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Abstract

The mechanical characteristics of wood panels used by instrument makers

are related to numerous factors, including the nature of the wood or char-

acteristic of the wood sample (direction of fibers, micro-structure nature).

This leads to variations in the Young’s modulus, the mass density, and the

damping coefficients. Existing methods for estimating these parameters are

not suitable for instrument makers, mainly because of the need of expensive

experimental setups, or complicated protocols, which are not adapted to a

daily practice in a workshop. In this paper, a method for estimating the

Young’s modulus, the mass density, and the modal loss factors of flat panels,

requiring a few measurement points and an affordable experimental setup,

is presented. It is based on the estimation of two characteristic quantities:

the modal density and the mean mobility. The modal density is computed

from the values of the modal frequencies estimated by the subspace method
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ESPRIT (Estimation of Signal Parameters via Rotational Invariance Tech-

niques), associated with the signal enumeration technique ESTER (ESTima-

tion of ERror). This modal identification technique is proved to be robust in

the low- and the mid-frequency domains, i.e. when the modal overlap factor

does not exceed 1. The estimation of the modal parameters also enables

the computation of the modal loss factor in the low- and the mid-frequency

domains. An experimental fit with the theoretical expressions for the modal

density and the mean mobility enables an accurate estimation of the Young’s

modulus and the mass density of flat panels. A numerical and an experimen-

tal study show that the method is robust, and that it requires solely a few

measurement points.

Keywords:

Mode density, Modal identification, Subspace method, Mid-frequency,

Wood, Stringed instrument making

1. Introduction

This study stems from a musical acoustics problematic related to the

characterization of materials used for the manufacturing of string instru-

ment soundboards. The choice of the material is an essential part of the

luthier’s savoir-faire, and the characterization of woods used to make string

instruments has been investigated [1, 2].

The mechanical characteristics of wood panels used by instrument makers

are related to numerous factors, including the nature of the wood or char-

acteristic of the wood sample (direction of fibers, micro-structure nature).

This leads to different values of the Young’s modulus, the mass density, and
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Figure 1: Classification of materials using the Young’s modulus - mass density plane (from

Ashby et al. [3]).

the damping coefficients, according to the choice of the used sample. These

intrinsic parameters are commonly used to discriminate materials and en-

able their clustering. The most noticeable example is the Ashby diagram [3],

displayed in Figure 1.

The knowledge of these parameters is important for the luthier to make

its choice. Several methods exist for accurately estimating the mechanical

properties of materials. Their domain of relevance is defined by the order

of magnitude of the Young’s modulus of the material and the frequency

bounds [4]. Among them, the DMA (Dynamic Mechanical Analysis) [5]
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is relevant in the low-frequency domain. Another technique is the Oberst

beam method [6], which is based on a modal fit of the first resonances of

a clamped beam. It has been widely used and studied [7, 8]. In the high-

frequency domain, ultrasonic methods [9] are more commonly applied on

both liquid [10] or solid materials [11]. Yet, these methods usually require

either expensive laboratory devices or complicated protocols. Thus, they are

not suitable for a daily practice in a luthier’s workshop.

We propose a method based on the analysis of the mechanical frequency

response function, measured on flat panels. Such a method is designed to per-

form a non-restrictive practice in situ. The estimation of quantities, namely

the modal density and the mean mobility, enables an estimation of the bend-

ing stiffness and the mass density of the tested panel. These intrinsic param-

eters can be obtained via this method, using solely a few transfer function

measurements.

In Section 2, the whole method for estimating in fine the bending stiffness,

the mass density, and the modal loss factor is presented. The performance of

the method under several constraints (large modal overlap, weak signal-to-

noise ratio, excitation on a nodal line) is studied in Section 3, by means of

numerical simulations. Finally, Section 4 presents experimental applications

of the method on metallic and wood panels.
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2. Method for estimating the Young’s modulus, the mass density,

and the modal loss factor of a flat panel

2.1. Principle of the method

The input mobility of a structure is the ratio in the frequency domain

between the velocity of the structure V (ω) and the excitation force F (ω),

and can be easily measured using standard modal testing devices. From this

measurement, it is possible to identify the modal parameters associated to

the structure. These quantities (input admittance and modal parameters)

basically depend on the geometry of the panel, and on its mechanical prop-

erties, namely the Young’s modulus E and the mass density ρ.

