrons from an injector quantum
well can competitively tunnel into the far-from-resonance state
of the nearest-neighbor well and into the resonant state of
the next-nearest-neighbor well [30]. Tunneling into the next-
nearest well has been observed previously in superlattices [31],
but not into the ground state of the next-nearest well. This is
a key point here to generate coherence in the ground states.
Nearby resonance, voltage bistability between two current-
controlled injection regimes is evidenced experimentally and
theoretically. Such a behavior reflects an intrinsic charge
instability of tunnel injection, a conduction instability rather
than a dielectric instability, in which electronic charge can be
coherently transferred back and forth between two wells via
a third well—the injector well—in strong interaction with the
other two. We then show that, under appropriate charge density
and flow conditions, a CW Bloch oscillation can be initiated in
the superlattice, in which coherent oscillation is sustained by
the coherent tunnel injection of the electrons together with a
nonlinear dynamics governed by electrostatic feedback. This
is in stark contrast to usual resonant tunneling schemes into
a single dominant channel. In a resonant tunneling diode
(RTD), the current is switched between two voltage-controlled
charge density states and two stable voltage branches due to
electrostatic feedback [32], and only the injection mechanism
is coherent. THz QCLs are based on the same injection and
voltage-control schemes as RTDs, but they have to operate
outside the regions of current switching instability. They are
much more sensitive to the buildup of field domains than
RTDs and their design rather demands special care to suppress
parasitic instabilities in order to get controllable and stable
lasing effect.

We report on our experimental approach in Sec. II,
namely the design and characterization of unipolar injector-
superlattice structures for coherent injection. Section III is
devoted to the quantum transport model implemented to
account for the experimental results. In Sec. IV, we extrapolate
our model to slightly more conducting structures to further
investigate the nonlinear dynamics in connection with the
Bloch oscillation.

II. ELECTRICAL CHARACTERIZATIONS OF COHERENT
INJECTION IN A SUPERLATTICE

Implementation of coherent injection into a Wannier-Stark
ladder demands the injected electrons to be strongly coupled
to the superlattice; otherwise scattering is expected to
destroy coherence before injection has significantly occurred.

FIG. 1. (Color online) Conduction band diagram at operating
bias of next-nearest-neighbor injected superlattice with N = 5 cou-
pled quantum wells. Only one basic pattern and an extra injector with
its injection and extraction barriers are displayed. δi is the resonance
splitting of resonant injection into Wannier-Stark state p = 2, δ′

i the
resonance splitting of nonresonant injection into Wannier-Stark state
p = 1, and δe is the resonance splitting of resonant extraction from
Wannier-Stark state p = 5. The wavy arrows indicate incoherent
relaxation through LO-phonon emission.

However, coupling strength must be notably smaller than the
Bloch energy, so that the perturbation of the Wannier-Stark
ladder by coupling remains negligible. This sets definite
bounds to the design and investigation of coherent injection
in superlattice structures.

A. Structure design

Figure 1 shows a schematic band diagram under negative
uniform electric field. Active regions are separated by injection
regions. A unit cell of the structure consists of an injector
region and a superlattice active region with a constant period.
Several unit cells may be stacked, especially for modeling
of the electronic structure. The stacking is terminated by an
injector sending the carriers into contact layers. In practice,
structures with only one unit cell are investigated experimen-
tally here. The active region is a superlattice with N wells,
N − 1 barriers, and period d (“superlattice” in Fig. 1). The
injection and the extraction barriers have thicknesses different
from the barrier thickness in the bulk of the superlattice.
The superlattice is short enough to push up the transit-time
resonance frequency near the Bloch frequency. Due to electron
negative differential velocity in the superlattice, transit-time
effects take place through the active region and give rise to
linear (small-signal) electrical gain around a Hakki resonance,
the frequency of which is equal to the inverse of the transit
time [10]. The Hakki resonance may generate instable behavior
even when g < 1, if the impedance of the load circuit
compensates the impedance of the device [33]. In fact, the
resonance should be located beyond the Bloch frequency to
fully ensure that transit-time effects do not play any role.
When located nearby the Bloch frequency, enhancement of
the charge instabilities by the linear gain is expected, while
strict impedance matching remains very unlikely with weakly
doped superlattices (g � 1).
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There is only one confined miniband in the active region
so that Zener tunneling to higher minibands is minimized.
The injector is a wider well than in the superlattice, with
two confined levels separated by a LO-phonon energy. In
cascaded structures where the basic pattern is repeated, at the
design bias, the injector lower level (p = 0) is in resonance
with the next-nearest-neighbor Wannier-Stark state of the right
superlattice, i.e., the second Wannier-Stark state (p = 2), and
the injector upper level is in resonance with the last (p = N )
Wannier-Stark state of the left superlattice. In the Fig. 1, with
N = 5, for Bloch frequency νB0 = 1/TB0 = eF0d/h (e is the
electron charge) the voltage drop over one unit cell at the
design electric field F0 is equal to three (N − 2) Bloch energies
�ωB0 and a LO-phonon energy �ωLO, plus half the splitting
energies δe and δi of the extraction and injection tunneling
resonances. The resonance splitting energies are associated
with the anticrossings of the Wannier-Stark energy levels and
characterize the strength of their interaction at and around the
resonance [34]. At the design field F0, the injector lower level
is rather far from the resonant tunneling conditions into the
first Wannier-Stark state (p = 1), which occur near field 2F0

with resonance splitting energy δ′
i .

