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Information Theoretic Comparison of
Side-channel Distinguishers
Inter-class Distance, Confusion, and Success

Annelie Heuser, Olivier Rioul, Sylvain Guilley and Jean-Luc Danger

1 Side-channel Analysis

Side-channel analysis (SCA) constitutes a serious threat against modern crypto-
graphic implementations. They exploit unintentionally emitted physical leakage—
such as power consumption or electromagnetic emanation—in order to reveal secret
information. The introduction of differential power analysis by Kocher et al. [15]
gave rise to many developments of new attacks, countermeasures and models for the
evaluation of physical security. In particular, a large variety of distinguishers have
been proposed as statistical tests in order to discriminate the correct key. To overcome
limitations such as the restriction to linear dependency between the leakage and the
assumed leakage model, new types of distinguishers have been proposed.

First, mutual information analysis (MIA) was proposed by Gierlichs et al. [10]. It
uses mutual information (MI) to measure the total dependency between the measure-
ments and the leakage model. Extensive previous work [2, 17, 39, 23, 24, 21, 41] has
shown that this distinguisher is indeed able to cope with non linearities between the
leakage model and the measurements.

Second, to avoid explicit density estimations as required for MIA, the Kolmogorov-
Smirnov (KS) test was proposed by Veyrat-Charvillon and Standaert [39] and the
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corresponding Kolmogorov-Smirnov analysis (KSA) was studied in [41, 43, 45].
Although it has been highlighted in [43] that KSA may have disadvantages compared
to MIA, a recent study [45] has identified variants of KSA that may perform better
than MIA in some circumstances.

In [18], the authors suggested an alternative inter-class Kolmogorov-Smirnov
analysis (IKSA) that compares the conditional distributions between themselves
instead of comparing them with the global distribution of the leakage. This novel
approach is shown to be of a different nature (non equivalent), and can outperform
KSA in terms of success rate.

Similar ideas have also emerged in the literature: The single-bit DPA [16] can
already be seen as a comparison of (means of) different classes without referring to
the marginal distribution. Moreover, in [1] a cluster approach has been introduced
that compares the inter- and intra-class variance of conditional classes. Also, in [40]
a copula-based distinguisher has been introduced that compares each conditional
distribution internally without referring directly to the global leakage distribution.

It is important to note that in general, a distinguisher’s performance also depends
on the choice of the leakage model. As pointed out in [44] a distinguisher would fail
to distinguish if the model consists of a bijective function of the secret and plaintext.
Therefore, in this paper, we restrict ourselves to leakage models for which the studied
distinguishers are able to distinguish.

Because so many types of side-channel distinguishers have become available,
their fair evaluation and comparison is an important topic. One cannot rely on one
single experiment carried out on raw leakage measurements from one particular
device to draw unequivocal conclusions about the relative efficiency of competing
distinguishers (see e.g., the discussion in [34]). Therefore, we seek to compare
statistical procedures and methodologies in ideal scenarios with clearly defined and
fixed leakage models, where in particular the signal-to-noise ratio can be varied as a
parameter.

Now, there has been two distinct evaluation frameworks considered in the literature
so far:

1. A theoretical framework proposed by Whitnall and Oswald [41] that uses the
exact values of the distinguishers to evaluate the capability to recover the correct
key hypothesis. One relevant metric is the so-called relative margin, that com-
putes a normalized distance between the distinguisher’s value for the correct key
guess to that of its nearest rival.

2. An empirical framework proposed by Standaert et al. [35] in which the distin-
guishers are estimated on empirical data. The performance evaluation can be
typically carried out using one of the following two metrics: the success rate,
which estimates the probability of ranking the correct hypothesis first, and the
guessing entropy, which estimates the average ranking of the correct hypothesis.

It should be emphasized that the theoretical framework is based on the exact com-
putation of the distinguisher to evaluate its intrinsic distinguishing power—as if it
was estimated on a infinite number of samples. In contrast, the empirical framework
uses simulations or measurements to evaluate the ability of a distinguisher to succeed
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efficiently: it depends not only on the choice of the theoretical distinguisher, but
also on the efficiency of its estimation. Roughly speaking, it can be said that the
empirical framework encompasses the theoretical one plus the estimation algorithm.
For this reason, it appears to be more practical. On the other hand, the theoretical
framework is more amenable to a mathematical analysis, since it only involves the
distinguisher’s values. So far, no link between the theoretical and empirical outcomes
of a given distinguisher has been shown in the literature.

1.1 Our Contributions

1.1.1 Interclass Distinguisher

As a first contribution we introduce a new information-theoretic metric, referred to
as inter-class information, that compares conditional probability density functions
between themselves. Before applying it to side-channel analysis, we first carry out a
detailed mathematical study on the metric itself. In particular, we show that inter-class
information (II) shares similar properties with mutual information (MI). Interestingly,
both can be computed from the same probability density estimates. But we also prove
that the two metrics are not equivalent with a precise definition of the term.

Next, we extend the inter-class information to the scenario of side-channel analysis
and refer to the corresponding distinguisher as inter-class information analysis (IIA).
We continue our mathematical investigation by proving soundness of IIA. Finally,
we use the above-mentioned frameworks to investigate the efficiency of both MIA
and IIA. From the theoretical framework we select the relative distinguishing margin
as the relevant metric. From the empiral framework we select the success rate as the
relevant metric. The results from both frameworks agree: IIA is shown to outperform
MIA for the theoretical and empirical metric.

1.1.2 Success Metric

Second, we introduce a new metric, called success metric (SM), which evaluates
estimated distinguishers while providing more feedback about the efficiency. There-
fore, the SM is more suitable when comparing and evaluating distinguishers than
the currently state-of-the-art. In fact, SM relies on the estimation parameters of the
distinguisher affecting the theoretical success rate. To be precise, the key features of
the success metric are:

• Monotony with the success rate (theoretically and empirically);
• Quantification of the relationship between the distinguishing value of the correct

key and its nearest rival;
• Consideration of the noise probability distribution function (e.g., its variance),

number of measurements, and estimation method
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• Simplicity of the closed-form expressions for additive distinguisher (e.g., DPA,
CPA) compared to the success rate;

• Ability to derive a closed-form expression for MIA when estimated with his-
tograms, which has not been shown for any other metric before.

Furthermore, we show further benefits of the closed-form expression of SM:
We are able to connect the closed-form of the success metric for DPA/ CPA with
properties of the sbox in case of a practical signal-to-noise ratio. Remarkably, unlike
previous works [11, 22] we first not only derive bounds but achieve direct links, and
second utilize a success rate/metric instead of only using properties of a distinguisher.
However, our new metric, transparency metric, follows the same intuition as the
transparency order introduced in [22], but is more reasonable and simple. Addition-
ally, we are able to answer the question how the size of the keyspace is influencing
the success metric and therefore the success rate.

1.2 Side-channel Analysis Model

Calligraphic letters (e.g., X ) denote finite sets, capital letters (e.g., X) denote random
variables taking values in these sets, and the corresponding lowercase letters (e.g., x)
denote their realizations. We write P{X = x} or p(x) for the probability that X = x
and p(x|y) = P{X = x

∣∣Y = y} for conditional probabilities.
Let k∗ denote the secret cryptographic key, k any possible key hypothesis from

the keyspace K , and let T be the input or cipher text of the cryptographic algorithm.
The mapping g : (T ,K )→I maps the input or cipher text and a key hypothesis
k ∈K to an internally processed variable in some space I that is assumed to relate
to the leakage X . Usually, T ,K ,I are taken as Fn

2, where n is the number of bits
(for AES n = 8).

Generally it is assumed that f is known to the attacker. A common consideration
is g(T,k) = Sbox[T ⊕ k] where Sbox is a substitution box. The measured leakage X
can then be written as

X = ψ(g(T,k∗))+N, (1)

where N denotes an independent additive noise.ψ is a device-specific deterministic
function, which we assume to be known to the attacker in this contribution. For any
key guess k ∈K the attacker computes the sensitive variable

Y (k) = ψ(g(T,k)). (2)

Without loss of generality we may assume that Y is centered and normalized, i.e.,
E{Y}= 0 and Var{Y}= 1, and that the values in Y are regularly spaced with step
∆y. For ease of notation, we let Y ∗ = Y (k∗) and Y = Y (k).
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2 A New Distinguisher Based on Intraclass Information

In this section, we introduce a new information-theoretic metric, referred to as
inter-class information, that compares conditional probability density functions
between themselves. Before applying it to side-channel analysis, we first carry out a
detailed mathematical study on the metric itself. In particular, we show that inter-class
information (II) shares similar properties with mutual information (MI). Interestingly,
both can be computed from the same probability density estimates. But we also prove
that the two metrics are not equivalent with a precise definition of the term.