In this section, we present first the modal description of the input mobility

of a panel and the modal identification technique used for the study. Then,

the method for estimating the Young’s modulus, the mass density, and the

modal loss factor is presented. It is based on an experimental estimation of

the modal density and the mean mobility of the panel. Then, the knowledge

of these quantities enables to estimate the values of E and ρ minimizing the

differences between theoretical models of mean mobility and modal density

of panels. The modal loss factor is directly derived from the estimated modal

parameters, using a modal identification technique described in Section 2.3.

2.2. Modal description of the input mobility of a flat panel

The method presented in this paper is based on driving-point mechanical

admittance (or mobility) measurements. It is commonly denoted Y (ω), and

can be developed on the basis of the complex modes as [12]:
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YA(ω) = jω

N
∑

k=1

{

u2
k(A)

αk + j(ω + ωk)
+

ū2
k(A)

αk + j(ω − ωk)

}

, (1)

u2
k(A) =

Φ2
k(A)

2jωkmk
, (2)

where A denotes the driving-point, ωk, αk, mk and Φk are respectively the

modal angular frequency, the modal damping factor, the modal mass and the

modal shape associated to the kth mode. ūk denotes the complex conjugate of

uk, the complex modal amplitude of the kth mode. The number of eigenmodes

in the frequency band of analysis is denoted by the symbol N .

If the damping matrix is such that the mode shapes Φk are real, which

is the case if the Caughey condition is satisfied [13], then Eq. (2) can be

rewritten in the form:

YA(ω) = jω
N
∑

k=1

Φ2
k(A)

mk(ω
2
k + jηkωkω − ω2)

, (3)

where ηk =
αk

πfk
denotes the modal loss factor of kth mode.

A straightforward method to estimate the driving-point mobility is to

record the acceleration signal, via a small accelerometer, of the structure,

when it is submitted to an impulse force, performed by a small impact ham-

mer at the driving-point location. Figure 2 shows the mechanical admittance

of a 500 × 190 × 2 mm spruce flat panel used for guitar soundboard man-

ufacturing. The panel is hanged with wires to create free edges conditions.

The acceleration and force signals are obtained at the same location, using

a small accelerometer PCB Piezotronics 352C23 (0.2 g) and a small impact

hammer PCB Piezotronics 086E80.

6



0 1000 2000 3000 4000 5000 6000
−30

−20

−10

0

10

20

30

Frequency (Hz)

M
ob

il
it
y
(d
B
)

Figure 2: Driving-point mobility of the 500×190×2 mm spruce panel. The reference at 0

dB corresponds to a mobility of 0.094 m.s-1/N, namely the mobility of a 2mm-thick finite

panel having the typical mechanical properties of spruce.
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Figure 2 highlights the superimposition of modal contributions expressed

in Eq. (3). The visible peaks in the mechanical admittance are associated to

modal contributions. Their overlap increases with the frequency.

2.3. Modal identification techniques

Many techniques have been developed for estimating modal parameters

from measured transfer functions. Reviews of existing methodologies for

experimental modal analysis are available in Refs [14, 15]. It is known that

these methods are no longer robust when the modal overlap increases in

the mid- and the high-frequency domains [16, 17]. Subspace methods like

MUSIC (MUltiple SIgnal Classification) [18], Matrix Pencil [19], or ESPRIT

(Estimation of Signal Parameters via Rotational Invariance Techniques) [20]

are then interesting to consider and have already been successfully applied

to vibration signals [21–27]. Indeed, these methods overcome the Fourier

resolution limit and are then useful when modes are overlapping, hence the

designation high-resolution. In this work, ESPRIT is used since it is known

to be one of the more robust.

2.3.1. ESPRIT algorithm

The velocity response s(A, t) to an impulse force is the real part of the

inverse Fourier transform of the driving-point mobility YA(ω). It is the real

part of the sum of complex damped sinusoids, each one being the time re-

sponse of a mode:

s(A, t) = ℜ
[

K
∑

k=1

bk(A)z
t
k

]

, (4)
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where bk(A) = ak(A)e
jϕk(A) is the complex amplitude of the k-th mode, and

zk = e−αk+jωk denotes the corresponding pole with modal pulsation ωk and

damping factor αk. K is the number of complex poles in the frequency band

[−Fs/2 Fs/2], where Fs is the sampling frequency (K = 2N).