Low n-type doping in each well provides conduction
electrons while preventing excessive electron scattering and
Joule heating. Due to partial charge transfer to the lowest
energy levels at equilibrium, the injector behaves as a charge
reservoir where electrons are extracted from a superlattice
thanks to resonant extraction (or from the injection contact
layers), emit a LO-phonon, then become available for injection
into the next superlattice (or into the extraction contact layers).

Similar band engineering has been devised for QCLs [35].
It has not been applied to superlattices for, as explained in the
introduction, the design objectives and criteria for QCLs are
very different from those of electronic Bloch oscillators. In
particular, in a QCL the electrons can reabsorb the photons
and cause optical losses. The regular separation of the energy
levels in a Wannier-Stark ladder increases losses in the vicinity
of the Bloch frequency and is unfavorable for reaching lasing
threshold. The electrons also provide cascaded optical gain
and, in the THz range, a large number of stages is required to
overcome the losses. As a result, THz QCLs are rather thick
structures and they are very sensitive to the many different
configurations of charge instabilities which may take place
inside. For stable operation, the latter have to be eliminated by
design as much as possible, considering secondary injection
channels as incoherent parasitic channels. On the contrary,
in an electronic oscillator based on Bloch oscillation, such
channels make it possible to generate coherence between
equivalent ground states of a biased regular superlattice, in
order to enter an electrical oscillatory regime. The gain and
the losses then depend on the electrical environment of the
active layers, specifically on the impedance at the oscillation
frequency of a suitably designed load antenna, if one is to emit
THz radiation into free space [33].

B. Electrical boundary conditions

Transit-time devices may operate under fixed voltage or
fixed current boundary conditions. In RTDs [32], large currents
can be switched very rapidly because the structures are very

short. As a result, current switching only provides small
voltage jumps and fixed voltage boundary conditions are
suitable for efficient transfer of the generated power to the
load circuit.

QCLs differ from the standard transit time devices in the
internal engineering of the charge density and the current flow,
but they behave similarly regarding field domain formation and
the corresponding instabilities, since they also are thick doped
devices due to cascading of several active regions. Usually,
they satisfy the instability condition g ∼ 1 at least at the main
tunnel resonance where population inversion occurs. As a
consequence, they have to operate below that resonance to
avoid the field domains, which do not contribute to the optical
gain. Again, this is best achieved using a voltage-driven device,
i.e., with fixed voltage boundary conditions (see for instance
Ref. [35]).

However, inside thick structures, fixed voltage conditions
only impose the average field and do not prevent the buildup
of field domains. Such conditions are not favorable for Bloch
oscillation in short structures with g � 1; as explained pre-
viously, g ∼ 1 is unrealistic. Electronic Bloch oscillations are
charge density oscillations in the longitudinal direction. They
generate a retroaction electric field which follows the charge
density variations. In short structures with dielectric relaxation
time longer than the transit time, fixed voltage boundary
conditions impose a large electric field inside the active region
externally and hinder the charge density variations [17]. The
electronic density cannot follow the rapid changes required for
Bloch oscillations. Fixed current boundary conditions which
impose no constraint on the internal fields are to be preferred
and we chose such conditions in our experiments. Since the
electric field in the superlattice may then vary and the Bloch
frequency linearly depends on the electric field, the question
arises whether steady oscillations at the Bloch frequency
may still develop when electrostatic retroaction is taken into
account in the Bloch oscillation mechanism. This point will
be addressed in more detail in Sec. IV.

C. Sample fabrication and characterization

Four samples with only one repetition of the basic pattern
and an extra injector (see Fig. 1) were grown by molecular
beam epitaxy. The active region is a GaAs/Al0.15Ga0.85As
superlattice with d = 9.9 nm; the wells and barriers are
6.6 nm and 3.3 nm thick, respectively—checked by x-ray
diffraction—and N = 5. Different injection (δi = 1,3 meV)
and extraction (δe = 1,3 meV) resonance splittings have been
investigated and the samples are denoted by (δi,δe). Figure 2(a)
shows a diagram of the energy levels and their wave functions
in sample (1,1) for several repetitions of the unit cell and under
uniform electric field F0 at the design bias F0d = 10 mV. The
width � of the first miniband of the superlattice is 30 meV.
In comparison with Fig. 1, the injector is split into two wells
separated by a three-monolayer AlGaAs barrier with reduced
Al content. Varying the position of the barrier within the
injector and its Al content makes it possible to fine-adjust the
level energies, in order to obtain a regular Wannier-Stark ladder
and LO-phonon energy separation between the injector upper
and lower levels. Each GaAs layer is Si:5 × 1016 cm−3 δ-doped
over three monolayers at the center.
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FIG. 2. (Color online) (a) Conduction band diagram of next-
nearest-neighbor injected GaAs/Al0.15Ga0.85As superlattice over one
basic pattern of a periodic structure. Moduli-squared wave functions
at operating bias F0d = 10 mV are positioned according to their
energy. Injection and extraction resonance splittings are δ′

i = 2.8 meV
and δi = δe = 1 meV. From left to right, the layer thicknesses are
8.5 nm for the extraction barrier, 7.6/0.9/6.3 nm inside the injector,
5.6 nm for the injection barrier, 6.6 and 3.3 nm for the wells and
barriers, respectively, in the five-well superlattice. The Al content
of the thin AlGaAs barrier is 7%. (b) Experimental current-voltage
characteristics and their derivative for superlattice structure (SLS)
(δi = 1 meV, δe = 1 meV), the band diagram of which is shown in
(a), measured at 4.5 K (black) and 110 K (blue). Each GaAs layer is
Si:5 × 1016 cm−3 δ-doped over three monolayers at the center.

