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80 avenue des Buttes de Coësmes, 35 700 Rennes, France

Abstract. We find mathematically optimal side-channel distinguishers
by looking at the side-channel as a communication channel. Our method-
ology can be adapted to any given scenario (device, signal-to-noise ratio,
noise distribution, leakage model, etc.). When the model is known and
the noise is Gaussian, the optimal distinguisher outperforms CPA and
covariance. However, we show that CPA is optimal when the model is
only known on a proportional scale. For non-Gaussian noise, we obtain
different optimal distinguishers, one for each noise distribution. When
the model is imperfectly known, we consider the scenario of a weighted
sum of the sensitive variable bits where the weights are unknown and
drawn from a normal law. In this case, our optimal distinguisher per-
forms better than the classical linear regression analysis.

Keywords: Side-channel analysis, distinguisher, communication chan-
nel, maximum likelihood, correlation power analysis, uniform noise,
Laplacian noise.

1 Introduction

Any embedded system that contains secrets, such as a cryptographic key k!,
is prone to side-channel attacks, which proceed in two steps. First, a leakage
(power consumption, electromagnetic radiations, time, etc.) is measured, which
is a noisy signal dependent on internally manipulated data, some of which are
sensitive, meaning that they depend on the secret key k! and on some plain-
text or cipher-text (denoted by T ). A distinguisher is then used to quantify the
similarity between the measured leakage and an assumed leakage model. The
result is an estimation k̂ of the secret key k!.

In the literature, side-channel distinguishers are customarily presented as sta-
tistical operators that confront the leakage and the sensitive variable, both seen
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as random variables, in order to extract the secret key. Different choices of dis-
tinguishers as statistical tools yield different performances, depending on the
scenario (device, signal-to-noise ratio, noise distributions, leakage models, etc.)

There are certainly various ways to appreciate the quality of distinguishers. In
this article, we focus on distinguishers that maximize the probability of revealing
the correct key. In the field of side-channel analysis , somewhat paradoxically,
most of the academic works have eluded the precise mathematical derivation of
the best distinguisher given a precise attack scenario. Specifically, the community
has introduced popular statistical tools (maximum likelihood (ML), difference of
means (DoM), covariance, Pearson correlation coefficient (correlation power anal-
ysis (CPA)), Kolmogorov-Smirnov distance, etc.) and addressed two questions:
Q1: what distinguishes known distinguishers in terms of distinctive features?, and
Q2: given a side-channel context what is the best distinguisher among all known
ones?

As for Q1, there have been some publications that attempt to highlight speci-
ficities of distinguishers. For instance, Doget et al. [4] show that some distin-
guishers seemingly have different expressions, but are in practice the same one
fed with different variants of leakage models. Mangard et al. [11] argue that some
distinguishers achieve success performance all the more similar as the noise vari-
ance increases; they conclude that only “statistical artifacts” can explain the
difference of success probability between a class of selected distinguishers (no-
tably maximum likelihood and correlation). Souissi et al. [20] note that the closer
the noise is to a normal distribution (measured by a gaussianity metric), the bet-
ter the correlation compared to other distinguishers. Besides, it was noticed by
Prouff and Rivain [16] that the way a distinguisher is estimated seriously impacts
its success rate. This is especially true for information-theoretic side-channel dis-
tinguishers, because probability density functions are to be estimated, which is
a notoriously difficult problem. In contrast, Whitnall and Oswald [24] defined
metrics (such as RDM, the relative distinguishing margin) to rank distinguishers
according to exact values, independently of the way they are estimated (notably
mutual information). However, the RDM has recently been found questionable
in some situations [17]. All in one, it appears difficult to identify salient features
that make one distinguisher in particular more appropriate than another.

Regarding question Q2, a usual practice is to estimate the success rate using
enough simulations or experiments until an unambiguous ranking of the distin-
guishers can be carried out. In [21], Standaert et al. also consider the quality of
the profiling stage when comparing distinguishers. But the fundamental short-
coming of this approach is that the pool of investigated distinguishers is always
limited and does not necessarily contain the best possible distinguisher in every
scenario.

Contributions. In this paper, we answer the ultimate version of Q2, which is
also related to Q1, namely: Q3: given a side-channel scenario what is the best dis-
tinguisher among all possible ones? The “best” distinguisher is to be understood
in terms of success probability maximization. Our analyses show that such an
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objective coincides with the one pursued in digital communication theory [5,23],
where it is rather formulated as the minimization of the error probability (i.e.,
one minus the success probability). Interestingly, in this approach, it is not nec-
essary to investigate how a distinguisher can be estimated as a stochastic tool,
since our analysis already gives the optimal way of estimating the secret key
from the measured data.