The ESPRIT [20] algorithm estimates the signal parameters correspond-

ing to the modal parameters of the K sinusoidal components embedded in the

signal. As the other subspace high resolution methods (such as Matrix Pencil

or MUSIC), it is based on the decomposition of the data vector space onto

two orthogonal subspaces, the so-called signal and noise subspaces. Then,

using the so-called rotational invariance property of the signal subspace (it

remains invariant from a sample to the next), the poles zk spanning the sig-

nal subspace can be estimated accurately. The reader can refer to Ref. [26]

for a detailed description of the ESPRIT algorithm. The subspace decom-

position and the use of the rotational invariance property make the ESPRIT

method more robust and accurate than classic Prony-based method, such as

LSCE [14] for instance.

2.3.2. Signal enumeration technique

An important issue when applying subspace methods to composite sig-

nals is the tuning of the modeling order K, which is usually unknown.

Several methods have been proposed to estimate K: the maximum like-

lihood [28] method and Information Theoretic Criteria (ITC) [29], which

include the Akaike Information Criteria (AIC) [30], and the Maximum De-

scription Length (MDL) [31]. More recently, the ESTER (ESTimation of

ERror) criterion, based on the assessment of the rotational invariance prop-

erty that characterizes the signal subspace, has been designed by Badeau et
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al. [23] and used by Ege [24] and Elie et al. [26] in the context of musical

acoustics. We thus chose to apply this technique since it proves reliable and

also for its straightforward implementation with the ESPRIT algorithm.

This criterion consists in appraising the rotational invariance property of

the signal sub-space with an error function. This latter being minimal when

the rotational invariance property is verified, namely when the modeling

order is equal to the right number of sinusoidal components. Note that for

impulse responses signal, which is real, the number of components K is twice

the number of physical eigenmodes.

The identified modes using ESPRIT and ESTER techniques enable us to

compute the modal density of the panel. Theoretical and practical estimation

of the modal density are given in Section 2.4.

2.4. Modal density of flat panels

The method developed by Courant [32] to compute the modal density of

a rectangular plate is based on the estimation of the mode count function,

denoted N(Ω), which is the number of modes having an angular frequency

less than the angular frequency Ω. The modal density n(Ω) is then the

derivative of N(Ω) with respect to Ω.

2.4.1. Asymptotic value of the modal density

Courant [32], then Wilkinson [33], give the expressions of the asymptotic

value of the modal density of a rectangular panel, in the isotropic and the

orthotropic case, when the frequency tends to an infinite value. After [32]

and [33], it is shown that
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n(ω) →
ω→∞

α
S

4π

√

ρh

D∗
, (5)

with











α = 1

D∗ = Eh3

12(1−ν2)
,

(6)

for an isotropic material, and











α = 2
π
F (π

2
, χ)

D∗ = π2

4

√
D1D3

F 2(π
2
,χ)

,
(7)

for an orthotropic material.

In Eq. (5), S is the surface of the plate, h and ρ are respectively the

thickness and the mass density of the plate, D∗ is its bending stiffness mod-

ulus. For an orthotropic material, the equivalent bending stiffness depends

on 4 constants Di=1,··· ,4 accounting for the orthotropic nature of the mate-

rial. In Eq. (6) and (7), E is the Young’s modulus, ν is the Poisson ratio.

F (π
2
, χ) =

∫ π
2

0

[

1− χ2 sin2(2θ)
]− 1

2 dθ is the complete elliptic integral of the

first kind, where χ =

√

1
2

(

1− D2+D4

2
√
D1D3

)

.

Eq. (5) suggests that it is possible to express the modal density of any

orthotropic plate as the modal density of an equivalent isotropic plate, hav-

ing the equivalent bending stiffness D∗. The associated equivalent Young’s

modulus is then

E∗ =
√

ExEy. (8)
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2.4.2. Effects of the boundary conditions

Xie et al. [34] give corrections of the asymptotic modal density taking the

boundary conditions into accounts. The modal density of a rectangular flat

panel writes

n(ω) = n∞ + ncω
−1/2, (9)

where n∞ is the asymptotic value of the plate, from Eq. (5). The term nc is

an additive term depending on the boundary conditions:

1. nc = −Lx+Ly

2

√

ρh
D

for a simply-supported panel.