The 200 nm thick GaAs buffer layer grown on the n+-GaAs
substrate is Si-doped at 2 × 1018 cm−3 and the n+-GaAs top
contact layer is Si-doped at 5 × 1018 cm−3. Gradual doping
50 nm thick transition regions are intercalated between the
n+-GaAs layers and the active layers in order to minimize
carrier heating before injection. AuGeNi ohmic contacts are
processed on top of rectangular mesas and laterally along their
longest side. They are annealed at 420 ◦C using rapid thermal
annealing. The top contact layer is 500 nm thick in order to
avoid metal diffusion into the superlattice during annealing.
In the current-voltage measurements, the width of the samples
is 200 μm and different lengths, 200, 400, and 800 μm, have
been investigated. Good proportionality of current to device
area is observed over the whole measurement range in the
samples with the lowest conductance per unit area, significant
deviations from proportionality occurring only in the longest
most conducting samples.

FIG. 3. (Color online) Zooming on current-voltage characteris-
tics at 4.5 K and 110 K in samples (a) (1,1) and (b) (3,3). Device
areas are 200 × 200 μm2. (c) Temperature dependence of voltage
jump of bistability. (d) Model detailed in Fig. 5(a) for comparison
with (b). The bistability regions are hatched. With injection and
extraction couplings δi and δe, the samples are denoted by (δi , δe)
in the experiments and by (δi)YSL

in the model, where YSL is the
admittance of the load.

The current is measured at low temperature from the voltage
drop across a load resistance R (0.5 k� � R � 2 k�) much
larger than the device resistance. With device capacitance C

estimated from the device area and the thickness between
the contact layers, the RC time constants are in the range
20–400 ns, much longer than the relaxation times in the
semiconductor layers. The current-voltage characteristics of
sample (1,1) with 200 × 200 μm2 area is also shown in
Fig. 2(b) at 4.5 K and 110 K. At 4.5 K, the curve exhibits
superlinear variation as is expected from resonant tunneling
injection. The current is dominated by tunneling through
the injector and superlattice barriers. Thermionic emission
significantly contributes to the current as temperature is
increased, especially at low bias where a linear dependence on
applied voltage progressively prevails. A broad resonance is
also observed, as evidenced by derivation of the characteristics.
In this sample which has the thickest injection and extraction
barriers, the resonance is sharp enough to reveal resonant
injection to the next-nearest neighbor, with maximum at about
75 mV slightly above the design value (67 mV). The small
kink in the characteristics corresponds to a bistable regime
which takes place within the resonance, nearby the resonance
maximum. This bistable regime also occurs in samples (1,3)
and (3,3), while it is not observed in sample (3,1) with smaller
extraction/injection splitting ratio. In a small current range,
the voltage across the sample switches with a step equal to
�V and jumps between two different current-voltage curves
as the current progressively rises [see Figs. 3(a) and 3(b)].
Invoking Poisson’s equation, such a behavior can be attributed
to two different charge density states. The voltage switching
capacity at nearly constant current then relies upon a charge
transfer taking place at the tunnel injection resonance, i.e.,
into the second Wannier-Stark state. Bistability persists from
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4.5 K to about 150 K [see Fig. 3(c)]. The module of �V

slowly diminishes when temperature increases, but in some
devices �V cancels and changes sign. Larger values of the
magnitude of �V —up to 1.8 mV in sample (3,3) at low
temperature—are found in the samples with larger extraction
and injection couplings.

III. THREE-LEVEL COHERENT INJECTION MODEL

Quantum transport has to be invoked to describe tunnel
injection at low temperature in the structures described above.
Here, current injection in the superlattice is dealt with in a
quantum transport model based on a density matrix approach
neglecting in-plane dispersion. Such one-dimensional approx-
imation is valid at low temperature in the real structures,
when conduction is mainly governed by resonant transitions
near subband minima. Adequate field dependence of the
energy levels is required to calculate electrical characteristics,
compare them with the experimental data, and validate the
model. This is achieved in three steps: first, the electronic
structure of one-electron states is obtained under uniform
electric field, then the electrostatic retroaction on the energy
levels is derived and included in the transport model.

A. Electronic structure and properties

The positions and wave functions of the electronic energy
levels in injector/superlattice structures are first obtained
from an unperturbed Hamiltonian H0 for a one-dimensional
semiconductor heterostructure under uniform electric field,
using an envelope function approximation in a three-band
Kane model [36]. Fan charts of the levels as a function of
electric field provide the fields where resonance between pairs
of levels occurs, as well as the splitting energies δi , δ′

i , and
δe [34]. Reduced transition dipoles for injection expressed in
units of the superlattice period, u and v, can then be estimated
as half the splitting energies, δi/2 and δ′

i/2, respectively,
divided by the Bloch energy eF0d, taken as a scaling energy.

Calculation of the wave functions also makes it possible to
estimate the decoherence rates. The latter are evaluated below
resonance at zero temperature for the LO-phonon interaction
(see Table I) [37]. They involve energy conservation conditions
(see Fig. 4), so that decoherence of Wannier-Stark states p =
1 and p = 2 preferentially occurs through interactions with
intermediate states p = 4 and p = 5, respectively. Only the
decoherence rates for the lowest transverse momentum values
are retained since the other rates involve small Boltzmann
factors at low temperature. Decoherence rates between injector
and Wannier-Stark states, R1,R2, are significantly smaller than
decoherence rates R3 between Wannier-Stark states.