We show that, when the leakage model is perfectly known by the attacker (on
a direct scale [25]), the optimal distinguisher depends only on the noise distribu-
tion, not necessarily Gaussian. Consideration of different noise models (Gaussian,
uniform, Laplacian) shows that there is no “universal” distinguisher, only one
best distinguisher per noise distribution type. Surprisingly, in the additive Gaus-
sian noise case, we find that neither the DoM, nor the CPA are optimal: we
exhibit the optimal distinguisher that slightly outperforms them all. The opti-
mal distinguishers for uniform and Laplacian noise are different from Pearson
correlation or covariance, and simulations show that they can be much more ef-
ficient. When the leakage model is only known on a proportional scale [25] (i.e.,
ax + b where a and b are unknown) and when the noise is Gaussian, we show
that the optimal expression leads exactly to Pearson correlation coefficient. This
in particular explains optimality of CPA in this context.

When the model drifts away from Hamming weight (or Hamming distance)
and is thus (at least partially) unknown to the attacker, we use a stochastic linear
leakage model with unknown coefficients drawn from a normal distribution and
derive an optimal distinguisher that outperforms the linear regression attack [4].
Our result has the merit of showing that a rigorous derivation of the optimal
attack is possible and that it yields a new expression, which is interpretable in
terms of stochastic vs. epistemic noise1.

Outline. The remainder of the paper is organized as follows. We express the
problem of side-channel analysis (SCA) as a communication problem in Sect. 2.
The mathematical derivation of the optimal distinguishers in various scenarios
is carried out in Sect. 3 when the leakage model is known. Section 4 derives
the optimal distinguisher when the leakage model is partially known to the
attacker. Then, Sect. 5 validates the results using simulations. Conclusions and
perspectives are in Sect. 6.

2 Side-Channel Analysis as a Communication Problem

2.1 Notations

Calligraphic letters (e.g., X ) denote sets, capital letters (e.g., X) denote random
variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. We write P for probability distributions, p for

1 In our paper, we use the term stochastic for the independent noise N added to the
leakage model, and we resort to the term epistemic to characterize the distribution
of the leakage model when it is not deterministically known.
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densities, and let pX denote the density of X . Symbols in bold are vectors: X or
x; implicitly, the length of all vectors is m, which is the number of queries (i.e.,
X = (Xi)1≤i≤m). We denote the average of x by x = 1

m

∑m
i=1 xi, and the scalar

product between x and y by 〈x|y〉 =
∑m

i=1 xiyi. The norms 1, 2, . . . , q, . . . ,∞
are denoted as ‖x‖1 =

∑m
i=1 |xi|(Manhattan norm), ‖x‖2 =

√∑m
i=1 x

2
i (Eu-

clidean norm), . . ., ‖x‖q = (
∑m

i=1 |xi|q)
1
q (q-norm) with q ∈ R, . . ., and ‖x‖∞ =

maxi∈!1,m" |xi| (uniform norm), respectively. Let k denote any possible key hy-
pothesis from the keyspace K, let k! denote the secret secret cryptographic key,
and let T be the input or cipher text in the cryptographic algorithm.

2.2 Modeling through a Communication Channel

In this section, we rewrite the SCA problem as a communication channel problem
(Fig. 1). Our setup resembles the one presented by Standaert et al. [22], but
focuses specifically on key recovery.

Fig. 1. Side-channel analysis as a communication channel

The input message is the secret key k = k! (assumed uniformly distributed
over Fn

2 in a Bayesian approach). The key is most often recovered piece by piece
(independently) using a divide-and-conquer strategy, so n is typically equal to 8
(as in AES, a byte-oriented block cipher). The encoder can be any function
ϕ(f(k,T)). In SCA, the sensitive variable f(T, k) is normally assumed to be
known, since it is part of the algorithm’s specification. Depending on the scenario,
the leakage function ϕ : Fn

2 → R can be known (see Sect. 3) or partly unknown
(see Sect. 4). Accordingly, ϕ(f(k,T)) can be known or partly unknown. The
communication channel is the side-channel, typically with additive noise N. The
decoder to be optimized maximizes the value of the distinguisher by taking its
maximal argument over the keyspace2. The output of the decoder is then the

2 Given a function g(k), we use the notation argmaxk g(k) to denote the value of k
that maximizes g(k).
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decoded message k̂ = D(X,T), where D is the optimal distinguishing rule. Notice
that we consider the distinguisher as a deterministic mapping, which allows us to
rigorously derive optimal expressions. There is an additional side information3

T, which corresponds to the message or the ciphertext, which is assumed to be
known both at the encoder and the decoder.

Capturing m measurements means that the channel is used m times. Specif-
ically, the output of the encoder is an independent and identically distributed
(i.i.d.) sequence (“codeword”) ϕ(f(k!, T1)),ϕ(f(k!, T2)), . . . ,ϕ(f(k!, Tm))
depending on the i.i.d. sequence of side information T = (T1, T2, . . . , Tm). The
channel is assumed memoryless so that X = (X1, X2, . . . , Xm) (“received noisy
codeword”) again forms an i.i.d. sequence; this implies in particular that the ad-
ditive noise (if present) is white, and successive noise samples N = (N1, N2, . . . ,
Nm) are i.i.d.

The problem is to determine the optimum distinguishing (or decoding) rule D
so as to minimize the probability of error

Pe = P{k̂ '= k!}, (1)

or equivalently to maximize the success probability Ps = 1 − Pe, which is also
referred to as the theoretical or exact success rate [18]).