Next, we extend the inter-class information to the scenario of side-channel analysis
and refer to the corresponding distinguisher as inter-class information analysis (IIA).
We continue our mathematical investigation by proving soundness of IIA. Finally,
we use the above-mentioned frameworks to investigate the efficiency of both MIA
and IIA.

We review some information-theoretic tools to evaluate the dependence between
two random variables X and Y, and refer to [6] for more details. We focus in this
section on metrics and postpone the application to side-channel analysis to Sect. 4.
However, since for this application one random variable (X) is continuous and the
other (Y ) is discrete, we adopt this convention whenever it is possible.

Let p(x) be the probability density function of the continuous random variable X
and p(y) =P{Y = y} be the probability mass function of the discrete random variable
Y . The corresponding expectations are E(X) =

∫
∞

−∞
x · p(x)dx and E(Y ) = ∑y y · p(y),

respectively. The variance is defined as σ2
X = E{(X−E(X))2}, and similarly for Y .

Let p(x|y) = p(x|Y = y) be the conditional probability distribution of X knowing
that Y = y and p(x,y) be the joint probability distribution of X and Y . Notice that the
marginal distribution p(x) becomes the average over Y of the conditional distribution
p(x|y):

p(x) = ∑
y

p(x,y) = ∑
y

p(y)p(x|y) = E(p(x|Y )). (3)

2.1 Information Divergence

Definition 1 (Kullback-Leibler divergence [6]). Let q(x) be another probability
distribution defined over the same space as p(x). The Kullback-Leibler divergence of
q with respect to p is defined as

DKL[p ‖ q] =
∫

∞

−∞

p(x) · log
p(x)
q(x)

dx. (4)

It is well known that DKL[p ‖ q]≥ 0 and equals zero if and only if p(x) and q(x)
coincide. The divergence is sometimes termed “distance” in the literature although it
is not a distance in the mathematical sense of the word, because it is not symmetric:
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DKL[p ‖ q] 6= DKL[q ‖ p] and the triangle inequality is not satisfied in general. To
achieve symmetry, Kullback and Hajek made the following definition:

Definition 2 (Symmetric Kullback-Leibler divergence). The symmetric diver-
gence between distributions p and q is defined as

δKL(p ‖ q) =
DKL[p ‖ q]+DKL[q ‖ p]

2
(5)

=
1
2

∫
∞

−∞

(p(x)−q(x)) · log
p(x)
q(x)

dx. (6)

2.2 Conditional-to-Unconditional Metric

(a) Conditional vs Unconditional. (b) Conditional vs Conditional.

Fig. 1: Illustration of comparing probability distributions (the “distance” is depicted
with an arrow).

To evaluate the dependence between X and Y , one possibility is to compute the
distance between conditional probabilities p(x|y) and the unconditional probability
p(x) = E(p(x|Y )) (see Fig. 1a). Using Kullback-Leibler divergence, we obtain

I(X ;Y ) = E
{

DKL[p(x|Y ) ‖ p(x)]
}

(7)

= ∑
y

p(y)DKL[p(x|y) ‖ p(x)] (8)

= ∑
y

∫
∞

−∞

p(x,y) · log
p(x|y)
p(x)

dx. (9)

This is well-known as the mutual information between the two random variables X
and Y . Mutual information can also be written as

I(X ;Y ) = H(X)−H(X |Y ) (10)
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where

H(X) =−
∫

∞

−∞

p(x) · log p(x)dx (11)

is the (differential) entropy of X and

H(X |Y ) = ∑
y

p(y) ·H(X |Y = y) (12)

=−∑
y

∫
∞

−∞

p(x,y) · log p(x|y)dx (13)

is the conditional entropy of X knowing Y . Note that unlike the (discrete) entropy [6],
differential entropy can be negative and hence should not be interpreted as a measure
of uncertainty1. For more details on the relationship between differential and discrete
entropy and the absolute entropy we refer to [6].

2.3 Conditional-to-Conditional Metric

As suggested in [18], instead of referring to the average distribution p(x), a more
direct strategy would be to consider all pairwise distances between conditional
probabilities p(x|y) (see Fig. 1b). Therefore, we may replace the Kullback-Leibler
divergence of p(x|y) with respect to the average distribution p(x) = E(p(x|Y )) by
all Kullback-Leibler divergences between conditional probabilities p(X |Y = y) and
p(X |Y = y′) for all pairs (y,y′). This yields to the following definition.

Definition 3 (Inter-class information). The inter-class information between ran-
dom variables X and Y is defined as

II(X ;Y ) =
1
2
E
{

DKL[p(x|Y = y) ‖ p(x|Y = y′)]
}

(14)

=
1
2 ∑

y6=y′
p(y)p(y′)DKL[p(x|y) ‖ p(x|y′)] (15)

where the summation over y = y′ has disappeared because divergence vanishes for
identical distributions.

Proposition 1. The inter-class information can also be written in terms of the sym-
metric Kullback-Leibler divergence as

II(X ;Y ) = E{δKL(p(x|Y ) ‖ p(x))} (16)

= 1
2 ∑

y

∫
∞

−∞

(p(x,y)− p(x)p(y)) log
p(x,y)

p(x)p(y)
dx. (17)

1 Another reason is that differential entropy is not “coordinate-free” - it depends on the underlying
coordinate system.
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Proof. We show equivalence between Eq. (15) and Eq. (16).

1
2 ∑

y6=y′
p(y)p(y′)DKL[p(x|y) ‖ p(x|y′)]

=
1
2 ∑

y,y′
p(y)p(y′)

∫
p(x|y) log

p(x|y)
p(x|y′) dx (18)

=
1
2 ∑

y

∫
∑
y′

p(y)p(y′)p(x|y) log
p(x|y)
p(x)

dx

+
1
2 ∑

y′

∫
∑
y

p(y′)p(y)p(x|y) log
p(x)

p(x|y′) dx (19)

=
1
2 ∑

y
p(y)

∫
p(x|y) log

p(x|y)
p(x)

dx

+
1
2 ∑

y′
p(y′)

∫
p(x) log

p(x)
p(x|y′) dx (20)

=
1
2
(
E{DKL[p(x|Y ) ‖ p(x)]}+E{DKL[p(x) ‖ p(x|Y )]}

)
(21)

= E
{

δKL(p(x|Y ) ‖ p(x))
}

(22)

Equation (17) then follows easily from definition 1. ut

Interestingly, Eq. (16) is similar to Eq. (7) where the divergence (definition 1) is
replaced by the symmetric divergence (definition 2). The latter is also sometimes
referred to as inter-class divergence (see e.g., [31]).

Moreover, similarly as for mutual information, it can be expressed in terms of
entropies as shown in the following proposition.

Proposition 2. Let

H ′(X | Y ) =−∑
y

∫
∞

−∞

p(x)p(y) · log p(x|y)dx, (23)

be the conditional cross-entropy of X knowing Y . The inter-class information can be
expressed as

II(X ;Y ) =
H ′(X | Y )−H(X |Y )

2
. (24)

Proof. We show the equivalence between Eq. (17) and Eq. (24). Since

∑
y

p(x,y)− p(x)p(y) = 0, (25)

we can remove p(x) inside the logarithm in (17). Furthermore, since p(x,y)
p(y) = p(x|y),

we can write
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1
2 ∑

x,y
(p(x,y)− p(x)p(y)) log

p(x,y)
p(x)p(y)

=
1
2 ∑

x,y
(p(x,y)− p(x)p(y)) log p(x|y) (26)

=
H ′(X | Y )−H(X |Y )

2
(27)

ut

It is important to notice that cross-entropy is, contrary to Eq. (13), averaged
over the product distribution p(x)p(y) instead of the joint distribution p(x|y)p(y) =
p(x,y).

3 Theoretical Analysis

Inter-class information has some important properties that are similar to well-known
properties of mutual information. These are summarized in the following proposition.