In the following, the Hamiltonian H0 is restricted to the
injector ground state p = 0 and two Wannier-Stark states

TABLE I. Main coherence relaxation rates at zero temperature in
samples (1,1) and (3,3).

R1 (ps−1) R2 (ps−1) R3 (ps−1)

(1,1) 0.06 0.05 + 0.09 1.21
(3,3) 0.23 0.04 + 0.08 0.98

FIG. 4. Main coherence relaxation rates R1, R2, and R3 associated
with level pairs (0,1), (0,2), and (1,2), respectively, for electron-
phonon interaction in three-level coherent transport. Dots and circled
dots refer to interactions involving an intermediate real state and
correlations between two states, respectively. The arrows stand for
interaction matrix elements, the wavy lines for energy conservation.

p = 1,2 of the superlattice. This is legitimate because the
Bloch oscillation amplitude �/2eF0 is 1.5d at the operating
bias—less than one superlattice period on either side of a
well—and the transient dynamics of the injected electrons
primarily involves these states. The approximation is strong
however since, in particular, forward coupling of state p = 2
to downstream states p > 2 is disregarded as a coherent mech-
anism and only dealt with through the boundary conditions.
Restriction to only three states enables us to analytically
account for the deviations from field uniformity caused by the
different charge densities in the wells and to derive a tractable
set of nonlinear quantum transport equations.

B. Electrostatic retroaction

The energy levels in the injector/superlattice structure
are localized when an electric field is applied and they are
shifted by the electrostatic potential arising from the injected
electronic charge density. When the Wannier-Stark states
mainly concentrate over their central well [see Fig. 2(a)],
such electrostatic retroaction can be obtained from Poisson’s
equation considering that a field step δFp is generated by
Wannier-Stark state population ρpp at superlattice wells p = 1
and p = 2, according to

δFp = ens

ε
δρpp, (1)

where ε is the dielectric permittivity, ns the charge density
per unit area in the injector well, and δρpp = ρpp − η0 the
deviation from equilibrium population η0.

Integration of Eqs. (1) yields the energy separations
εp − εp′ between all three levels p,p′ = 0,1,2, p′ �= p, as
a function of the field, and the sheet density in the injector (see
Appendixes A and B); e.g., between states p = 1 and p′ = 2,

ε1 − ε2 = eFd − e2nsd

ε
δρ22. (2)

In quantum transport, the energy separations are the character-
istic frequencies of the coherent dynamics of the electrons
injected into the superlattice, up to a factor of h. Here,
their linear dependence on the injected electron density
itself underpins the electrostatic retroaction effect and the
nonlinearity of the coherent dynamics of injection.

From Eqs. (1) and (2), a dimensionless electrostatic
retroaction parameter is defined as

J = e2nsd

ε

1

eF0d
. (3)
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Its value is proportional to the surface charge density in the
injector and depends on the charge transfer into the reservoir.
To some extent, J remains an adjustable parameter. If charge
transfer is complete, J ∼ 0.43 for experimental surface charge
density in the reservoir ns ∼ 3 × 1010 cm−2.

C. Quantum transport model

The Liouville equation for one-dimensional density matrix
ρ is written

i�
∂ρ

∂t
= [H0,ρ] − i�

1

τ
(ρ − ρ), (4)

where �/τ is the self-energy operator and ρ the density matrix
in the initial equilibrium state. Equation (4) is used to describe
tunnel injection in a three-level extension of the Kazarinov and
Suris scheme in the basis of Wannier-Stark states [11,21,34].
The full set of equations is given in Appendix B. For instance,
the equations for matrix elements ρ21 and ρ00 are given as

i�
∂ρ21

∂t
= −(eFd − JeF0d[ρ22 − η0] + i�R3)ρ21

+ eFUρ01 − eFVρ20 + i�R3ρ21

− J
�

4eFd
eF0d[ρ22 − η0](ρ11 − ρ22) (5)

and

i�
∂ρ00

∂t
= eFU (ρ20 − ρ02) + eFV (ρ10 − ρ01)

− i�
ρ00 − ρ00

T1
+ i�

ρ22
00 − ρ22

00

T2
. (6)

In Eqs. (5) and (6), U = ud and V = vd are the dipoles for
the tunnel transitions from the reservoir to the second and the
first Wannier-Stark states associated with splittings δi and δ′

i ,
respectively. T1 and T2 are the lifetimes in the lower and the
upper levels of the injection well. ρ22

00 stands for the population
of the injector upper state.

Transport in the superlattice is accounted for thanks to both
initial correlations (ρ21 �= 0), which is appropriate for the case
of homogeneous field, and extra resonant tunneling transfer
generated by field inhomogeneity δF obtained from Eq. (A1).
As �/4eF is the interaction dipole between Wannier-Stark
states p = 1 and p = 2, the interaction matrix element is

eδF
�

4eF
= ens

ε
δρ22

�

4F
= J ′

1 + F−F0
F0

δρ22eF0d, (7)

where

J ′ = J
�

4eF0d
. (8)

The total charge is conserved if feeding of the injector
lower level by the upper level is taken into account [see
Eqs. (B2), (B4), and (B6)],

ρ00 + ρ11 + ρ22 = ρ00 + ρ11 + ρ22 + S, (9)

with

S = T1

T2

(
ρ22

00 − ρ22
00

)
. (10)

