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2 Institut Mines-Télécom - Télécom ParisTech - CNRS-LTCI - 37/39 rue Dareau, 75014 Paris, France

ABSTRACT

Reverberation degrades speech intelligibility in telecommunica-

tions as well as it increases the word error rate in automatic speech

recognition tasks. Several dereverberation methods have been pro-

posed recently in order to counter these effects. In the single mi-

crophone case, the dereverberation problem is underdetermined and

reverberation suppression approaches are preferred. In this paper we

propose a novel method for single channel reverberation suppres-

sion. Late reverberation is estimated in the time-frequency domain

as a sparse linear combination of previous frames. The predictors

associated to the model are determined in a Lasso framework and a

spectral subtraction filter is designed to produce the enhanced sig-

nal. This model does not require any additional information about

the room acoustics and it is well suited for real-time applications.

The method has state-of-the-art performance in terms of both rever-

beration suppression and spectral distortion.

Index Terms— Single Channel Speech Enhancement, Late Re-

verberation Estimation, Lasso, Sparse Linear Prediction

1. INTRODUCTION

The speech enhancement community has focused for a long time

on noise reduction tasks, giving rise to several very efficient meth-

ods. Recently, the rapid development of mobile technologies and

the use of hands-free devices in various (possibly big) enclosures

has raised the problem of room reverberation. Reverberation affects

telecommunications as it degrades speech intelligibility. It also af-

fects vocal based Human-Machine Interfaces (HMI) by increasing

the word error rate in Automatic Speech Recognition (ASR) tasks.

Reverberation is commonly decomposed into early reflections and

late reverberation. It has been shown that early reflections are suf-

ficiently close to the direct sound to be integrated by the ear and

improve intelligibility [1]. On the counterpart, late reverberation

degrades intelligibility by smearing the time-frequency support of

speech [2].

Several single channel dereverberation algorithms have been

proposed in the last years. Cepstral approaches transform a decon-

volution problem in the time domain into a simple subtraction in the

cepstral domain [3]. These methods are effective for short reverbera-

tion filters and are widely used in speech recognition context as they

allow to reduce the effect of the transmission channel. However, they

cannot tackle the tail of reverberation when the filter is longer than

the cepstral analysis window, rendering them impractical for usual

reverberation.

This work is funded by the French National Association for Research
and Technology (ANRT) and the 3D Life project from the European Union.

Inverse filtering techniques exploit the effect of reverberation

on the Linear Prediction (LP) residual of the signal. The inverse

early reflections filter is found by adaptively maximizing the kurto-

sis [4, 5] or the skewness [6] of the LP residual. Late reverberation is

further suppressed by spectral subtraction techniques [5, 6]. These

techniques suffer from slow convergence rates and introduce pre-

echo artifacts that need to be compensated in a postprocessing stage,

adding some computational burden to the system.

Late reverberation is commonly addressed with spectral subtrac-

tion techniques as suggested in [2] and the Maximum Sparsity Power

Prediction method in [7]. The late reverberation power spectral den-

sity (psd) is usually estimated as a delayed and damped version of

the observed signal. The damping factor is defined as a function of

the reverberation time (T60) of the enclosure. If T60 is known, we

obtain a reliable estimator of the reverberation psd that is used to

design a time-frequency dereverberation filter. However, the accu-

rate estimation of T60 is a research problem itself [8, 9] and needs

important computational ressources. Late reverberation can also be

predicted by exploiting the long term redundancies of reverberant

signals as presented in [10].

In this paper late reverberation is modeled in the frequency do-

main as a linear combination of previously observed signal frames.

We impose a sparsity constraint on the linear combination and pro-

pose a reverberation suppression algorithm based on the Lasso [11].

We design a time-frequency dereverberation filter based on Ephraim

and Malah’s spectral subtraction rule [12] to produce high quality

dereverberated signals. The presented algorithm compares to state-

of-the art dereverberation methods for a large range of T60 without

needing any additional adaptation of its parameters. This leads to a

fast and robust method that is suitable for real-time applications.