Theorem 1 (Optimal distinguishing rule). The optimal distinguishing rule
is given by the maximum a posteriori probability (MAP) rule

D(x, t) = argmax
k

(
P{k} · p(x|t, k)

)
. (2)

If the keys are assumed equiprobable, i.e., P{k} = 2−n, Eq. (2) reduces to the
maximum likelihood (ML) rule

D(x, t) = argmax
k

p(x|t, k). (3)

Proof. This is similar to a classical result in communication theory [23, Chap. 2]
or [5, Chap. 8], except that one should take the side information into account.
The optimal distinguishing rule maximizes

Ps = 1− Pe = P{k̂ = k!} = P{k! = D(X,T)} (4)

=
∑

t

P{t}
∫

p(x|t) · P{k! = D(x, t)|x, t} dx. (5)

Since P{t} ≥ 0 and p(x|t) ≥ 0, it suffices to maximize the a posteriori prob-
ability P{k|x, t} for every value of (x, t). Thus the optimal distinguishing rule
is D(x, t) = argmaxk P{k|x, t}. To evaluate the latter distribution, we apply
the Bayes’ rule P{k|x, t} = P{k} · p(x, t|k)/p(x, t). This gives the MAP opti-
mal distinguishing rule D(x, t) = argmaxk P{k} · p(x, t|k). Furthermore, since

3 This term, not to be confused with the side-channel, is used in communication theory
to refer to a variable that is shared unaltered between the encoder and the decoder.
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T is obviously key-independent, one can simplify p(x, t|k) = P{t|k}p(x|t, k) =
P{t}p(x|t, k) so that the MAP and ML rules become as stated. !

Remark 1. Distinguishing rule in Eq. (2) is useful if there is some a priori knowl-
edge about the distribution of the secret key k! (e.g., weak or semi-weak keys in
DES [12]).

Remark 2. Provided p(x, t|k) is known (for instance through a profiling stage),
optimal distinguishing rules (2) and (3) can be readily used as an attack. They
are known as template attacks [2], which are indeed optimal.

3 Optimal Attacks When the Leakage Model is Known

3.1 Derivation

We first consider the scenario of an attacker who knows precisely the leakage
model of the device under attack on a “direct scale”, in such a way that the leak-
age prediction Y (k) coincides exactly with the deterministic part of the leakage.
For example, in an AES software implementation, the device might leak in the
Hamming weight (HW) model as X = HW[Sbox[T ⊕k!]]+N , where Sbox is the
SubBytes transformation and Y (k) = HW[Sbox[T ⊕ k]] for all k ∈ K.

Proposition 2 (Maximum likelihood). When f and ϕ are known to the
attacker and Y(k) = ϕ(f(k,T)), the optimal decision becomes

D(x, t) = argmax
k

(
P{k} · p(x|y(k))

)
. (6)

For equiprobable keys this reduces to

D(x, t) = argmax
k

p(x|y(k)). (7)

Proof. Since (k,T) → Y(k) → X forms a Markov chain, we have the identity
p(x|t, k) = p(x|t, k,y(k)) = p(x|y(k)). Apply Theorem 1. !

Corollary 3. When the leakage arises from X = Y(k!) +N,

p(x|y(k)) = pN(x− y(k)) =
m∏

i=1

pNi(xi − yi(k)). (8)

This expression, which can be substituted in Eq. (6) or (7), depends only on the
noise probability distribution pN.

Proof. Trivial, since N is independent of Y(k). !
Most publications [2, 13, 18] examine the scenario of Gaussian noise, which

we consider next. However, this might not always be valid in practice. Due to
other activities on the device, or to some sampling/quantization process for X,
or even due to countermeasures, the distribution of the noise might differ from
Gaussian. This is addressed in SubSect. 3.3.
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3.2 Gaussian Noise Assumption

Theorem 4 (Optimal expression for Gaussian noise). When the noise is
zero mean Gaussian, N ∼ N (0,σ2), the optimal distinguishing rule is

DM,G
opt (x, t) = argmax

k
〈x|y(k)〉 − 1

2
‖y(k)‖22. (9)

Proof. Applying Corollary 3, a straightforward computation yields

argmax
k

p(x|y(k)) = argmax
k

1

(σ
√
2π)m

e−
‖x−y(k)‖22

2σ2

= argmin
k
‖x− y(k)‖22 (10)

= argmin
k
‖x‖22 + ‖y(k)‖22 − 2〈x|y(k)〉. (11)

Since ‖x‖22 is not key dependent, we obtain Eq. (9). !

Remark 3. Notice that the optimal distinguisher corresponding to the optimal
distinguishing rule of Eq. (9) is E

{
X · Y (k)− 1

2Y (k)2
}
, which does not normally

reduce to a covariance or correlation coefficient.

Remark 4. The scalar product 〈x|y(k)〉 can be negative, but the optimal expres-
sion in Eq. (9) does not involve absolute values. This would only be necessary if
the sign of the model was unknown.