The current is not calculated self-consistently from the
quantum current because the quantum transport model does
not extend beyond the second Wannier-Stark state. Instead, a
dimensionless injection current equal to the relaxation current
from the injector upper level can be defined as eS/T1 thanks to
Eq. (10), assuming that the current injected into the superlattice
only flows through fast incoherent relaxation from the upper
to the lower level inside the injector. While electron relaxation
thus directly gives a fixed current boundary condition at the
extraction side of the injector, another boundary condition for
the average electric field beyond the injection region is derived
from current conservation in the superlattice. For 2 < p � N ,
the average charge density resulting from coherent injection—
hence the corresponding resistive part of the load—is kept as
an adjustable parameter. Using an ohmic approximation, valid
in a small bias range around the bistability region, the electric
field in the superlattice for p > 2 is taken as

F = F0
SRSL

N − 2
. (11)

Ignoring the injection and extraction splittings δi and δe, the
voltage drop across the superlattice and the injector in units of
F0d is written from Eq. (A7) as

VS = SRSL − J (2ρ22 + ρ11 − 3η0) + �ωLO

eF0d
. (12)

Equation (12) together with Eqs. (A6)–(A8) include the
dependence on the charge density which provides the main
basis for the nonlinear dynamics of the voltage across the
structure when the static current is fixed. At given electric
field F0 and relaxation time T1, S is a dimensionless injection
current per electron in the reservoir defined as a fraction of
current e/T1, and RSL = 1/YSL a dimensionless resistance
defined as a fraction of resistance F0dT1/e. RSL also contains
the resistive contributions of the extraction barrier and the
superlattice beyond the injection region where a stationary
transport regime progressively establishes. In the modeling
framework, samples (δi,δe) are preferably denoted as (δi)YSL

,
with YSL reflecting an effective extraction coupling.

D. Voltage bistability of current injection

Competition between the two conduction channels (0 → 1)
and (0 → 2) arises from population conservation Eq. (9) when
the injection current S is a constant. Competition gives rise to
nonlinear behavior of the Bloch oscillation involving states
p = 1,2 when the field is varied around resonance (0 → 2),
i.e., through the resonant tunneling effect between states p =
0,2 and the off-diagonal element ρ20, the time derivative of
which is governed by

i

�
[H0,ρ]20 = i

(
e[F − F0]d

�
− J [2ρ22 + ρ11]ωB0

)
ρ20

(13)

[the background doping η0 has been neglected; see Eq. (B3)].
ρ20 is a statistical average of coherence which does not
randomize to zero in localized states. If an oscillatory regime
develops in the system of injected electrons, ρ20 oscillates
at angular frequency given by the term between parentheses
in Eq. (13). Resonant injection does not take place exactly
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when F = F0, but depends on the charge distribution due
to electrostatic retroaction, and generates nonlinear behavior
through strong increase of ρ22. Similarly, off-diagonal element
ρ21 reflects a statistical average of the coherence between
Wannier-Stark states p = 1,2 giving rise to Bloch oscillation.
From Eq. (B1), its time derivative is governed by

i

�
[H0,ρ]21 = i

(
eFd

�
− Jρ22ωB0

)
ρ21. (14)

The oscillation frequency is thus intimately connected with
electrostatic retroaction and the nonlinear dynamics of Bloch
oscillation, since the Bloch frequency at field F , νB = 1/TB =
eFd/h, is altered by the electrostatic potential originating
from injection into the second Wannier-Stark state. J , the
electrostatic retroaction parameter for the Wannier-Stark en-
ergies, appears as the main feedback parameter of nonlinear
coherent dynamics, affecting both the oscillation frequencies
of the coherences themselves as in Eqs. (13) and (14) and
also, through Eq. (8), their mutual interactions as in Eqs. (B3)
and (B5) or their interactions with the populations as in
Eqs. (B1), (B4), and (B6). The nonlinearity affecting the
oscillation frequencies of the coherences is dominant because
J > J ′ and, principally, because of the resonance effect within
a subset of variables, namely ρ20, ρ22, and ρ00 and the (0 → 2)
conduction channel, which makes the system more sensitive
to small changes of the injection current.

Such a nonlinear model qualitatively accounts for the
experimental observations of voltage bistability in the static
regime (see Fig. 3), i.e., the existence of two stable current
branches, and voltage switching between the branches within
a voltage instability range where a stable current does not
exist. Figure 5 shows the stable (solid lines) and unstable
(dashed lines) branches of the current-voltage characteristics
for J = 0.15 (about 35% charge transfer into the reservoir
at equilibrium) when coherence relaxation rates and load
resistance RSL are varied, for δi = 1 meV and δi = 3 meV.
Each branch and its stability status are calculated thanks
to numerical continuation techniques [38]. A multiplicative
coefficient r is applied to all rates heuristically to emulate
electronic temperature changes. The magnitude of the voltage
jump �V is reduced when the load resistance RSL is increased
(YSL is reduced), as well as when the coherence relaxation rates
are increased using values of coefficient r larger than 1. The
bistable behavior eventually vanishes under strong relaxation
conditions. Such trends of the model are in agreement with
experiments where �V diminishes with smaller extraction
couplings (smaller YSL) or at higher temperature (larger r).
Semiquantitative agreement is obtained along the voltage
scale for samples (1)0.1 and (3)0.1 at 4.5 K with r = 1.5 and
r = 1, respectively [see Figs. 3(b) and 3(d)]. More qualitative
agreement is obtained at 110 K for samples (1)0.15 and (3)0.15

using a larger value of YSL than at 4.5 K, with r = 3 and
r = 2.2, respectively.