Proposition 3. For any two random variables X ,Y :

(a) (Symmetry) II(X ;Y ) = II(Y ;X)
(b) (Independence) II(X ;Y ) = 0 if and only if X, Y are independent
(c) (Markov Chain Inequality) For any Markov chain X−Y −Z, the following hold:

II(X ;Y )≥ II(X ;Z) and II(Y ;Z)≥ II(X ;Z)
(d) (Relation to Mutual Information)

2II(X ;Y ) = E{DKL[p(x|Y ) ‖ p(x)]}
+E{DKL[p(x) ‖ p(x|Y )]} (28)

= I(X ;Y )+E{DKL[p(x) ‖ p(x|Y )]} (29)

It follows in particular that II(X ;Y )≥ 1
2 I(X ;Y ).

Proof. The symmetry is obvious from Eq. (17). Independency is an obvious
consequence of the following well-known property of (symmetric) divergence:
DKL[p ‖ q] ≥ 0 and DKL[p ‖ q] = 0 if and only if p = q [6]. Markov Chain In-
equality: Recall that X →Y → Z forms a Markov chain if p(z|x,y) = p(z|y) for all x;
in other words X and Z are independent given Y [6]. Since X → Y → Z is a Markov
chain if and only if Z−Y −X is a Markov chain [6], it is sufficient to prove the first
inequality II(X ;Y )≥ II(X ;Z). Furthermore we already have I(X ;Y )≥ I(X ;Z) from
the corresponding property for mutual information. Since the latter is equivalent to
the inequality H(X |Y )≤H(X |Z), thanks to Proposition 2, it is sufficient to prove the
inequality H ′(X |Y )≥ H ′(X |Z) for cross-entropies.

Now since p(x|y) = p(x|y,z) by the Markov chain condition, it is easily checked
that
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H ′(X |Y ) =−∑
y,z

∫
p(x)p(y,z) log p(x|y,z)dx = H ′(X |Y,Z) (30)

which can be rewritten as

H ′(X |Y,Z) = ∑
z

∫
p(x)p(z)∑

y
p(y|z) log

1
p(x|y,z) dx. (31)

By the strict concavity of the logarithm, we have the following inequality

H ′(X |Y,Z)≥∑
z

∫
p(x)p(z) log

1
∑y p(y|z)p(x|y,z) dx (32)

= ∑
z

∫
p(x)p(z) log

1
p(x|z) dx = H ′(X |Z) (33)

Finally, the relation to mutual information is obvious from the definition. ut

3.1 A Normal Example

In order to illustrate the difference between MI and II, we give the exact expression
of I(X ;Y ) and II(X ;Y ) for two jointly normal random variables2.

Proposition 4. Let the two random variables X ,Y be identically distributed, zero-
mean and jointly normal, with covariance matrix σ2

( 1 ρ

ρ 1

)
, where |ρ| ≤ 1 is the

correlation coefficient and σ2 is the common variance of X and Y . One finds

I(X ;Y ) =
1
2

log
1

1−ρ2 (34)

II(X ;Y ) =
loge

2
ρ2

1−ρ2 . (35)

Proof. Since X follows the normal density N (0,σ2), its differential entropy is easily
computed as [6]

H(X) =−E{log p(X)} (36)

= log
√

2πσ2 +(loge)E{X2/2σ
2} (37)

=
1
2

log(2πeσ
2). (38)

Now for every y, X given Y = y follows the density p(x|y) = p(x,y)
p(y) which is easily

seen to be the normal N (ρy,σ2(1−ρ2)). It follows that

2 Note that, unlike in our previous definitions, the random variable Y is also continuous in this
example. Thus sums have to be replaced by integrals.
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H(X |Y ) = 1
2

log(2πeσ
2(1−ρ

2)). (39)

Subtracting Eq. (39) from Eq. (38) yields the announced expression for I(X ;Y ) =
H(X)−H(X |Y ).

To calculate inter-class information, we use Eq. (24). The conditional cross-
entropy can be similarly computed as

H ′(X |Y ) =−
∫

∞

−∞

p(y) ·E{log p(X |y)}dy (40)

=
1
2

log(2πσ
2(1−ρ

2))+(loge)
∫

∞

−∞

p(y)·E
{ (X−ρy)2

2σ2(1−ρ2)

}
dy. (41)

Using (39) and expanding E{(X−ρy)2}= E(X2)+ρ2y2−0 inside the integral, we
obtain

H ′(X |Y ) =
(

H(X |Y )− loge
2

)
+(loge)

σ2 +ρ2E{Y 2}
2σ2(1−ρ2)

(42)

= H(X |Y )+(loge)
(

σ2 +ρ2σ2

2σ2(1−ρ2)
− 1

2

)
(43)

= H(X |Y )+(loge)
ρ2

1−ρ2 (44)

Subtracting H(X |Y ) and dividing by 2 yields the desired expression for II(X ;Y ) =
1
2 (H

′(X |Y )−H(X |Y )). ut

The limit case ρ = 0 corresponds to independent random variables X , Y in this
example, while ρ = 1 corresponds to total dependency. From proposition 4, both
mutual and inter-class informations vanish when ρ = 0 in accordance with propo-
sition 3 (b). However, when ρ → 1−, II(X ;Y ) is increasing to infinity much faster
than I(X ;Y ). This shows that II(X ;Y ) is more sensitive in the dependency of the
random variables. We found that this behavior is quite general for many probabil-
ity distributions including the case of discrete random variables. This gives a first
intuition, confirmed in the next section, why II may be more efficient than MI as a
side-channel distinguisher.

3.2 Non-Equivalence of Mutual and Inter-Class Informations

Since I(X ;Y ) and II(X ;Y ) share similar properties (see proposition 3 (a)-(c)), and
since we aim to compare these two informations as side-channel distinguishers
to measure dependency between the measurements and the leakage model, it is
important to assert generally whether I(X ;Y ) and II(X ;Y ) are equivalent or not.
Although this does not reflect the ability to distinguish in the context of side-channel
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analysis, it would give a necessary condition whether II(X ;Y ) could be applicable.
For this we need a clear definition of equivalent metrics (see e.g., [30]).

Definition 4 (Equivalence). Two distances D(p,q) and D ′(p,q) are said to be
equivalent if there exist finite constants α > 0 and β > 0 such that for any p,q,

D(p,q) ≤ α ·D ′(p,q) and D ′(p,q) ≤ β ·D(p,q). (45)

In particular, whenever one of two distances becomes small, so does the other and
mathematically speaking, both “distances” define the same “topology”3.

Just to illustrate the usefulness of Definition 4 we provide the following example.

Example 1. Consider the linear correlation coefficient

ρ(X ,Y ) =
Cov(X ,Y )

σX σY
(46)

versus mutual information I(X ;Y ). Although correlation implies dependence, it
is possible that X and Y are linearly uncorrelated while still being dependent—
take e.g., Y = X2 where X ∼ N (0,1). It follows that an inequality of the form
I(X ;Y )≤ α ·ρ(X ,Y ) cannot hold. Therefore, correlation and mutual information are
not equivalent. The same conclusion goes unchanged if linear correlation is replaced
by higher-order or nonlinear correlation—take e.g. X ∼N (0,1) and Y =±X where
the random sign is uniformly distributed and independent of X . This explains why
correlation power analysis (CPA) and MIA are not equivalent.

Regarding IIA vs. MIA, proposition 3 (d) shows the inequality in one direction:
I(X ;Y )≤ 2 · II(X ;Y ). However, we have the following.

Proposition 5. Mutual information I(X ;Y ) and inter-class information II(X ;Y ) are
not equivalent.

Proof. It is sufficient to give the following counterexample. Consider X ,Y as in § 3.1.
Letting λ = 1

1−ρ2 we have

2I(X ;Y ) = logλ and 2II(X ;Y ) = (λ −1) loge. (47)

Because the fraction λ−1
logλ

is unbounded as λ → ∞, letting ρ → 1− shows that no
inequality of the form II(X ;Y ) ≤ α · I(X ;Y ) may hold for some finite constant
α > 0. ut

The fact that mutual and inter-class informations are not equivalent and at the
same time require the estimations of the same conditional probability distributions
p(x|y) for their computation motivates for a formal comparison study in the context
of side-channel analysis. This is investigated in the next section.