Remark 5. In the mono-bit case (i.e., Yi(k) takes two opposite values), the dis-
tinguisher simplifies to argmaxk 〈x|y(k)〉. However, somewhat surprisingly, this
distinguisher is not the same as the usual DoM from the literature [3,8] and em-
pirical results show that indeed our optimal distinguishing rule is slightly more
efficient. This is detailed in Appendix A.

Remark 6. For a very large number of traces 1
2‖y(k)‖

2
2 becomes key indepen-

dent4. However, as we will show in Sect. 5 this factor plays an important role,
especially when the signal-to-noise ratio (SNR) is high and thus the number of
traces needed to reveal the secret key is low. We insist that the expression in
Eq. (9) is a deterministic value that can be computed from a series of m sampled
pairs of leakages and corresponding texts. As the second term (− 1

2‖y(k)‖
2
2) be-

comes key independent when m→∞, this expression approximates to 〈x|y(k)〉
or even 〈x|y(k)− y(k)〉 (similar assumption as done in Footnote 4), which is an
estimator of the covariance. This is why it can be claimed that when the leakage
model is known, the noise is Gaussian and m→∞ the optimal distinguisher is
very close to the covariance (or to the correlation, since the normalization factor
of the Pearson correlation coefficient is also key-independent for large m).

4 Informally, let us make the hypothesis that T is uniformly distributed in Fn
2 and that

Y (k) has the following expression Y (k) = ϕ(f(T ⊕ k)); then, for large m, we have
1
m

∑m
i=1 ϕ(f(ti⊕k)) ≈ 1

2n

∑
t∈Fn2

ϕ(f(t⊕k)) = 1
2n

∑
t′∈Fn2

ϕ(f(t′)) which clearly does

not depend on k. See also the EIS (Equal Images under the Same key) assumption
in [19].
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Remark 7. As already mentioned in Remark 2, the best distinguisher when the
model is known boils down to a template attack (ML). When the model is known
and the noise is Gaussian, it specializes to an equivalent distinguisher which is
all the closer to correlation as the SNR is low (by previous Remark 6). This is an
independent proof of the main result of [11]. More precisely, the CPA is tolerant
to any scaling of the leakage function, provided it is positive; otherwise, the
attacker must resort to the absolute value of the Pearson correlation coefficient.
It is known to be less efficient as depicted in our empirical results in Sect. 5 since
there exists more rivals, and the soundness can even be impacted (e.g., if there
exists a key kc '= k! that satisfies f(k!, t) = −f(kc, t) for all t ∈ Fn

2 ).

Remark 8. The expression in Eq. (9) can be computed only if the leakage model
is known, including its scaling factor (denoted direct scale in [25]). In contrast, for
CPA the relationship between X and Y (k) is only known up to some affine law
(denoted proportional scale in [25]) such that X = aY (k!)+ b+N , where a and b
are unknown. These coefficients have to be estimated such as to maximize the at-
tacker’s performance, i.e., minimize ‖x−ay(k)−b‖2 in Eq. (10) so as to maximize
the likelihood. The following theorem shows that this is equivalent to CPA.

Theorem 5 (Correlation power analysis). When the leakage arises from
X = aY (k!) + b+N where N is zero-mean Gaussian, k̂ = argmink mina,b ‖x−
ay(k)−b‖2, is equivalent to maximizing the absolute value of the empirical Pear-
son’s coefficient:

k̂ = argmax
k

|ρ̂(k)| = ̂|Cov(x,y(k))|
/√

V̂ar(x)V̂ar(y(k)) (12)

where the empirical (co)variances are defined by Ĉov(x,y) =
∑m

i=1(xi−x̄)(yi−ȳ)
and V̂ar(x) = Ĉov(x,x).

Proof. The minimization mina,b ‖x− ay(k)− b‖2 corresponds to the well-known
linear regression analysis (ordinary least squares) [6]. The optimal values of a

and b are a∗ = Ĉov(x,y)/V̂ar(y), b∗ = x̄−a∗ȳ, and the minimized mean-squared

error takes the well-known expression mina,b ‖x − ay − b‖2 = V̂ar(x) · (1 − ρ̂2)
therefore minimizing mina,b ‖x− ay − b‖2 amounts to maximizing |ρ̂|. !

3.3 Non-Gaussian Noise

The assumption of Gaussian noise may not always hold in practice. We first
consider the case of uniform U(0,σ2) and Laplacian noise distribution L(0,σ2)
as depicted in Fig. 2.

Definition 6 (Noise distributions). Let N be a zero-mean variable with vari-
ance σ2 modeling the noise. Its distribution is:

– Uniform, N ∼ U(0,σ2) if pN (n) =

{
1

2σ
√
3

for n ∈ [−
√
3σ,
√
3σ],

0 otherwise.

– Laplacian, N ∼ L(0,σ2) if pN (n) = 1√
2σ

e
− |n|

σ/
√

2 .
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(a) Uniform distribution (b) Laplacian distribution

Fig. 2. Probability distributions for σ ∈ {1, 3, 6}

For example, uniform noise can arise in side-channel analysis in the case where
the only measurement error is the quantization noise. “Oscilloscopes” or most
“digital sampling devices” use Analog-to-Digital Converters with only 8 bit res-
olution. Appendix B shows that Laplacian noise is a good approximation to the
noise when combining multiplicatively two (or more) leakage samples.