The simulated current-voltage characteristics have not been
adjusted on the vertical scale due to intrinsic limitations of
the one-dimensional model applied to real structures. The
current in Fig. 3(d) is overestimated in comparison with
experimental values in the static regime if all electrons in
the reservoir only contribute to the coherent current. The
overestimation may be attributed to the neglected incoherent

FIG. 5. (Color online) Current-voltage characteristics in the
three-level coherent transport model (a) for samples (1)0.1 with
relaxation coefficients r = 1 (dark blue) and r = 1.5 (light blue),
and (1)0.15 with relaxation coefficients r = 1 (magenta) and r = 3
(purple), (b) for samples (3)0.1 with relaxation coefficient r = 1
(orange), and (3)0.15 with r = 1 (red), r = 2.2 (dark red). VS is
the voltage drop across one basic pattern (neglecting the splittings
δi , δe), in units of eF0d . δ′

i = 2.8 meV when δi = 1 meV and
δ′
i = 7.5 meV when δi = 3 meV. Electrostatic retroaction parameter

is J = 0.15. Unstable branches are shown as dashed lines. Green
diamonds and lines are Hopf bifurcation points and voltage oscillation
continuations, respectively.

relaxation channels, especially to intrasubband scattering in
the transverse directions once the electron is in the injector
lower level, an effect which, however, does not prevent further
coherent injection of the electrons into the superlattice and
space charge buildup. The overestimation could be traced
to weak efficiency of the direct coherent injection channel
between injector and superlattice depicted in Fig. 1. In practice,
another cause of discrepancy of the current density between
model and experiment may also be the poor adequacy of the
model to account for extraction of the electrons from the bulk
material contact region into the first injector.

The shift of the resonance when the injection coupling
is increased is not clearly observed in the experiments. The
model does not explain either why the initial branch may be
the lower branch and �V may be negative [see Fig. 3(a)
at 4.5 K and Fig. 3(c)]. In the plain resonant tunneling
mechanism, the upper branch with higher current and lower
applied voltage is always the initial branch, because switching
first occurs from a higher occupation state when the current or
the voltage is increased from below the resonance. Additional
tunnel injection and relaxation channels might explain the
stabilization of the lower rather than the upper branch below
the occurrence of bistability, together with inhomogeneity of
the current density in the transverse directions.

Thus, the current-voltage characteristics and voltage bista-
bility observed in the static regime can be explained mainly
thanks to tunnel injection with a resistive load and nonlinear
feedback effects among the energy levels of the heterostruc-
ture. As a result, in contrast to the time-dependent measure-
ments in a linear optical excitation regime, more complex
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behaviors than plain damping of transients can be expected
in the dynamical electrical regime, with the characteristic
frequencies showing up in the transport equations, i.e., not
only the damping rates but also the coherence oscillation
frequencies, especially in the superlattice.

IV. NONLINEAR DYNAMICS OF COHERENT INJECTION

In addition to the current-voltage curves, Fig. 5(a) also
shows Hopf bifurcation points marking the onset of nonlinear
oscillations, provided injection decoherence (r) is not too
large. This means that, in addition to thermal fluctuations,
spontaneous oscillations may be responsible for voltage
switching. Depending on injection coupling (δi), the branch
of nonlinear oscillations starting at the bifurcation point can
be unstable—with damped oscillations, e.g., in samples (1)0.1

and (1)0.15 in Fig. 5—or stable with self-sustained nonlinear
oscillations, as in samples (3)0.1 and (3)0.15. In that case,
stable oscillations can develop along a branch starting at
a supercritical bifurcation, i.e., with amplitude continuously
tending to zero as the injection current comes close to the
bifurcation point. The oscillation period ranges from at least
several Bloch periods nearby the bifurcation point, to very
large values near the end of the branch, as expected from
nonlinear oscillations. Rich dynamical behavior may take
place there with eventually secondary bifurcations and chaotic
regimes (not shown in Fig. 5).

Figure 6 displays the electrostatic retroaction dependence
of the oscillation period at the Hopf bifurcations. In this
diagram, the bifurcation points shown in Fig. 5 are located
at abscissa J = 0.15 on the thin lines plotted in the top
part, with oscillation periods always larger than about three
Bloch periods. The diagram shows that the system dynamics
is very sensitive to the electrostatic retroaction parameter.
In particular, increase of J , i.e., increase of charge transfer
into the injector and therefore stronger nonlinearity, brings on
extra bifurcations above a retroaction threshold (see thick lines
and arrows in Fig. 6). In comparison to the switched voltage

FIG. 6. (Color online) Electrostatic retroaction domains of oscil-
lation period at Hopf bifurcations for samples (1)0.1 (blue) and (3)0.1

(orange) with r = 1, and (3)0.15 with r = 1 (red) and r = 2.2 (dark
red).

�V , the threshold exhibits opposite dependence on coherence
relaxation rates and load resistance. Noticeably, the frequency
of the oscillations may be quite close to the Bloch frequency
(within 20%). The closer it is, the smaller the decoherence
rates and the larger the injection/extraction couplings are.