2. nc = (Lx + Ly)
√

ρh
D

for a free-edges panel.

In the low-frequency domain, the corrections are important. However,

they tend to be negligible in the mid- and the high-frequency domains.

Note that the modal density can be written as

n(ω) = pβ + q
√

β/f, (10)

where p = S
4π
, q is a constant coefficient depending on the boundary con-

ditions and on the perimeter of the plate, and β =
√

ρh
D

is called the plate

elastic constant, depending on the mechanical properties of the material.

2.4.3. Estimation of the analytical modal density from the discrete modal

frequencies

In practice, the modal density can be estimated from the values of the

modal frequencies. The discrete modal density nk is then the inverse of the

frequency distance between two successive modes:
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nk =
1

fk+1 − fk
. (11)

Figure 3 shows an example of the discrete and analytical modal density

computed for two simulated plates. One with an isotropic material, and the

other one with an orthotropic material.

Figure 3 shows that the discrete modal density is a good approximation

of the analytical modal density. The model of the modal density in Eq. (5)

can thus be used to fit experimental data.

In practice, the estimation of the plate elastic constant can be performed

by minimizing the differences between the estimated modal density and the

analytical modal density model in the least square sense:

β = argmin
β̂

∣

∣

∣

∣

∣

∣

∣

∣

n− pβ̂ + q

√

β̂g

∣

∣

∣

∣

∣

∣

∣

∣

2

2

, (12)

where n ∈ R
∗N
+ is a vector containing the N measured values of the modal

density, i.e. n = [n1 n2 · · · nK̃ ], K̃ being the number of modes es-

timated in the impulse response. The vector g ∈ R
∗N
+ is the vector con-

taining the N square roots of the inverse measured modal frequencies, i.e.

g = [f
−1/2
1 f

−1/2
2 · · · f

−1/2

K̃
].

The estimation of β, using Eq. (12), provides a first relationship between

the Young’s modulus E and the mass density ρ. A second one is needed and is

given by the analysis of the mean-value of mobility, performed in Section 2.5.

13



0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

 

 

Discrete modal density (free edges)
Discrete modal density (simply supported)
Analytical modal density (free edges)
Analytical modal density (simply supported)
Asymptotic value

M
o
d
al

d
en
si
ty

(m
o
d
e
p
er

H
z)

Frequency (Hz)

(a)

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

 

 

Disrcrete modal density (free edges)
Disrcrete modal density (simply supported)
Analytical modal density (free edges)
Analytical modal density (simply−supported)
Asymptotic value

M
o
d
al

d
en
si
ty

(m
o
d
e
p
er

H
z)

Frequency (Hz)

(b)

Figure 3: a) Example of modal density of an aluminum plate (Lx = 0.28 m, Ly = 0.35 m,

h = 2.5 mm, ρ = 2700 kg.m−3, E = 70 GPa) b) Example of modal density of a maple plate

(Lx = 0.32 m, Ly = 0.20 m, h = 2.5 mm, ρ = 650 kg.m−3,Di=1,..,4 = [13.4, 2.19, 2.66, 3.59]

N.m).
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2.5. Mean-value of mobility

2.5.1. Definition

The so-called mean-value, or characteristic admittance YC , of a finite

structure is defined by Skudrzyk [35] as the mobility of the equivalent struc-

ture with infinite dimensions. Skudrzyk [35] derives a closed-form expression

to estimate the real part of the characteristic admittance, GC = ℜ (YC), of

the finite structure from its properties:

GC(ω) =
πn(ω)

2MTot

, (13)

where n(ω) denotes the local modal density of the finite structure and MTot

is the total mass of the system.

Equation (13) is based upon several assumptions:

1. the modal overlap is supposed to be large enough, so that the modal

contributions are no longer individually observable,

2. the structure is supposed to be homogeneous (the surface density is

constant over the whole structure),

3. the generalized damping matrix is supposed to be diagonal (Basile hy-

pothesis),

4. the modal loss factor is assumed to be constant over the whole fre-

quency range.

The above hypotheses are in particular valid for plate-like systems, for

which analytical expressions of modal density have been previously pro-

posed [32–34, 36].