Theorem 7 (Optimal expression for uniform and Laplacian noises).
When f and ϕ are known such that Y (k) = ϕ(f(k, T )), and the leakage arises
from X = Y (k!) + N with N ∼ U(0,σ2) or N ∼ L(0,σ2), then the optimal
distinguishing rule becomes

– Uniform noise distribution: DM,U
opt (x, t) = argmaxk −‖x− y(k)‖∞,

– Laplace noise distribution: DM,L
opt (x, t) = argmaxk −‖x− y(k)‖1.

Proof. In case of a uniform noise distribution U(0,σ2) we have

p(x|y(k)) = pN (x− y(k)) =

{
0 if ∃i | xi − yi(k) '∈ [−

√
3σ,
√
3σ],

(2σ
√
3)−m otherwise.

(13)

Hence, argmaxk pN (x|y(k)) = 0 if and only if ‖x − y(k)‖∞ >
√
3σ, i.e.,

DM,U
opt (x, t) = argmink ‖x− y(k)‖∞ = argmaxk −‖x− y(k)‖∞.
Assuming a Laplacian noise distribution L(0,σ2) we have

argmax
k

p(x|y(k)) = argmax
k

(
√
2σ)−m · e−

‖x−y(k)‖1
σ/

√
2 , (14)

which reduces to argmaxk −‖x− y(k)‖1. !
We can even be more general. Let q ∈ R. Consider the generalized Gaussian

noise distributions [14] of variance σ2:

p(x|y(k)) =
(

q

2α
Γ

(
1

q

))m

e−
(

‖x−y(k)‖q
α

)q

, (15)



64 A. Heuser, O. Rioul, and S. Guilley

where Γ (·) is the Gamma function and α =
√

Γ (1/q)
Γ (3/q) σ. The optimal distinguish-

ing rule becomes DM,q
opt (x, t) = argmaxk −‖x−y(k)‖qq = argmaxk −‖x−y(k)‖q.

The Gaussian, Laplacian and uniform distributions are particular cases obtained
for q = 2, 1,∞, respectively.

4 Optimal Attacks When the Leakage Model Is Partially
Unknown

For standard technologies, the leakage model is either predictable or can be
profiled accurately, while being portable from one implementation to another.
However, in some contexts, profiling is not possible (the key can neither be chosen
nor varied), or changes from one device to the other because of the technological
dispersion. Accordingly, the model might not be known exactly to the attacker
yielding epistemic noise. We now extend our assumptions made in Sect. 3. We
assume a linear leakage model as in [4,19,25] arising from a weighted sum of the
bits of the sensitive variable and additive Gaussian noise N , i.e.,

X =
n∑

j=1

αj [f(T, k
!)]j +N, (16)

where [·]j : Fn
2 → F2 is the projection mapping onto the jth bit. But now, the

attacker has no knowledge about α = (α1, · · · ,αn) (except that α is distributed
according to a given law). This α is unknown but fixed for the whole experiment
(series of m measurements). This setting is just one (stochastic) way of consid-
ering a leakage model that is not entirely known5. See e.g. [1] for a motivation
of this scenario, and [4, 24] for assuming and evaluating similar scenarios.

Theorem 8 (Optimal expression for unknown weights). Let Yα(k) =∑n
j=1 αj [f(T, k)]j and Yj(k) = [f(T, k)]j, where the weights are independently

deviating normally from the Hamming weight model, i.e., ∀j ∈ !1, 8",αj ∼
N (1,σ2α). Then the optimal distinguishing rule is

Dα,G
opt (x, t) = argmax

k
(γ〈x|y(k)〉 + 1)t · (γZ(k) + I)−1 · (γ〈x|y(k)〉 + 1)

− σ2α ln det(γZ(k) + I), (17)

where γ = σ2
α

σ2 is the epistemic to stochastic noise ratio (ESNR), 〈x|y〉 is the
vector with elements (〈x|y(k)〉)j = 〈x|yj(k)〉, Z(k) is the n × n Gram matrix
with entries Zj,j′(k) = 〈yj(k)|yj′ (k)〉, 1 is the all-one vector, and I is the identity
matrix.
5 For example, diversion of bit loads due to routing, fanout gates, etc. are difficult to
model; we used randomly weighted bit sums, randomization being due to techno-
logical dispersing (like for PUFS, analog characterization is highly device-dependent
due to unpredictable manufacturing defects) and with the idea that the design is
balanced (e.g., FPGA, full costume ASIC designs) so that αj ’s have equal means.
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Proof. Again we start from Eq. (7):

D(x, t) = argmax
k

p(x|yα(k)) = argmax
k

∫

Rn

p(x|yα(k),α) p(α) dα (18)

= argmax
k

∫

Rn

1

(
√
2πσ)m

e−
1
2σ ‖x−yα(k)‖2

2
1

(
√
2πσα)n

e−
1

2σα
‖α−1‖2

2 dα

= argmax
k

∫

Rn

1

(
√
2πσ)m

exp
(
− 1

2σ2
‖x−

n∑

j=1

αjyj(k)‖2
)
×

1

(
√
2πσα)n

exp
(
− 1

2σ2α

n∑

j=1

(αj − 1)2
)

dα. (19)