Above the retroaction threshold, next-nearest-neighbor
injection can thus give rise to oscillatory instabilities of
the charge density in the superlattice near the resonance
frequency of the off-diagonal elements of the density matrix for
the Wannier-Stark states, the Bloch frequency. The quantum
transport equations in localized states together with Poisson’s
equation are the ingredients for a semiclassical picture of
localized excitations of the charge density in the vicinity
of the injector. In analogy with the classical picture of the
plasmons, the steady oscillations of the electronic density
can be considered as localized plasmons or, more definitely
for injector-superlattice structures, localized Bloch plasmon
modes [39]. The weak dependence of their frequency on the
charge density (J ) shows that the electron plasma in and nearby
the injector does not screen out the external electric field and
Bloch oscillation can be considered as the driving mechanism.
An instantaneous Bloch frequency

νBi
= eFd

h
− Jρ22νB0 (15)

can be defined from Eq. (14). The temporal variations of νBi

are compensated by the coherent injection terms appearing
in the time evolution of the coherence in the superlattice [see
Eq. (B1)], so that the oscillation frequency is stabilized slightly
below νB .

The voltage dependence of the current is displayed in
Fig. 7(a) for J = 0.4 and sample (1)0.15 in both the static and
dynamic regimes. The extra Hopf bifurcations are supercriti-
cal. When the applied voltage is increased, they are located
on the rising edge of the next-nearest-neighbor tunneling

FIG. 7. (Color online) (a) Injection current (blue), (b) nearest
(thick blue) and next-nearest (thin blue) neighbor population as
a function of applied voltage for sample (1)0.15 with r = 1.5.
Electrostatic retroaction parameter is J = 0.4. Hopf bifurcations and
voltage oscillation continuations are drawn as green diamonds or pink
triangles and green dashed or pink solid lines, respectively. Unstable
branches are shown as dashed lines.
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FIG. 8. (Color online) (a) Temporal evolution of the population
of the first two Wannier-Stark states from second Hopf bifurcation
for sample (3)0.15 with r = 1. Current is suddenly shifted 10% inside
the stable oscillation domain. (b) Parametric plots of asymptotic
population trajectories for current suddenly shifted 10% (thin lines)
or 20% (thick lines) inside the stable oscillation domain for samples
(1)0.1 (blue), (3)0.1 (orange), and (3)0.15 (red) with r = 1. Electrostatic
retroaction parameter is J = 0.4.

resonance [see also Fig. 7(b)]. The temporal evolutions of the
populations are depicted in Fig. 8(a) for sample (3)0.15 when
the current is suddenly shifted from the second bifurcation
into the stable oscillation domain. Figure 8(b) summarizes the
asymptotic trajectories for samples (1)0.15, (3)0.1, and (3)0.15.
They disclose that the oscillatory regime is not a pure Bloch
oscillation, in which the variations of the populations of the
Wannier-Stark states would be strictly out of phase. This is
especially true at low coupling [in sample (1)0.15] where the
electrons moving back and forth are dominantly transferred
into the nearest-neighbor and only a small fraction is sent
into the next-nearest Wannier-Stark state in quadrature. For
larger coupling, however [e.g., sample (3)0.15], the injections
are much better equilibrated and mostly out of phase. Their
amplitudes decrease with closer proximity to the supercritical
bifurcation point, so that steady nonlinear oscillations can
develop even with small variations of the electron populations.

The electronic system thus possesses nonlinear longitudinal
instabilities of its own with definite frequency nearby the Bloch
frequency, quite different from the convective instabilities
encountered in transit-time devices. The oscillations can
couple to the THz electromagnetic field through spontaneous
emission of photons—this is only implicit in our weak-
coupling model and hidden in the relaxation rates [29]—or,

more usefully, thanks to an external antenna [33], but the
THz photons are not involved in the oscillation mechanism.
This is in contrast to the optical Bloch gain observed in
QCLs beyond the THz range [24], which has been forecast
in Ref. [28]. The gain relies there upon stimulated emission of
localized dipoles—rather than conduction currents—through a
second-order photon-assisted mechanism, namely a transition
involving both an electron and a photon and requiring trans-
verse momentum exchange between initial and final states.

In Figs. 7 and 8, only the electrostatic retroaction J is
increased in comparison to Fig. 5. One may conclude that
Bloch oscillation instability only requires slightly higher
values of J , i.e., of the charge density, than in the present
samples. Preliminary experimental results indicate that in-
creasing doping of all wells homogeneously by a factor of
two is not compatible with the bistability regime however, nor
is the repetition of two basic patterns of the structure. It is thus
necessary to design appropriate doping profiles in the injectors
and the superlattice portions to improve charge transfer at
equilibrium and get better control of electrostatic retroaction
in order to reach nonlinear Bloch oscillations, especially in
thicker structures than in the present work.

V. CONCLUSION

In conclusion, combined nearest and next-nearest neighbor
tunnel injection into a biased superlattice gives rise to charge
density and voltage bistability thanks to competition between
two coherent conduction channels. Electrical characterizations
of suitably designed superlattice structures give experimental
support to the effect semiquantitatively. As injection is coher-
ent, phase relations are established between the superlattice
eigenstates. Above a threshold value, electrostatic retroaction
provides a suitable nonlinear feedback for the steady gen-
eration of undamped spontaneous Bloch oscillations, locally
nearby the injector. The present results unveil a picture
of the dynamics of Bloch oscillations in a semiconductor
superlattice in which the oscillatory regime can be driven by
out of equilibrium coherence and sustained by electrostatic
nonlinearity mainly based on retroaction of coherent injection
onto the coherence oscillation frequencies.
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APPENDIX A: ELECTROSTATIC RETROACTION

For negative field F in the bulk of the superlattice (see
Figs. 1 and 2), the slope of the conduction band is given by

−e
dV

dx
= e

(
F + ens

ε
δρ22

)
(A1)

and

−e
dV

dx
= e

(
F + ens

ε
[δρ22 + δρ11]

)
(A2)
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FIG. 9. Diagram of the unperturbed ground energy levels used in
the transport model at zero field (dotted lines) and design field (solid
lines).

between wells 1 and 2 and wells 0 and 1, respectively, where
δρpp = ρpp − η0 and η0 is the background doping in the
superlattice.