This paper is organized as follows: in Section 2 we introduce a

sparse prediction model for late reverberation. In Section 3 we pro-

pose some strategies to reduce the complexity of the method. Exper-

imental results are presented in Section 4 and some conclusions are

drawn in Section 5.

2. FRAMEWORK FOR LATE REVERBERATION

SUPPRESSION

The proposed method is based on a speech enhancement framework

as illustrated in Figure 1. First, we will introduce our model for the

estimation of late reverberation before we briefly discuss the choice

of a spectral filter.

2.1. Sparse linear prediction model for late reverberation

Let x(t) be the time domain reverberated signal. The signal is passed

through a Short Time Fourier Transform (STFT) filterbank and we

denote X the magnitude of the STFT. The phase matrix Φ is stored
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Fig. 1. Reverberation suppression framework

for the reconstruction of the filtered signal. Xk,n represents the ele-

ment belonging to the kth frequency channel and the nth time frame

of the matrix X .

In the frequency domain the reverberated signal can be written

as:

Xk,n = X
e
k,n +X

ℓ
k,n , (1)

where Xe
k,n and Xℓ

k,n represent respectively the early and late re-

verberation terms [2]. In this paper we only address the estimation

of Xℓ
k,n. Reverberation is produced by delayed and damped replicas

of the direct sound. We propose to predict Xℓ
k,n in each frequency

channel as a linear combination of L signal frames that precede the

current frame:

X̂
ℓ
k,n =

L−1
∑

i=0

αiXk,n−i−δ. (2)

A delay of δ frames is introduced in order to separate the effects

of early and late reflections for the prediction. This results in the

following model for the observed signal:

Xk,n = X
e
k,n +

L−1
∑

i=0

αiXk,n−i−δ. (3)

Late reverberation is modeled as a redundancy term that can be

linearly predicted from past observed frames whereas the early com-

ponent Xe
k,n is the residual of the prediction. This model has been

suggested in [13] where every past frame contributes to the estima-

tion based on the long term correlations of the reverberated signal. In

this paper, we assume that only a few past frames significantly con-

tribute to the late reverberation estimate. In other words, we assume

a sparse predictor α = [α0 . . . αL−1]
T . In a convex optimization

framework, sparsity can be promoted by constraining the ℓ1 norm of

the predictor. Under this assumption we formulate our dereverbera-

tion problem as an instance of the Lasso [11]:

minimize
α

||Xk,n −Dk,n α||2 s.t. ||α||1 ≤ λ, (4)

For each time frame n and each frequency channel k, we solve

(4) for the sparse predictor α that best explains the current observa-

tion Xk,n as a linear combination of a certain signal-based dictionary

Dk,n given a regularization parameter λ. The Lasso is solved using

the Least Angle Regression (LARS) algorithm [14] which is known

to be very efficient as long as the dimension of the problem is kept

small.

Given the predictor α, late reverberation is estimated as:

X̂
ℓ
k,n = Dk,n α. (5)

Using (2) and (5) it is clear that the signal-based dictionary Dk,n

corresponding to this model is given by:

Dk,n
△
=

[

Xk,n−δ, . . . , Xk,n−δ−L+1

]

(6)

Note that if we set L = 1 the estimator in (2) becomes

Xℓ
k,n = αXk,n−δ as proposed in [2] and [7]. Our model extends

these approaches and selects the elements that are most relevant for

the linear prediction. The proposed reverberation model does not

rely on a physical model. Instead, we use a learning approach to

obtain the parameter λ yielding the best reverberation suppression

in a given acoustic condition. Our approach is different from the

method in [15]. This technique estimates the clean speech spectro-

gram by maximizing the sparsity of the reverberated one while our

method only assumes the sparsity of the linear predictor. In addition

we proposed a framework suitable for online processing while [15]

is oriented for batch processing.