Now expanding the squares and dropping all multiplicative constants that are
independent of k, the distinguishing rule takes the form

argmax
k

∫

Rn

exp
(
−R(α)/2

)
dα, (20)

R(α) =
1

σ2
(‖

n∑

j=1

αjyj‖2 − 2
n∑

j=1

αj〈x | yj〉) +
1

σ2α

n∑

j=1

(α2
j − 2αj) (21)

=
n∑

j,j′=1

αjαj′ (σ
−2〈yj(k) | yj′(k)〉 + σ−2

α δj,j′)− 2
n∑

j=1

αj(σ
−2〈x|yj(k)〉 + σ−2

α ) .

Using an n × n matrix notation as αtQα =
∑n

j,j′=1 αjαj′Qj,j′ and atα =∑n
j=1 ajαj , Eq. (21) takes the form αtQα−2atα, where Q = σ−2Z(k)+σ−2

α I =

σ−2
α (γZ(k) + I), a = σ−2〈x|y(k)〉 + σ−2

α 1 = σ−2
α (γ〈x|y(k)〉 + 1) and I is the

identity matrix, Z is the Gram matrix with entries Zj,j′(k) = 〈yj(k)|yj′ (k)〉, 1
is the all-one vector, 〈x|y〉 is the vector with entries (〈x|y〉)j = 〈x|yj〉. Now,
αtQα− 2atα = (α−Q−1a)tQ(α−Q−1a) − atQ−1a. So,

argmax
k

∫
exp

(
− 1

2 ((α−Q−1a)tQ(α−Q−1a)− at ·Q−1 · a)
)
dα (22)

= argmax
k

(2π)n/2| detQ|−1/2 exp( 12a
tQ−1a) (23)

= argmax
k

1

2
at Q−1a− 1

2
ln detQ. (24)

Finally, multiplying by 2σ2α we achieve the optimal distinguishing rule. !

Remark 9. For Eq. (17) to work the ESNR γ should be somehow known from
some experiments (e.g., Pelgrom coefficients [15] for σα and platform noise for σ).

Remark 10. If the ESNR γ is small, i.e., σα is small w.r.t. σ, expanding about
γ = 0 and neglecting the term σ2αγ in the expansion of the logarithm gives (at
first order in γ):

(1+ γ〈x|y(k)〉)t(I + γZ(k))−1(1+ γ〈x|y(k)〉) (25)

≈ n+ 2γ 1t〈x|y(k)〉 − γ1tZ(k) · 1t. (26)
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Since 1ty(k) =
∑n

j=1 yj(k) = HW[y] and

1tZ(k)1t =
n∑

j,j′=1

〈yj(k)|yj′(k)〉 = 〈
n∑

j=1

yj(k)|
n∑

j′=1

yj′(k)〉 = ‖HW[y]‖22, (27)

Eq. (26) boils down to maximizing 〈x|HW[y]〉 − 1
2‖HW[y]‖22. As expected, we

recover the optimal distinguishing rule when the Hamming weight model is as-
sumed to be known and αj ≈ 1 (see SubSect. 3.2).

Remark 11. If ESNR γ is large (σα is large w.r.t. σ), a similar calculation as
done in Remark 10 shows that the optimal distinguishing rule becomes

γ〈x|y(k)〉t · Z−1(k) · 〈x|y(k)〉 − σ2α ln det(Z(k)), (28)

where det(Z(k)) = ‖y1(k)∧ · · ·∧yn(k)‖22 is the Gram determinant, the squared
norm of the exterior product of the yj(k)’s . This simpler formula can be useful
to be directly implemented for small stochastic noise.

Remark 12. Note that, in contrast to the linear regression attack (LRA) [4],
Dα,G does not require an estimation of α explicitly; Dα,G is already optimal
given the a priori probability distribution of α. An empirical comparison is
shown in Subsec 5.2.

5 Experimental Validation

5.1 Known Model: Stochastic Noise

As an application we choose Y = HW[Sbox[T ⊕ k]] and X = Y (k!) +N , where
Sbox : F8

2 → F8
2 is the AES Substitution box and T is uniformly distributed over

F8
2. We simulated noise from several distributions pN and for σ ∈ {1, 3, 6} result-

ing in an SNR of V ar(Y )
V ar(N) = 2

σ2 ∈ {2, 0.222, 0.056}. Note that since the SNR is
equivalent for all noise distributions, we can compare the performance of the dis-
tinguishers across different noise distributions. For reliability, we conducted 500
independent experiments in each setting with uniformly distributed k! to com-
pute the empirical success rate (noted P̂s). Moreover, as suggested in [10], when
plotting the empirical success rate, we highlight the standard deviation of the
success rate by error bars. In particular, since P̂s follows a binomial distribution,

we shaded the confidence interval

[
P̂s ±

√
P̂s(1−P̂s)

nexp

]
, where nexp = 500 is the

number of experiments. If the error bars do not overlap, we can unambiguously
conclude that one distinguisher is better than the other [10].
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In the scenario where the model is known, we implemented the following
distinguishers, where the labels for the figures are put within parentheses:

DM,G
opt (x, t) = argmax

k
〈x|y(k)〉 − 1

2
‖y(k)‖22, (Euclidean norm) (29)

DM,G
opt-s(x, t) = argmax

k
〈x|y(k)〉, (Scalar product) (30)

DM,L
opt (x, t) = argmax

k
−‖x− y(k)‖1, (Manhattan norm) (31)

DM,U
opt (x, t) = argmax

k
−‖x− y(k)‖∞, (Uniform norm) (32)

DCov(x, t) = argmax
k

|〈x − x|y(k)〉|, (Covariance) (33)

DCPA(x, t) = argmax
k

∣∣∣∣∣
〈x− x|y(k)〉

‖x− x‖2 · ‖y(k) − y(k)‖2

∣∣∣∣∣ . (CPA) (34)

Figures 3a, 3c and 3e show empirical success rate curves for Gaussian noise.
One can see that for all levels of SNR DM,G

opt outperforms the other distinguishers,
including CPA. As expected from Remark 6, scalar product, covariance, and
correlation have poorer but comparable performance than DM,G

opt for high noise.
Figures 3b, 3d and 3f show the empirical success rate curves for Laplacian

noise. For low noise, DM,L
opt is the most efficient and DM,G

opt is the nearest rival,
whereas DCPA and DCov are less efficient. As the noise increases the difference
becomes more significant. As expected, DCPA and DCov become equivalent for
high noise, and DM,U

opt fails to distinguish.
In case of uniform noise (see Fig. 4) all optimal distinguishers behave similarly

for σ = 1, whereas CPA, covariance and the scalar product are less efficient.
When the noise increases, DM,U

opt is the most efficient distinguisher. One can see

that DM,U
opt for uniform noise and DM,L

opt for Laplacian noise require less traces

to succeed than DM,G
opt does for Gaussian noise. More precisely, for σ = 6, DM,U

opt

requires only 28 traces to reach P̂s ≥ 90%, DM,L
opt requires 200 traces, whereas

DM,G
opt in case of Gaussian noise needs 300 measurements. This is in keeping with

the known information-theoretic fact that detection (or decoding) in Gaussian
noise is harder than in any other type of noise.

5.2 Unknown Model: Epistemic and Stochastic Noise

To account for a partially unknown model, we choose Yj = [Sbox[T ⊕ k]]j for

j = 1, . . . , 8 and X =
∑8

j=1 αjYj(k!) + N , where αj ∼ N (1,σα) are unknown
and changing for each experiment. Note that in this scenario Y(k) is a column
and not a value as in the previous subsection. Figure 5 shows typical values
for σα ∈ {2, 4}, showing that the assumption about α is realistic (see e.g., [7]).
We compare our new optimal distinguisher with the linear regression analysis
(LRA) [4], which is a non-profiling variant of the stochastic approach [19] and
the most efficient attack so far in the case where the model drifts away from the
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(a) Gaussian Noise, σ = 1 (b) Laplacian Noise, σ = 1

(c) Gaussian Noise, σ = 3 (d) Laplacian Noise, σ = 3

(e) Gaussian Noise, σ = 6 (f) Laplacian Noise, σ = 6

Fig. 3. Success rate for various σ, with a known model

Hamming weight model [4, 9]. LRA is defined as

DLRA(x, t) = argmax
k

‖x− y′(k) · β(k)‖22
‖x− x‖22

, (35)

where y′(k) = (1,y1(k),y2(k), . . . ,y8(k)) is an m × 9 matrix and β(k) =
(β1(k), . . . ,β9(k)) are the regression coefficients β(k) = (y′(k)t ·y′(k))−1y′(k)tx.
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(a) σ = 1 (b) σ = 3 (c) σ = 6

Fig. 4. Success rate for a uniform noise distribution, with a known model

Fig. 5. Exemplary values of α for σα = 2 (blue) and σα = 4 (red dashed)

Criterion (35) is also known as the coefficient of determination [6]. We com-
pared the optimal distinguisher to LRA and CPA, for which we used Y =
HW[Sbox[T ⊕k]]. Apart from this we used the same experimental setup as above.