Neglecting the perturbation of the eigenstates by the field
changes, the energy shifts at x = 2d, x = d, and x = 0 are

−eδV|x=2d = 0, (A3)

−eδV|x=d = −eFd − e2nsd

ε
δρ22, (A4)

−eδV|x=0 = −2eFd − e2nsd

ε
(2δρ22 + δρ11). (A5)

In the transport model, Hamiltonian H0 is only used
to compute the electronic properties of the heterostructures
at or close to the design electric field F0. Then, the field
dependence of the energy levels—Wannier-Stark ladder and
injector levels—is assumed to be linear. Denoting εp the
energy of state p, the energy differences are

ε1 − ε2 = −eFd − e2nsd

ε
δρ22, (A6)

ε0 − ε2 = −2e(F − F0)d − e2nsd

ε
(2δρ22 + δρ11), (A7)

ε0 − ε1 = −e(F − 2F0)d − e2nsd

ε
(δρ22 + δρ11). (A8)

At equilibrium (F = 0), state p = 0 is shifted by 2eF0d

with respect to the middle of the superlattice miniband, the
energy where all Wannier-Stark states are assumed to converge
to in the zero field limit (see Fig. 9).

APPENDIX B: COHERENT TRANSPORT EQUATIONS

Using the reduced field detuning parameter δf = (F −
F0)/F0 and positive fields, the Liouville equation (4) [21]
yields the full set of coherent transport equations:

i
∂ρ21

∂t
= −(1 + δf − J [ρ22 − η0] + ir3)ρ21

+ (1 + δf )uρ01 − (1 + δf )vρ20 + ir3ρ21

− J ′

1 + δf
[ρ22 − η0](ρ11 − ρ22), (B1)

i
∂ρ00

∂t
= (1 + δf )u(ρ20 − ρ02) + (1 + δf )v(ρ10 − ρ01)

− i
ρ00 − ρ00

τ1
+ i

ρ22
00 − ρ22

00

τ2
, (B2)

i
∂ρ20

∂t
= −(2δf − J [2ρ22 + ρ11 − 3η0] + ir2)ρ20

− (1 + δf )vρ21 + (1 + δf )u(ρ00 − ρ22) + ir2ρ20

− J ′

1 + δf
[ρ22 − η0]ρ10, (B3)

i
∂ρ22

∂t
= (1 + δf )u(ρ02 − ρ20) − i

ρ22 − ρ22

τ1

− J ′

1 + δf
[ρ22 − η0](ρ12 − ρ21), (B4)

i
∂ρ10

∂t
= (1 − δf − J [ρ22 + ρ11 − 2η0] − ir1)ρ10

− (1 + δf )uρ12 + (1 + δf )v(ρ00 − ρ11) + ir1ρ10

− J ′

1 + δf
[ρ22 − η0]ρ20, (B5)

i
∂ρ11

∂t
= (1 + δf )v(ρ01 − ρ10) − i

ρ11 − ρ11

τ1

− J ′

1 + δf
[ρ22 − η0](ρ21 − ρ12). (B6)

In the vicinity of resonance, the initial density matrix is
assumed to obey [11]

ρ10 = ρ20 = 0, (B7)

ρ12 = J1
(

�
2kBT

)
NJ0

(
�

2kBT

)e
− 2eF0d

kB T , (B8)

and ρ00 = 1, ρ22
00 = 0, ρ11 = ρ22 = η0, where

η0 = 1

N
e
− 2eF0d

kB T . (B9)

In Eqs. (B1)–(B6), energies have been scaled on either side
by the Bloch energy eFd at field F = F0 and times by TB0/2π ,
so that u and v are coupling dipoles scaled by d, and r1, r2,
r3 the coherence relaxation rates of the Wannier-Stark states
scaled by the Bloch angular frequency ωB0 = 2πνB0 . τ1 and
τ2 are scaled lifetimes for the ground states at each well and
at the upper state in the injector, respectively. In Eq. (B8), J1

and J0 are Bessel functions of the first kind.
The present model does not prevent the nonlinear response

from transiently reaching unphysical values for strong de-
viations from the static regime because the contact layers
and their quasi-Fermi levels are not taken into account.
Charge densities in the Wannier-Stark states may become
negative especially when the background doping η0 is weak.
Noting that the energy barrier for electron injection is reduced
from �εe = 2eF0d to �εr = eF0d when the electric field is
increased from its equilibrium value F = 0 to its value in the
vicinity of resonance F ∼ F0, the background doping is taken
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as (1/N )e−�εr/kBT with N = 5 in Eqs. (B8) and (B9)—a value
equal to η0 for N = 2 when kBT ∼ 11 meV. As the model
does not take subband filling into account, the thermal energy
kBT is considered to remain a constant equal to 10 meV, for
the electronic temperature is expected to be larger than the
lattice temperature in the vicinity of resonance due to carrier

relaxation and heating effects in the transverse directions.
Finally, fast population relaxation from the ground state is
assumed with τ1 = 1.5 in order to avoid too strong damping
of the nonlinear dynamics, although this overestimates the
reference current in comparison with the experiments in the
static regime.
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