2.2. Spectral filtering

Once we have estimated the psd of late reverberation we design a

spectral filter G based on Ephraim and Malah’s MMSE-log spectral

amplitude estimator [12] aimed to filter Xℓ out of X . We use the

so called decision directed approach [16] to get the a priori and a

posteriori Signal to Interference Ratios. Both are needed to compute

G as described in [12]. In order to avoid annoying musical noise

artifacts, we introduce a lower bound Gmin to the values taken by

G. Finally, we obtain the dereverberated spectrogram Y by element-

wise multiplication:

Y = GX (7)

We finally apply the phase of the reverberated signal Φ to the mag-

nitude matrix Y and compute an inverse STFT to obtain the time

domain dereverberated signal y(t).

3. REDUCING THE COMPLEXITY OF THE ESTIMATOR

Late reverberation is estimated on the STFT magnitude matrix

X∈ R
K×M composed of K frequency channels and M time

frames. According to the model introduced in the previous section,

one must solve problem (4) for each of the K × N time-frequency

bins. This leads to a high computational burden. We propose in this

section to reduce the complexity of the method through to block-

wise and subband processing.

3.1. Block-wise processing

First we reduce the number of times problem (4) is solved by work-

ing in a block by block basis. Let us introduce the observation vector

Vk,n ∈ R
N given by:

Vk,n
△
=

[

Xk,n . . . Xk,n−N+1.
]T

. (8)

For each frequency channel k, the N element vector Vk,n is used

to estimate simultaneously N frames of late reverberation. To this

aim, successive observation vectors Vk,n are concatenated to form a

dictionary Dk,n ∈ R
N×L associated to the current observation and

defined by:

Dk,n
△
=

[

Vk,n−δ Vk,n−δ−1 . . . Vk,n−δ−L+1

]

(9)

We use (8) and (9) to compute the late reverberation predictor α

by solving the Lasso problem:

minimize
α

||Vk,n −Dk,n α||2 s.t. ||α||1 ≤ λ (10)

Given the current predictor α, we can estimate a vector of late

reverberation, denoted by V ℓ
k,n ∈ R

N and given by:

V
ℓ
k,n = Dk,nα. (11)
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As we work with non overlapping blocks, the Lasso must only

be solved K×M
N

times. However increasing N reduces the temporal

resolution of the estimator. According to our experiments, a good

trade-off between complexity and resolution is obtained by choosing

N such that N R
fs

< 64ms, where R denotes the hop size of the

STFT and fs the sampling rate.

3.2. Subband processing

The psd of reverberation is frequency dependent but varies slowly

between neighbor frequencies. Hence we can reasonably reduce the

frequency resolution of the late reverberation estimator by passing

the magnitude matrix X through an arbitrary filterbank. This proce-

dure is depicted on the left of Figure 2. First, we define a J-segments

partition P of the interval [1,K]. For every segment of P , we com-

pute the average of its elements to produce the j th channel of the

subsampled matrix X̃ ∈ R
J×M . Then we build the corresponding

observation vector Ṽk,n
△
=

[

X̃k,n . . . X̃k,n−N+1

]T
and the

subsampled dictionary D̃k,n, obtained by concatenation of adjacent

observation vectors Ṽk,n. We solve the Lasso and get J predictors

α associated to each subband. Late reverberation is then estimated

with the dictionary introduced in Eq. (9). To achieve this we must

assign the J predictors to the K frequency channels as shown on the

right of Figure 2. Finally, we solve Equation (11) to recover the

estimate.

X1 XKXk
α1 α2 αJ

X1 XKXkX1

~
XJ

~
X j

~

P

Fig. 2. Subband processing. Left: Building X̃ for the estimation of

J predictors. Right: Assigning a predictor to each channel of X .

Our experiments show that the nature of the partition P is not

critical. Even if we work with very few subbands (J = 10 instead

of K = 257), we do not observe any significant degradation when

compared to the method presented in Section 2.

The subsampling along the time and frequency axis reduces

greatly the computation time because problem (4) must be solved

only J × M
N

times.