Figure 6 displays the success rate for σ ∈ {1, 3, 6} and σα ∈ {2, 4}. As expected
CPA is performing worse than both other attacks. Remarkably, in all scenarios
Dα,G

opt (labeled Optimal dist alpha) is more efficient than LRA. This is perhaps
not surprising as regression analysis involves mean squared minimization rather
than direct success probability maximization as Dα,G

opt does. As already observed
in [4], LRA needs a large enough number of traces for estimation, that is why
P̂s stays low until around 10 traces (Fig. 6a and 6b). One can observe that both
distinguishers perform better for σα = 4 (Figures 6b, 6d and 6f) than for σα = 2
(Figures 6a, 6c and 6e). This can be explained by the improved distinguishability
through the distinct influence of each bit. On the contrary, DCPA becomes worse
when σα increases, because the model drifts father away from the Hamming
weight model.
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(a) σα = 2,σ = 1 (b) σα = 4, σ = 1

(c) σα = 2, σ = 3 (d) σα = 4, σ = 3

(e) σα = 2, σ = 6 (f) σα = 4,σ = 6

Fig. 6. Success rate for various ESNRs, unknown model
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6 Conclusion

We examined the key extraction problem in a side-channel context as a digital
communication problem. Following the reasoning used in digital communication
theory, we derived the optimal distinguisher (called optimal decoder in digital com-
munication theory). It is a formula that takes as input amultiplicity of pairs of side-
channel leakage measurements and corresponding text chunks, and that returns
the key guess that maximizes the success probability. The methodical derivation
of distinguishers yields an estimator that can be directly computed from the mea-
sured data.

In the case where no information is known about the channel (Sect. 2.2), we re-
covered the template attack.When the leakage function is known (Sect. 3), the ap-
proach yields a different distinguisher for each noise distribution. For the classical
case of additive Gaussian noise, the optimal distinguisher cannot be interpreted as
a covariance nor as a correlation, albeit very close for low SNR. In addition, when
the leakage model is known only on a proportional scale we recover CPA exactly.
When the noise is non-Gaussian, the optimal distinguishers are very different from
CPA or correlation and each optimal distinguisher is the most efficient in its sce-
nario. When the leakage model is partially unknown (Sect. 4) and modeled as an
unevenly weighted sum of bits with unknown weights, our method outperforms
the non-profiled version of the stochastic approach (LRA).

This study suggests that a mathematical study of distinguishers should prevail
in the field of side-channel analysis. As a perspective, our optimal distinguishers
may be tested on real measurements. This should include a preliminary step to
determine the underlying scenario as precisely and efficiently as possible in terms
of the number of traces. Especially, the determination of the noise distribution is a
notoriously difficult problem. Moreover, the extension of our work to higher-order
attacks (when the noise distribution might differ from Gaussian) seems promising.
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A Optimal Mono-Bit Distinguisher for Known Model
and Gaussian Noise

In the mono-bit case, every Yi(k) (0 ≤ i < m) takes only two different values.
W.l.o.g., let us assume Yi(k) = ±1. Then, ‖y(k)‖22 = m and is thus independent
on the key. Thus,

DM,G
opt(1 bit)(x, t) = argmaxk

∑
i|yi(k)=1 xi −

∑
i|yi(k)=−1 xi. (36)

Surprisingly, this distinguisher is not any variant of DoM presented in the semi-
nal paper [8] by Kocher, Jaffe and Jun (DM,G

KJJ ) nor in the alleged t-test improve-

ment [3] by Coron, Kocher and Naccache (DM,G
CKN). In particular,

DM,G
KJJ (x, t) = argmax

k
x+1 − x−1, (37)

DM,G
CKN(x, t) = argmax

k
(x+1 − x−1)

/
√
σ2x+1

n+1
+
σ2x−1

n−1
, (38)

where n±1 =
∑

i|yi(k)=±1 1, σ
2
x±1

= 1
n±1−1

∑
i|yi(k)=±1(xi − x±1)2 and x±1 =

1
n±1

∑
i|yi(k)=±1 xi . However, when m is large, the two distinguishers DM,G

opt(1 bit)

and DM,G
KJJ become equivalent, as n±1 ≈ m/2 (independently of k, using an

argument similar to that of Footnote 4). But even in this case, DM,G
CKN is non-

equivalent with them. We notice that the normalization DM,G
CKN is useful when

there are many samples, since it normalizes the difference between Y (k) = −1
and Y (k) = +1 (hence avoid ghost peaks), but this consideration is out of the
scope of this paper.

The success rate of all three attacks for σ = 1 is displayed in Fig. 7 showing
that the optimal distinguishing rule (Eq. (36)) is the most efficient to reach a
empirical success rate P̂s = 90%. For σ > 1 all 3 distinguishers were found
almost equivalent, which is reasonable. Those results highlight that intuitive
distinguishers (such as DM,G

KJJ , that aims at showing a difference of leakage) or

classic (such as DM,G
CKN, based on the well-established t-test) distinguishers are

not necessarily the best.

Fig. 7. Success rate for one-bit attacks Fig. 8. Empirical distribution of X1X2
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B Noise Distribution Resulting from Multiplication

When combining two leakage samples multiplicatively in case of Gaussian noise,
the noise distribution is no longer following a Gaussian distribution. More pre-
cisely, let us assume we have two leakagesX1 = Y1(k!)+N1 andX2 = Y2(k!)+N2

that are multiplied, then

X1X2 = (Y1(k
!) +N1) · (Y2(k

!) +N2) (39)

= Y1(k
!) · Y2(k

!) + Y2(k
!) ·N2 + Y2(k

!) ·N1 +N1 ·N2. (40)

Due to the product, the distribution of X1X2 is no longer Gaussian. Figure 8
displays the empirical distribution in this case, which looks similar to a Laplacian
distribution (compare to Fig. 2b).