3 Note that this equivalence of metrics is not the same as the equivalence between distinguishers
stated in [7].
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4 Side-Channel Analysis Scenario and Soundness

4.1 Side-Channel Scenario

There exists some necessary conditions on Y (k) for MIA—and hence IIA—to be
able to distinguish. In particular, [23, 44] show that there should be at least one
k ∈K such that Y (k) is not an injective function of Z. Hence, if for all k, f ( · ,k)
is injective the attacker has to choose ϕ to be non-injective. In the following, we
assume that these necessary conditions are satisfied. As in [23, 24] we deduce the
following scenario for wrong or correct key assumptions.

4.1.1 Wrong Key Assumption

The conditional distribution p(x|y) of the measured leakage X knowing the predicted
leakage Y is given by

p(x|y) = ∑
y∗

p(y∗|y) · p(x|y,y∗) (48)

= ∑
y∗

p(y∗|y) · p(x− y∗|y) (49)

= ∑
y∗

p(y∗|y) · pN(x− y∗), (50)

where pN denotes the noise pdf and Eq. (48) follows from the law of total probability.
The equivalence between Eq. (49) and Eq. (50) follows from the fact that N is
independent of the leakage predictions Y . Thus, as proved in [25], if the key guess
is incorrect we have a nontrivial linear mixture of shifted noise densities, whose
coefficients depend on the relationship between Y and Y ∗.

4.1.2 Correct Key Assumption

In contrast, if the key guess is correct, one obtains a Kronecker symbol p(y∗|y) = δy,y∗

so that the density mixture simplifies to

p(x|y) = pN(x− y∗), (51)

which is simply identically distributed as N + y∗.

4.2 Soundness Proofs

Recall the following definition.
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Definition 5 (Soundness). A given distinguisher D is said to be sound if the value
of the distinguisher for the correct key k∗ is strictly greater than for all other keys
k 6= k∗:

D(k∗)> D(k) (∀k 6= k∗) (52)

Under this condition, it is an easy consequence of the law of large numbers that
the corresponding success rate tends to 1 as the number of measurements increases
indefinitely. For mutual information used as a side-channel distinguisher [10]: D(k)=
I(X ;Y (k)), the soundness condition is expressed by the strict inequality I(X ;Y ∗)>
I(X ;Y ) for all k 6= k∗.

Proposition 6. Mutual information analysis is sound for arbitrary (not necessarily
Gaussian) noise.

Proof. Moradi et al. [21] proved that I(X ;Y ∗)≥ I(X ;Y ) which relies on the fact that
Y → Y ∗→ X forms a Markov chain [6, Thm 2.8.1]. Their paper [21] was written
(as the title states) “under a Gaussian [noise] assumption” but the argument goes
unchanged for non-Gaussian noise; in fact, the Markov chain condition p(x|y,y∗) =
p(x|y∗) relies only on the fact that N and Y are independent and not on the Gaussian
nature of the noise.

To prove strict inequality, we use the fact that X given Y = y is a nontrivial linear
mixture of densities pN(x− y∗) of the same entropy as H(N). Since the entropy is
strictly concave in the probability density function [6, Thm 2.7.3]4 we have the strict
inequality

H(X | Y = y)> ∑
y∗

p(y∗|y)H(N + y∗) = H(N) (53)

for all y. Taking expectations over Y yields H(X |Y ) > H(N) = H(X |Y ∗), that is,
I(X ;Y ∗)> I(X ;Y ). ut

For inter-class information used as a side-channel distinguisher: D(k)= II(X ;Y (k)),
soundness is similarly expressed by the strict inequality II(X ;Y ∗)> II(X ;Y ) for all
k 6= k∗.

Proposition 7. IIA is sound for arbitrary noise.

Proof. Let k 6= k∗. By strict concavity of the logarithm (or by strict convexity of
function x 7→ log(1/x)):

4 A well-known information-theoretic property commonly referred to as “mixing increases entropy”.
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H ′(X | Y ) =∑
y,y′

p(y)p(y′)∑
y′∗

p(y′∗|y′)

×
∫

pN(x− y′∗) log
1

∑y∗ p(y∗|y)pN(x− y∗)
dx (54)

<∑
y,y′

p(y)p(y′) ∑
y∗,y′∗

p(y′∗|y′)p(y∗|y)

×
∫

pN(x− y′∗) log
1

pN(x− y∗)
dx (55)

= ∑
y∗,y′∗

p(y′∗)p(y∗)

×
∫

pN(x− y′∗) log
1

pN(x− y∗)
dx (56)

= H ′(X | Y ∗). (57)

Now as in the proof of Proposition 6, we still have H(X |Y )> H(X |Y ∗). Combining
the two strict inequalities yields

II(X ;Y ) =
H ′(X | Y )−H(X |Y )

2
(58)

<
H ′(X | Y ∗)−H(X |Y ∗)

2
= II(X ;Y ∗), (59)

which is the required soundness statement for IIA. ut

5 Why Inter-class Information Analysis is more Discriminating
than Mutual Information Analysis

In this section, we theoretically compare MIA and IIA under a Gaussian noise
assumption using the scenario and the hypothesis of Sect. 4. We start by a theoretical
investigation of I(X ;Y ∗) and II(X ;Y ∗), which is then extended with the help of some
numerical calculation to I(X ;Y ) and II(X ;Y ).

5.1 Theoretical Comparison of I(X ;Y ∗) and II(X ;Y ∗)

A key feature of IIA is that inter-class information is no less than mutual information
for the correct key guess5.

5 Interestingly, it is not true that II(X ;Y ) ≥ I(X ;Y ) for general random variables X and Y . For
example, we can find a counterexample when X ,Y are binary variables with small p(x|y) for all
x,y 6= 0.
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Proposition 8. Let X be as in Eq. (1) with Gaussian noise N ∼N (0,σ2). One has

II(X ;Y ∗) =
loge

2
· σ

2
Y ∗

σ2 (60)

and
I(X ;Y ∗)≤ II(X ;Y ∗) . (61)

Proof. To proof Eq. (60) we evaluate II(X ;Y ∗) using Eq. (24). Conditional cross-
entropy can be written as

H ′(X | Y ) = ∑
y

p(y)
∫

p(x) log
1

p(x | y) dx. (62)

Plugging the expressions p(x) = ∑y p(y)p(x|y) and p(x|y) = ∑y∗ p(y∗|y)pN(x− y∗)
yields

H ′(X | Y ) =∑
y,y′

p(y)p(y′)∑
y′∗

p(y′∗|y′)· (63)

∫
pN(x− y′∗) log

1
∑y∗ p(y∗|y)pN(x− y∗)

dx. (64)

For k = k∗ this boils down to

H ′(X | Y ∗) = ∑
y∗,y′∗

p(y∗)p(y′∗)
∫

x
pN(x− y′∗) log

1
pN(x− y∗)

dx︸ ︷︷ ︸
(∗)

. (65)

Substituting ξ = x− y′∗ in (∗) and assuming N ∼N (0,σ2) results in

∫
pN(ξ ) log

1
pN(ξ + y′∗− y∗)

dξ

=
1
2

log(2πσ
2)+

log(e)
2σ2 E

{
(N + y∗− y′∗)2} (66)

=
1
2

log(2πσ
2)+

log(e)
2σ2

(
σ

2 +(y∗− y′∗)2) (67)

= H(N)+
log(e)
2σ2 (y∗− y′∗)2. (68)

So, by letting Y ′∗ denote a random variable independent and identically distributed
as Y ∗,

H ′(X | Y ∗) = H(N)+
log(e)
2σ2 ∑

y∗,y′∗
p(y∗)p(y′∗)(y∗− y′∗)2 (69)

= H(N)+
log(e)
2σ2 E((Y ∗−Y ′∗)2) (70)
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where

E((Y ∗−Y ′∗)2) = 2E((Y ∗−E(Y ∗))2) (71)

= 2σ
2
Y ∗ . (72)

Combining using Eq. (24) and that fact that H(X |Y ∗) = H(N) for k = k∗ gives the
announced formula:

II(X ;Y ∗) =
H ′(X | Y ∗)−H(N)

2
=

loge
2
· σ

2
Y ∗

σ2 . (73)

To prove Eq. (61) we use the fact that the differential entropy is maximum for
normal densities [6]:

H(X)≤ 1
2

log(2πeσ
2
X ) (74)

Since X given Y ∗ is normal, we obtain

I(X ;Y ∗) = H(X)−H(X |Y ∗) (75)

≤ 1
2

log(2πeσ
2
X )−

1
2

log(2πeσ
2
X |Y ∗) (76)