4. EXPERIMENTS AND EVALUATION

4.1. Settings

For the evaluation, we use anechoic speech samples taken from the

TIMIT database. We use a subset of the database with 10 female

and 10 male speakers, each one pronouncing one sentence. These

signals are then convolved with two different sets of Room Impulse

Responses (RIR). The first set is intended to evaluate the algorithm

in realistic situations and contains measured RIRs taken from the

AIR database [17]. The selected impulse responses correspond to a

hands free use of a mock up mobile telephone in 10 different rooms.

For the second set, we use the Fast Image-Source Method [18] to

simulate the RIRs of a room with dimensions [3x4x5]m and T60

ranging from 100ms to 1.2s. This set will be used to evaluate the

performance of the method as a function of the T60.

The reverberated signals x(t), sampled at 16 kHz, are processed

with the proposed algorithm to produce the dereverberated signal

y(t). We evaluate the method using the Signal to Reverberation

Modulation Ratio (SRMR [19]) and the Log Spectral Distorsion

(LSD [2]) measures. For each speech sample we compute the SRMR

on x(t) and y(t) and study the SRMR improvement defined as:

∆SRMR
△
= SRMR [y(t)]− SRMR [x(t)] (12)

To evaluate the spectral distortions introduced by the processing we

compute the LSD of y(t) related to d(t), the early echoes signal. We

obtain d(t) by filtering the anechoic signal with the RIR truncated

80 ms after the arrival of the direct sound.

We analyze each signal using a STFT filterbank with a 32 ms

Hamming window and a hop size of 8 ms. For the subband process-

ing, we use an octave filterbank to build a subsampled spectrogram

with J = 10 frequency channels instead of the K = 257 avail-

able from the STFT. The octave filterbank is obtained by recursively

performing a diadic partition of the available frequency bins. We

performed a grid search on each parameter introduced in Section 3

and selected the value yielding the maximum SRMR on y(t). From

this analysis, the dictionary length is set to L = 10 and the delay

is set to δ = 5 frames. This delay corresponds to 40 ms of speech

which is sufficient to remove the direct signal from the dictionary.

For the block processing we use an observation length of N = 8
frames, corresponding to 64 ms long segments of speech signal. We

solve problem (10) using the MATLAB’s mexLasso function from

the SPAMS optimization toolbox1. The estimated late reverbera-

tion is smoothed with a single pole low-pass filter with time con-

stant τ = 32 ms to compensate the discontinuities introduced by

the block-wise processing. The smoothing constant for the deci-

sion directed approach and the spectral floor for the filter are set to

β = 0.98 and Gmin = −12 dB respectively.

4.2. Dereverberation experiments

4.2.1. Choice of the subsampling scheme

In a first experiment, we evaluate the influence of the two subsam-

pling strategies presented in Section 3 when used individually and

together. In addition, we run 100 iterations of each approach on the

whole database and we evaluate the average CPU time needed for the

execution. We use a computer with an Intel Core i7-640M processor

at 2.8GHz and 4 GB RAM. We analyze the average Real Time Fac-

tor (RTF) defined as the ratio between the processing time and the

total length of the speech samples.

Subsampling ∆SRMR LSD[dB] RTF[%]

No 3.98± 0.66 3.16± 0.63 124.6
Time 2.96± 0.64 3.17± 0.61 25.3

Frequency 3.45± 0.60 2.90± 0.58 8.7
Both 3.11± 0.60 3.29± 0.62 3.7

Table 1. Average scores and standard deviations in different sub-

sampling configurations.

The results of the evaluation are summarized in Table 1. When

we do not apply any subsampling, the proposed method yields the

best results in terms of reverberation suppression but it is also very

1http://spams-devel.gforge.inria.fr/
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Fig. 3. Objective evaluation with recorded RIRs in Oracle and Blind

conditions.

slow and impractical for real-time applications. We also observe

that subsampling along the frequencies states for the major reduc-

tion of the complexity of the method. In addition, the estimated

late reverberation introduces less spectral distortion that any other

approach without significantly degrading the ∆SRMR. The tem-

poral subsampling degrades the reverberation suppression because

of the reduced time resolution. Moreover the improvement of the

RTF is limited because N must be kept small. Finally, with both

time and frequency subsampling we have the fastest configuration

but also the one introducing the more spectral distortion. It is in-

teresting to notice that the scores are not significantly different and

thus we can choose the subsampling scheme according to the avail-

able ressources. In the following we will only use the frequency

subsampling as it keeps the average spectral distorsion low.