=
1
2

log
σ2

X

σ2
X |Y ∗

(77)

=
1
2

log
σ2

Y ∗ +σ2

σ2 (78)

≤ loge
2

σ2
Y ∗

σ2 = II(X ;Y ∗) (79)

where we have used the well-known inequality logx≤ (loge)(x−1). ut

5.2 Distinguishability of I(X ;Y ) and II(X ;Y )

We now investigate the ability to distinguish between the correct key k∗ and the
incorrect keys k 6= k∗ for MIA and for IIA. For this purpose, we use the theoretical
metric given by the relative distinguishing margin introduced in the SCA evaluation
framework in [41] and defined by

RelMarg(D) =
D(k∗)−maxk 6=k∗D(k)√

VarD(K)
. (80)

where K is the random variable uniformy distributed in the keyspace K .
The theoretical evaluation for both MIA and IIA involves the determination of the

Gaussian density mixture of the leakage X given each possible input Z, with mean
value y∗ and variance σ2. That of the conditional densities of p(x|y) follow similarly
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Fig. 2: Relative distinguishing margin for MIA (black) and IIA (red) for various
SNRs

for all possible values of y. Given the expressions for p(x) and p(x|y), we are able
to compute the required entropies given in Eq. (11), Eq. (13) and Eq. (23) with the
help of numerical integration with arbitrary precision. To compute Eq. (80) we have
chosen the following practical side-channel scenario:

Y (k) = HW (SBox−1
P [Z⊕ k∗]) (81)

X = Y (k∗)+N, (82)

where SBox−1
P is the inverse substitution box operation in PRESENT (F4

2 → F4
2),

HW is the Hamming weight, and N ∼N (0,σ2).
Figure 2 displays the relative distinguishing margin for various signal-to-noise

ratios (SNR), defined as

SNR =
Var(Y ∗)
Var(N)

=
2

σ2 . (83)

It is clearly observed that RelMarg(IIA) lies essentially above RelMarg(MIA) for
high SNR while at smaller SNR the two curves tend to the same asymptote.
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(a) Success rate for MIA (red) and IIA (black)
with error bars using σ = 1.

(b) Success rate for MIA (red) and IIA (black)
with error bars using σ = 4.

6 Simulation Results

In order to compare the practical and theoretical evaluations, we consider the same
leakage scenario as before (Eq. (81) and Eq. (82)). Again N ∼ N (0,σ2) with
σ = {1,4} in our simulations. Although the assumption of additive white Gaussian
noise may not be always realistic, it is common in numerous works in the community.

The maximum distinguisher’s value gives the key prediction k̂∗, viz.,

k̂∗ = argmax
k

I(X ;Y ) or k̂∗ = argmax
k

II(X ;Y ). (84)

To compare the performance of MIA and IIA empirically we used the first-order
success rate (SR), which we computed over a set of 230 independent experiments
for σ = 1 and 120 experiments for σ = 4, where the secret key is chosen randomly
for each experiment. In order to guarantee a fair comparison, we choose the same
data set for both MIA and IIA.

We used the kernel density estimation to estimate the required probability densities.
The parameters were chosen as recommended in previous publications (see e.g., [39,
24, 2]). To be specific, the bandwidth was chosen according to normal scale rule [32]
and we used the normal kernel.

Moreover as suggested in [18], we highlight the standard deviation of the SR by
computing error bars. More precisely, since SR follows a binomial distribution for

multiple retries R with variance
√

SR(1−SR)
R , we obtain confidence intervals[

SR−
√

SR(1−SR)
R

,SR+

√
SR(1−SR)

R

]

that are drawn as error bars to provide a fair comparison.
Figures 3a shows the success rate with error bars for σ = 1. One can see that IIA

reaches the threshold of the SR of 0.9 before MIA. The success rate for σ = 4 is
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displayed in Figures 3b, which again highlights the same classification for MIA and
IIA. Interestingly, one can see that the difference between MIA and IIA is smaller
for low SNR than for high SNR. Thus, the empirical results confirm our theoretical
results and mathematical study made in the previous sections.

7 Comparing Side-Channel Distinguishers

7.1 Existing Evaluation Metrics

7.1.1 Comparing Empirical Distinguishers

The success rate (SR) is a classical evaluation metric when comparing empirical
side-channel distinguishers D̂m(K). In most publications, SR is derived empirically
as defined in Def. 6 (e.g. in [19, 18, 7]). Moreover, in [35] the authors tackled
the essential question how to compare two implementations? or how to compare
two side-channel adversaries? by presenting an empirical framework including the
empirical success rate.

Definition 6 (Empirical success rate). Let k̂ = argmax
k

D̂m(K) denote the key guess

maximizing the experimental distinguisher D̂m(K) for one experiment and let k̂ =
[k̂1, . . . , k̂r] define a vector of key guesses of r independent experiments. Then the
empirical success rate is defined as

ŜR(D̂m) =
1
r

r

∑
i=1

1k∗=k̂i
. (85)

Even if the empirical success rate directly describes the practical outcome of a
distinguisher, the given feedback is very limited. In particular, it only outputs the
average probability of success without revealing influencing factors or quantifying
how close the outcome of the correct key to its rivals is.

Apart from comparing the empirical SR, contributions tackled the questions on
determining the theoretical success rate of distinguishers:

Definition 7 (Theoretical success rate). The theoretical success rate is defined as

SR(D̂m) = P
(
D̂m(X ;Y (k∗))> D̂m(X ;Y (k)) (∀k 6= k∗)

)
(86)

= P
(

∆̂m(k∗,k)> 0 (∀k 6= k∗)
)
. (87)
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In [28] Rivain determined the theoretical6 SR for CPA and Bayesian attacks.
Recently in [8], Fei et al. provided a closed-form expression for the theoretical suc-
cess rate of DPA. Interestingly, their approach consists in estimating the theoretical
success rate depending on the relationship between the correct and incorrect key hy-
pothesis (named as confusion), the number of measurements and the SNR. Following
this approach, Thillard et al. [38] extended the idea of confusion coefficients to the
general case and reformulated the theoretical success rate of [28]. Thus, it is possible
to determine the success rate without the need of measurements or simulations. Even
more, the influencing factors of the success rate as the number of measurements,
SNR and the confusion due to the leakage model are determinable. Unfortunately,
the computation of the closed-form is not straightforward as mentioned in [28] and it
again gives no quantification of the goodness of the distinguisher. Further, up to now
only closed-forms for DPA and CPA exists.

7.1.2 Comparing Theoretical Distinguishers

A different approach to classify the efficiency of side-channel distinguishers has
been presented in [42]. The authors aim at characterizing the behavior of theoretic
distinguishers D(K) instead of D̂m(K). Thus, the distinguisher is provided with
full information about the leakage distribution without the need of estimation. The
framework overall consists in six metrics, however, the most common metric is the
relative distinguishing margin (RDM) that has been used as a reference in [41, 43]7:

Definition 8 (Relative distinguishing margin [42]). Let D(k∗) be the theoretical
distinguishing value of the correct key and D(k) the theoretical distinguishing value
of any incorrect key hypotheses, then the relative distinguishing margin RDM is
defined as

RDM(D) =

D(k∗)−max
k 6=k∗

D(k)√
Var(D(K))

= min
k 6=k∗

D(k∗)−D(k)√
Var(D(K))

. (88)

The RDM gives a quantified feedback about the margin between the correct
key D(k∗) and its nearest rival, unfortunately, no link between the outcome of an
empirical and a theoretical distinguisher has been shown so far. Apart from this, the
denominator in Eq. (88) is highly dependent on the number of key hypothesis used.
For example,

√
Var(D(K)) with K = F8

2 (8-bit key hypothesis) will be smaller
than for K = F4

2 (4-bit key hypothesis) and so RDM will be smaller for smaller key
spaces than vice versa, which does not seem intuitive and we prove in Subsect. 8.2 the
contrary. Thus, it is not possible to make reasonable comparisons between different
cryptographic algorithms or implementations.

6 In [28] the term exact instead of theoretical is used.
7 Note that, in some publications, the relative distinguishing margin is also called nearest-rival
distinguishing score.
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7.2 A Novel Approach to Compare Distinguishers

As pointed out above, both state-of-the art approaches, the SR and the RDM, have
significant drawbacks, which shows the need of a new metric. Our aim is to develop
a novel metric that on the one hand coincides with the empirical outcome of dis-
tinguishers, like the SR, but on the other hand gives more quantified feedback as
the RDM. Our new metric, called success metric, captures the relevant parameters
of the theoretical success rate. We provide all necessary approximations from the
theoretical success rate to the success metric. In particular, we first define the failure
rate as the contrary to the success rate to apply the union bound. Following, we
give two different approximations identifying the same relevant influencing factors
with different convergence rate and, finally, we utilize a first order approximation to
achieve the success metric in Def. 11.

7.2.1 Theoretical Foundation

Complementary to the theoretical success rate (see Def. 7) we define:

Definition 9 (Failure rate). The failure rate is defined as

FR(D̂m) = 1−SR(D̂m) = P
(
∃k 6= k∗ / ∆̂m(k)≤ 0

)
. (89)

We first use the union bound (Boole’s inequality) to achieve an upper bound of
the failure rate:

P
(
∃k 6= k∗ / ∆̂m(k)≤ 0

)
≤ ∑

k 6=k∗
P
(
∆̂m(k)≤ 0

)
. (90)

Next, we give two different approximations that both indicate the same properties
but with different convergence rates and pre consumptions.

Definition 10. Let X ∼N (0,1). The Q-function is defined as

Q(x) =
1

2π

∫
∞

x
e−t2/2 dt (91)

= P(X > x). (92)

Under the assumption of ∆̂m(k∗,k) ∼ N (∆(k∗,k),EV(k∗,k)) we use the Q-
function to approximate P

(
∆̂m(k∗,k)≤ 0

)
, i.e.,

P
(
∆̂m(k∗,k)≤ 0

)
(93)

= P
( ∆̂m(k∗,k)−E(∆̂m(k∗,k))√

EV(k∗,k)
≤− (∆(k∗,k)+EB(k∗,k))√

EV(k∗,k)

)
(94)

= Q
(∆(k∗,k)+EB(k∗,k)√

EV(k∗,k)

)
, (95)
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since Q(x) = 1−Q(−x). Accordingly, if EB(k∗,k) is small with respect to ∆(k∗,k),
we have

P(∆̂m(k∗,k)≤ 0)−→ 0 (96)

exponentially as

∆(k∗,k)+EB(k∗,k)√
EV(k∗,k)

−→ ∞ (97)

increases for large m. We recall the Chebyshev bound [37]: Let ρ > 0, then

P(X > E(X)+ρ)≤ P(|X−E(X)|> ρ)≤ Var(X)

ρ2 . (98)

Accordingly, we achieve

FR = P(∆̂m(k∗,k)≤ 0) (99)

= P
(
∆̂m(k∗,k)≤ E{∆̂m(k∗,k)}−∆(k∗,k)−EB(k∗,k)︸ ︷︷ ︸

−ρ

)
(100)

≤ EV(k∗,k)
(EB(k∗,k)+∆(k∗,k))2 . (101)

As ρ −→ 0 the term EV(k∗,k)
(EB(k∗,k)+∆(k∗,k))2 −→ 0 exponentially.

Note that, a similar usage of the Chernov bound [5] allows to prove exponentially
convergence. Further, since we achieved exponentially convergence of P(∆̂m(k∗,k)≤
0) against 0, we use the following first order approximation

∑
k∗ 6=k

P(∆̂m(k∗,k)≤ 0)≈max
k 6=k∗

P(∆̂m(k∗,k)≤ 0). (102)

Concluding, using the relationship between success and failure rate, we define the
success metric as

Definition 11 (Success Metric (SM)).

SM(D ,D̂m) =min
k 6=k∗

∆(k∗,k)+EB(k∗,k)√
EV(k∗,k)

(103)

=min
k 6=k∗

E{∆̂m(k∗,k)}√
Var(∆̂m(k∗,k))

. (104)

Interestingly, the success metric includes the minimum distance between the
correct key and its nearest-rival as the RDM, however, it is, of course, based on the
estimated distinguisher and thus includes the variance of the estimated difference
∆̂m(k∗,k) in the denominator.
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Remark 1. From Appendix 7.2.1 one can see that SR can be approximated from SM.
More precisely,

SR .
= 1− exp

(
−1

2
SM2

)
, (105)

so SM is the first order exponent of SR regarding the following definition of equiva-
lence [6, page 63, Eqn. (3.76)]:

Definition 12. The notation am
.
= bm means that

lim
m→∞

1
m

log
am

bm
= 0. (106)

Thus, am
.
= bm implies that am and bm are equal to the first order in the exponent.

As the success rate, the success metric can be derived empirically from simu-
lations/ measurements or theoretically from closed-form expressions. In the next
subsection we develop closed-form expressions for additive distinguisher (e.g., DPA,
CPA). Even more, in Subsect. 7.4 we derive a closed-form expression of the informa-
tion theoretic distinguisher MIA for the success metric, which has not be done for
any metric so far and cannot be straightforwardly extended to the success rate.

7.3 Closed-Form Expression for Additive Distinguishers

Definition 13 (Additive distinguisher). We call an estimated distinguisher D̂m(k)
additive if it is unbiased (i.e., EB(k∗,k) = 0) and takes the form

D̂m(k) =
1
m

m

∑
i=1

D̂(Xi,Yi(k)), (107)

where D̂(Xi,Yi(k)) is a deterministic function of the i.i.d. sequence (Xi,Yi(k)) and,
therefore

E{D̂m(k)}= D(k). (108)

Remark 2. This definition implicitly assumes that the distribution of Y (k) is identical
for all k ∈K . In other words, knowing the distribution of Y (k) does not give any
evidence about the secret (see [13, 26] for similar assumptions). Thus, Var{Y (k)}
is constant for all k ∈K . Furthermore, without loss of generality we assume that
the sensitive variable Y is normalized such that E{Y (k)} = 0 and Var{Y (k)} =
E{Y (k)2}= 1.

Proposition 9. Considering Remark 2 one can simplify both D̂mDPA [16] and
D̂mCPA [3] to



Information Theoretic Comparison of Side-channel Distinguishers 25

1
m

m

∑
i=1

XiYi(k). (109)

Proof. A proof for D̂mCPA is given in the following. As formalized in [7] D̂mDPA
and D̂mCPA can be directly translated into each other. Recall the definition of CPA:

D̂mCPA(k) =
1
m ∑

m
i=1(Xi−X)(Yi(k)−Y (k))√

1
m ∑

n
i=1(Xi−X)2

√
1
m ∑

m
i=1(Yi(k)−Y (k))2

, (110)

where

X =
1
m

m

∑
i=1

Xi Y (k) =
1
m

m

∑
i=1

Yi(k). (111)

Due to Remark 2, (for large m) we have Y (k) = 0 and 1
m ∑

m
i=1(Yi(k)−Y (k))2 = 1.

Straightforward computation yields Proposition 9 for D̂mCPA(k). For more details on
CPA (and side-channel distinguisher) we refer to [33, 36]. ut

To formulate a closed-form expression for the success metric for any additive
distinguisher, we extend the idea of confusion similar to [38], which we call general
2-way confusion coefficients.

Definition 14 (General 2-way confusion coefficients). For k 6= k∗ we define

κ(k∗,k) = E

{(
Y (k∗)−Y (k)

2

)2
}
, (112)

κ
′(k∗,k) = E

{
Y (k∗)2

(
Y (k∗)−Y (k)

2

)2
}
. (113)

Remark 3. The confusion coefficient introduced in [38] is defined as κ◦(k∗,k) =
E{Y (k∗)Y (k)} and we obtain the following relationship

κ
◦(k∗,k) = 1−2κ(k∗,k). (114)

Note that, our definition is consistent and a natural extension of the work in [8]. We
now precise our side-channel model from Eq. (1) and Eq. (2)) in case of additive
distinguishers. As these distinguishers are most usually used when the leakage X is
linearly depend on Y ∗, we assume X = αY ∗+N 8.

Proposition 10 (SM for CPA). Let ε = 2α . The success metric for any additive
distinguisher takes the closed-form expression

SM(D ,D̂m) = min
k 6=k∗

εκ(k∗,k)√
ε2(κ ′(k∗,k)−κ2(k∗,k))+4σ2κ(k∗,k)

√
m. (115)

8 Note that, a similar model was also implicitly used in [8, 38].
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Proof. We first give the following proposition.