4.2.2. Comparison to the state-of-the-art

We compare our method to the efficient approach proposed by Ha-

bets in [2]. The same spectral filter with the same settings is used for

both methods. Each method is steered by a single hyperparameter:

T60 for [2] and λ for the proposed method. We consider two situa-

tions for the evaluation. In a first configuration, the optimal hyperpa-

rameters are found for each room by grid search and we evaluate the

oracle performance of the algorithms. Then, we consider the blind

case, where the hyperparameters are kept constant for every room.

For this simulation we set T60 = 300 ms and λ = 0.65, which corre-

spond to the optimal parameters in a room with T60 = 300 ms. This

experiment is intended to evaluate the sensitivity of the algorithms

to errors on the estimation of their hyperparameters. Figure 3 shows

the average SRMR improvement and the LSD for both methods in

the oracle and blind case.

We observe in Figure 3(a) a positive improvement of the SRMR

for both methods which confirms a reduction of late reverberation.

As expected, the oracle case leads to better dereverberation com-

pared to the blind case. In both situations, the proposed method per-

forms better than [2]. However, this increase in the dereverberation

performance is obtained at the cost of additional spectral distortion

as depicted in Figure 3(b). The proposed method introduces in av-

erage 0.6 dB of additional distortion compared to [2]. According to

our informal listening tests, this does not affect the perceptual qual-

ity2.

Now we compare the scores between the blind and oracle cases.

In blind conditions, the reverberation suppression is less effective

for both methods. As a consequence of this, less distortion is in-

2Audio examples are available online:
http://perso.telecom-paristech.fr/˜nlopez
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T60.

troduced. However, the slight loss in ∆SRMR observed with the

proposed method yields a more significant reduction of the LSD

leading to only 0.3dB of additional distortion with respect to Ha-

bets method. From this analysis we argue that the proposed method

can work in blind conditions without any significant loss in terms

of reverberation reduction compared to the ideal case. By avoiding

the estimation of the hyperparameter, we save important computa-

tional resources. The proposed method has an average RTF of 8.7%
while our implementation of the method from Habets has an RTF of

1.8%. The competing method is clearly faster but it needs additional

resources for the estimation of T60. Our method is fast enough to

work in real-time conditions even if it is slower than [2].

Finally, in Figure 4 we evaluate both methods in blind conditions

with the simulated RIRs. The SRMR improvement is confirmed for

all the considered T60 and the proposed method achieves better re-

verberation suppression. Regarding the LSD, our method introduces

slightly more distortion than the competing one but the gap between

them is reduced when T60 increases. The proposed method shows

satisfying reverberation suppression capabilities for every T60 with-

out setting a room dependent hyperparameter λ. Moreover, the spec-

tral distortion is bounded to levels that compare with the state of the

art even for short T60.

5. CONCLUSION

In this paper we proposed a new algorithm for the suppression of

reverberation in the frequency domain. We modeled late reverber-

ation as a linear combination of previous observations as suggested

in [13]. By constraining this linear model to be sparse our problem

fits into a Lasso framework that can be efficiently solved with sparse

optimization techniques. The estimated reverberation was filtered in

a spectral subtraction framework adapted to this particular problem.

We also proposed two strategies to reduce the complexity of the es-

timator. The proposed method performs slightly better than the state

of the art algorithm of [2] in terms of SRMR without introducing

much additional distortion . We tested our method in oracle and

blind conditions and found that the dereverberation performance of

our method is not significantly affected when we do not estimate the

optimal hyperparameters for the model. This allows the proposed

method to perform blind dereverberation at least in a certain range

of reverberation times. In addition, the proposed algorithm is suffi-

ciently fast for real time applications.
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