Proposition 11. The first two moments of ∆̂m(k∗,k) are given by

E{∆̂m(k∗,k)}= 2ακ(k∗,k), (116)

Var(∆̂m(k∗,k)) = 4[α2(κ ′(k∗,k)−κ
2(k∗,k))+σ

2
κ(k∗,k)]. (117)

Proof. Recall
∆̂m(k∗,k) = (αY (k∗)+N)(Y (k∗)−Y (k)).

Since E{Y (k∗)2}= 1 (see Remark 2), we obtain

E{Y (k∗)(Y (k∗)−Y (k))}= 1−E{Y (k∗)Y (k)} (118)

= 2E{
(Y (k∗)−Y (k)

2
)
} (119)

= 2κ(k∗,k). (120)

Because N is independent of Y (k),

E{N · (Y (k∗)−Y (k))}= E{N} ·E{Y (k∗)−Y (k)}= 0. (121)

Therefore we obtain

E{∆̂m(k∗,k)}= 2ακ(k∗,k). (122)

For the variance we obtain

E{∆̂m(k∗,k)2}= E{(XY ∗−XY )2} (123)

= 2E{N2(Y ∗−Y )2}+α
2E{Y ∗2(Y ∗2−Y )2} (124)

= 4σ
2
κ(k∗,k)+α

24κ
′(k∗,k), (125)

since all cross terms with N vanish. Hence, we have

Var(∆̂m(k∗,k)) = E{∆̂m(k∗,k)2}−E{∆̂m(k∗,k)}2 (126)

= 4[α2(κ ′(k∗,k)−κ
2(k∗,k))+σ

2
κ(k∗,k)]. (127)

ut

Plugging Proposition 11 into the success metric given in Eq. (103) and consid-
ering the normalizing factor of the variance

√
m (see Eq. (107)) directly derives

Proposition 10. ut

For DPA with one-bit variables Y (k) we can further simplify the success metric
such that it can be expressed directly through the SNR, number of measurements and
2-way confusion coefficient κ(k∗,k):
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Proposition 12 (SM for 1-bit DPA). Let ε = 2α , Y a one-bit variable (e.g., Y ∈
{±1}) and D̂m(k) an additive distinguisher, then

SM(D ,D̂m) =

√
m√

max
k 6=k∗

1−κ(k∗,k)
κ(k∗,k) + 1

κ(k∗,k)SNR

, (128)

with SNR = Var(signal)
Var(noise) = ε2

σ2 , since ε = 2α is the difference between X when Y = 1
and Y =−1.

Proof. When Y (k) ∀k ∈K is a one-bit variable, we achieve the following simplifi-
cation:

κ(k∗,k) = E{
(Y (k∗)−Y (k)

2
)2}= E{Y (k∗)2(Y (k∗)−Y (k)

2
)2}= κ

′(k∗,k). (129)

From this, Proposition 12 follows directly. ut

Remark 4. Estimating the success rate from confusion coefficients includes a com-
putation of a multivariate normal cumulative distribution function [27] for which
(contrary as stated in [8]) no closed-form expression exists. Moreover, we discovered
that the calculated covariance matrices9 that directly depend on the confusion coeffi-
cients are not of full rank. This effect was similarly discovered for CPA by Rivain
in [28], where the author propose to use Monte-Carlo simulation to overcome this
problem.

According to Remark 4, we stress that the computation of the success metric as a
closed-form expression is more convenient than using the closed-form expression
for the success rate for DPA and CPA, since only 2-way confusion coefficients
(κ(k∗,k),κ ′(k∗,k)) without multivariate distributions are involved.

Additionally, with the help of κ(k∗,k) we can give a closed-form expression for
RDM (see Eq. (88)) for any additive distinguisher:

Proposition 13. For additive distinguisher the RDM(D) can be simplified as

RDM(D) =

min
k 6=k∗

κ(k∗,k)√
Var(κ(k∗,K))

. (130)

Proof Sketch: As the RDM takes as a input the theoretical value of a distinguisher
D , κ(k∗,k) directly describes the difference between D(k∗) and D(k) for any k ∈ K.
Thus, Prop. 13 directly follows. �

The comparison of the closed-form expressions of RDM in Eq. (130) and SM in
Eq. (115) again highlights the different aspects of both metrics.

9 Namely [κ(k∗, i, j)](i, j)∈K \{0} and [κ(k∗, i)×κ(k∗, j)](i, j)∈K \{0}.
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7.4 Closed-form Expression for Mutual Information Analysis

Definition 15. The Mutual Information Analysis distinguisher (MIA) [10] between
a continuous variable X and a discrete variable Y is defined by

I(X ;Y ) = H(X)−H(X |Y ), (131)

where H(X)=−∫ ∞

−∞
f (x)·log f (x)dx is the (differential) entropy of X and H(X |Y )=

∑y p(y) ·H(X |Y = y) =−∑y p(y)
∫

∞

−∞
f (x|y) · log f (x|y)dx is the conditional entropy

of X knowing Y .

In practice, I(X ;Y ) has to be estimated, while unlike for CPA or DPA the estima-
tion of MIA is a nontrivial problem. For a detailed evaluation of estimation methods
of mutual information distinguishers we refer to [39]. In the following, we consider
the estimation with histograms in order to formulate a closed-form expression. To
estimate MIA with histograms (H-MIA), one has to partition the leakage X into h
distinct bins bi of width ∆x with i = 1, . . . ,h. Note again that, Y is already discrete.

Definition 16. Let p̂(x) = #bi
m with x falling into bin bi and let p̂(x|y) be the estimated

probability knowing Y = y, then

Îm(X ;Y ) =−∑
x

p̂(x) log p̂(x)+∑
y

p̂(y)∑
x

p̂(x|y) log p̂(x|y). (132)

For simplification, we consider in the following only the negative conditional
entropy−Ĥ(X |Y ) as a distinguisher, since Ĥ(X) does not depend on a key hypothesis.
Additionally, we reasonably assume that the distribution of Y is know to the attacker
and thus we use p(y) instead of p̂(y). So, H-MIA simplifies to

H-MIA(X ,Y ) = ∑
y

p(y)∑
x

p̂(x|y) log p̂(x|y)+ log∆x. (133)

Note that, since we estimate the differential entropy the additional term log∆x arises,
which is eliminated in Eq. (132). For more information on differential entropy and
mutual information we refer to [6].

First, we develop a closed-form expression for EB{∆̂m(k∗,k)}: Since Y is dis-
crete the bias only arise due to the discretization of X and the limited number of
measurements m. Thus, we utilize the approximations given for the bias of Ĥ(X)

in [20] (3.14) to calculate E{D̂m(k)} and E{∆̂m(k∗,k)} for H-MIA. To be specific,
let h define the number of bins and ∆x their width, then

E{D̂m(k)}=−E{Ĥ(X |Y )}=−∑
y

p(y)E{Ĥ(X |Y = y)}, (134)

≈−∑
y

p(y)
[
H(X |Y = y)+

∆x2

24
J(X |Y = y)

]
− h−1

2m
, (135)

E{∆̂m(k∗,k)} ≈∑
y

p(y)
[
H(X |Y = y)+

∆x2

24
J(X |Y = y)

]
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−
(
∑
y∗

p(y∗)
[
H(X |Y ∗ = y∗)+

∆x2

24
J(X |Y ∗ = y∗)

])
, (136)

with J(X |Y ) = ∑y p(y)J(X |Y = y) and J(X |Y = y) being the Fisher information∫
∞

−∞

[ d
dx p(x|y)]2

p(x|y) dx [9].

Next, to calculate Var{D̂m(k)} we use the law of total variance [14] (Eq. (137)⇔
Eq. (138)) and the approximations for the variance given in [20] (4.9) for Eq. (138)
⇒ Eq. (139) and Eq. (140)⇒ Eq. (141):

Var{D̂m(k)}= Var{Ĥ(X |Y )}}= Var{E{Ĥ(X |Y = y)}} (137)

= Var{Ĥ(X)}−E{Var{Ĥ(X |Y = y)}} (138)

≈ Var{H(X)}− 1
m ∑

y
p(y)Var{− log f (x|y)} (139)

Var{∆̂m(k∗,k)}= Var{E{Ĥ(X |Y = y}}−Var{E{Ĥ(X |Y ∗ = y∗}} (140)

−2Cov(E{Ĥ(X |Y = y}},E{Ĥ(X |Y ∗ = y∗}})

≈ 1
m ∑

y
p(y)Var{− log f (x|y)}+ 1

m ∑
y

p(y∗)Var{− log f (x|y∗)}

(141)

−2Cov(E{Ĥ(X |Y = y}},E{Ĥ(X |Y ∗ = y∗}})

≤ 1
m

(
∑
y

p(y)Var{− log f (x|y)}+∑
y

p(y∗)Var{− log f (x|y∗)}
)

(142)

Using the closed-form expressions for EB{∆̂m(k∗,k)} and EV{∆̂m(k∗,k)} we
formulate the following proposition.

Proposition 14 (SM for H-MIA).

SM(D ,D̂m)/ min
k∗ 6=k

(
∆(k∗,k)+ ∆x2

24

(
J(X |Y )− J(X |Y ∗)

))√
m√

∑y p(y)Var{− log f (x|y)}+∑y∗ p(y∗)Var{− log f (x|y∗)}
,

(143)

with ∆(k∗,k) = H(X |Y )−H(X |Y ∗), J(X |Y ) = ∑y p(y)J(X |Y = y) while J(X |Y = y)

is the Fisher information
∫

∞

−∞

[ d
dx f (x|y)]2

f (x|y) dx [9].

Interestingly, the SM of MIA involves the number of traces as the
√

m in the
nominator like DPA and CPA, which seems reasonable.

Remark 5. If N is normal distributed with variance σ2 we can further simplify
H(X |Y ∗ = y∗) = 1

2 log(2πeσ2) since p(x|y∗) = pN(x− y∗). Moreover, J(X |Y ∗ =
y) = 1

σ2 and Var{− log f (x|y∗)}= 1
2m .
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Remark 6. Remarkably, the variance is approximately independent of the size of
∆x. Only in extreme cases like ∆x = 1 and ∆x→ ∞ is affecting the variance. Also
see [20] for more information. Interestingly, all linear terms have disappeared in the
expression of the SM.

8 Features of SM Expressions

8.1 Linking the Success to Properties of the Sbox

All previous studies about the relationship between the sbox properties and side-
channel analysis considered the direct link between a metric on a distinguisher
itself and the sbox. In [11], Guilley et al. use as a metric the maximal value of the
distinguisher divided by its standard deviation (SNR). The authors demonstrate that
for DPA the SNR is lower bounded by quantities that are expected to be large for
sboxes resisting against linear differential cryptanalyses. Prouff introduces in [22],
an alternative metric for CPA, called the transparency order, that is defined as the
difference between the maximal value of CPA and the average of all rivals. Besides,
the power model is not the Hamming weight, but the Hamming distance; however,
strangely enough, the sensitive variable is not the Hamming distance, but instead the
average of the initial state exclusive-ored with all possible final states. This leakage
model is, to our best knowledge, rather unusual in practice. In both previous works
the relationship is only stated as an expected outcome but not proven. The results
have been further investigated by Carlet in [4].

In the following, we not only bound but directly link the success metric and the
sbox in case of low SNR (practical conditions). As DPA is a special case of CPA,
we further concentrate on the closed-form expression of CPA and simplify Eq. (115)
when σ � α . More precisely,

SM(D ,D̂m)≈ min
k 6=k∗

√
4α2κ2(k∗,k)m

σ24κ(k∗,k)
(144)

=
√

SNR
√

m min
k 6=k∗

√
κ(k∗,k). (145)

From Eq. (112), κ(k∗,k∗) = 0 and κ(k∗,k)≥ 0, thus the argument of the square
root in Eq. (145) is always positive. Besides, by the Cauchy-Schwarz theorem, we
also have that κ(k∗,k) ≤ 1. Now, the objective to minimizing mink 6=k∗

√
κ(k∗,k)

(i.e., making side-channel attacks as hard as possible) is tantamount to maximizing
maxk 6=k∗ E(Y (k∗)Y (k)). In the following, we assume that Y ∗ and Y explicitly depend
on an sbox (or inverse sbox) and a Hamming weight (wH) leakage model10 as for
example wH(Sbox[T ⊕ k]), so Y (k) = 1√

n ∑
n
i=1(−1)Si(T⊕k) = 1√

n (2wH(S(T ⊕ k))−
n) and

10 One can easily extend the calculation also for the Hamming distance model.
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Fig. 3: Illustration of the confusion coefficients for CPA

E{Y (k∗)Y (k)}= 1
n

n

∑
i, j=0

1
2n ∑

t∈Fn
2

(−1)Si(t⊕k∗)⊕S j(t⊕k). (146)

As ∀a ∈ {0,1},(−1)a = 1−2a, the goal to make CPA difficult is to minimize the
following quantity, that we call the transparency metric

min
k 6=k∗

n

∑
i, j=0

∑
t∈Fn

2

Si(t⊕ k∗)⊕S j(t⊕ k). (147)

Remark 7. Note that, for single-bit attacks (n = 1), the criteria of Eq. (147) simplifies
to the one-sided criteria discovered in [12].

So, minimizing the objective on the sbox in Eq. (147) is equivalent to minimizing
mink 6=k∗ κ(k∗,k), which can be understood intuitively on the illustration of Fig. 3.
The key corresponding to the nearest rival, i.e., argmink 6=k∗ κ(k∗,k), shall have a
confusion coefficient as high as possible.

To further illustrate the transparency metric and show the relationship to the
transparency order [22], we use the same three sboxes as in [12]: Let ⊕ and �
be respectively the inner addition and multiplication of the Galois field F28 of 256
elements, then the sboxes are given by

1. A “bad” Sbox[·], termed S1, of equation y 7→ a� y⊕b,
2. An “average” Sbox[·], termed S101, of equation y 7→ a� y101⊕b,
3. A “good” Sbox[·], termed S254 and used in AES, of equation y 7→ a� y254⊕b.

Fig. 4 displays the confusion coefficient for S1, S101 and S254. One can see, that
the minimal mink 6=k∗ κ(k∗,k) is achieved by S1, which is the hardest to attack with
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Fig. 4: Confusion coefficients for S1, S101 and S254 (courtesy of [12])

CPA, whereas S254 has the highest mink 6=k∗ κ(k∗,k) being the most vulnerable. Tab. 1
displays the transparency metric and order. The transparency metric is different from
the transparency order, nonetheless, it remains consistent with it, meaning that the
order of S1, S101 and S254 is the same for both metrics and consistent with the rating
through κ(k∗,k).

Table 1: Comparison of side-channel metrics for sboxes

Transparency Order [22] Transparency Metric (Eqn. (147))
S1 5.84 7424

S101 7.50 7936
S254 7.86 8000

8.2 How does the Size of the Key Space Influence the SM/SR?

Hardware devices are known to leak approximately in Hamming distance. This
makes leakage models complicated, because they involve two consecutive states of
the cipher. Let us consider the example of an AES-128 computed one round per clock
period. The plaintext is P, the cipher C, and the first (resp. last) round key K1 (resp.
K11).

On the one hand, the uncentered and non-normalized leakage model at the first
round for the byte at position 0 is:

Y 1(T,K1) = wH(T0⊕02 ·S(T0⊕K1
0 )⊕01 ·S(T5⊕K1

5 ) (148)

⊕01 ·S(T10⊕K1
10)⊕03 ·S(T15⊕K1

15)) , (149)

where 01, 02 and 03 are the MixColumns constants, and S is the SubBytes operation.
Clearly, a guess for this model requires an hypothesis on 4 bytes of the key K1.
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On the other hand, the uncentered and non-normalized leakage model at the last
round for the byte at position 0 is:

Y 10(C,K10) = wH
(
C0⊕S−1(C0⊕K10

0 )
)

, (150)

where S−1 is the InvSubBytes operation. So, a guess for the model requires simply
one hypothesis on a key byte (namely K10

0 ). This is due to the absence of MixColumns
at the last round.

The transparency order (resp. metric) of InvSubBytes is 7.85 (resp. 7964), mean-
ing that it is very close to that of SubBytes. So, the confusion coefficient associated
to Y 1 and to Y 10 have similar distributions, meaning that the data complexity (the
number of traces m) of the attack is similar at either end of the AES. Specifically, the
minimal nonzero confusion coefficient for Y 1 is 0.468750, whereas it is 0.404297
for Y 10. The most crucial difference is the computational complexity, owing to the
largest key space to explore at the first round.
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