The substitution of Equation (5) in (13) leads to the expression of the

asymptotic value of the characteristic admittance of rectangular flat panels:
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GC∞
=

1

8
√
ρhD

. (14)

The value of GC∞
can be used as an indicator to quantify the ability

of the structure to vibrate, a structure with large characteristic admittance

being globally more mobile, therefore more efficient to vibrate.

In the case of conservative thin plates, the imaginary part of the mobility

of an infinite plate is zero (cf. Ref. [16], pages 34-39), therefore the imaginary

part of the characteristic admittance is null.

2.5.2. Estimation of the mean-value of mobility GC

To estimate the mean-value of mobility as defined by Skudrzyk [35], we

use one of its properties: it is the mobility of the structure if all modes

were non-resonant. This configuration can be reached by multiplying the

velocity response by an exponential window e−αwt, where αw is a damping

parameter. This kind of windowing for the velocity response induces an

additional damping to each mode. The velocity response writes

s(t) =

N
∑

k=1

bke
2jπfkt−αkte−αwt =

N
∑

k=1

bke
2jπfkt−(αk+αw)t, (15)

where bk, αk, and fk are respectively the complex amplitude, the damping

coefficient, and the frequency of the mode k. An example of mobilities of the

same structure with different αw is displayed in Figure 4.

2.6. Estimation of M , D∗, and the modal loss factor

The estimation of the mass density ρ uses Equation (13). The estimated

mass is the mass M such that the ratio
nfit

4M
, where nfit is the estimated
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Figure 4: Mobility of a simulated plate with different values of the damping parameter

αw. When αw is large enough, the mobility is then a straight line, corresponding to the

mean-value of mobility.
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analytical modal density, minimizes in a least square sense the differences

with the mean-value of mobility GC , hence

M = argmin
M̂

‖GC − n

4M̂
‖22. (16)

The value αw used to compute GC should be set to a very large value. In

practice, the mass M is estimated several times for increasing values of αw.

The process stops when the ration between the estimated mass Mk at the

iteration k and Mk−1 is under an arbitrary threshold ǫ, set to 0.01%.

The mass density is then

ρ =
M

V
, (17)

where V is the volume of the plate. Finally, the bending stiffness D∗ is given

by

D∗ =
ρh

β2
. (18)

The modal loss factor ηk is computed directly from the values of the modal

damping coefficients αk and the modal angular frequencies ωk estimated by

ESPRIT:

ηk =
2αk

ωk
. (19)

The procedure for estimating the mass density ρ and the Young’s modulus

E can be summarized as follows:

1. the elastic plate constant is estimated from Eq. (12), using the modal

density estimated by the combination of the ESPRIT and ESTER tech-

niques,
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2. the mass of the system is found from Eq. (16), using an estimation of

the mean mobility GC ,

3. the values of ρ and E are deduced fromM and β, using Eq. (18) and (6),

4. the modal loss factor is computed from the modal parameters estimated

by ESPRIT using Eq. (19).

It is worth noting that our method does not require a more specialized

equipment like laser interferometers or traction measurement systems and is

thus useful to be employed in a luthier workshop context.

3. Validation of the method

3.1. Limits of the enumeration technique

The methodology is based on an accurate estimation of the modal density.

The aim of this section is to study the limitation of the enumeration tech-

nique when it is subjected to different conditions likely to fault the method.

For that purpose, tests on hybrid impulse responses are subjected to the enu-

meration procedure. The interest is to accurately simulate the experimental

conditions. The method accuracy depends on the following factors:

1. the modal density of the structure,

2. the damping factor of the sinusoidal components,

3. the signal-to-noise ratio,

4. the position of the observation and excitation point. Indeed, applying

the method in an unique point may induce a bias, if the excitation or

observation point is on a nodal line, for instance. A node excitation is

likely to make them barely detectable.
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The simulated signals are designed by mixing a thin plate modal superim-

position and measured noise outcomes obtained from typical vibro-acoustic

sensor; hence the denomination ”Hybrid”. The reader may refer to Ref. [26]

for a detailed description of the hybrid synthesis of impulse responses.

3.1.1. Results

We propose to investigate the limits of the method related to too high

values of the modal density n, the modal loss factor η, and the noise level,

as well as the driving-point position. We chose a nominal configuration for a

simulated plate as the starting point of different parametric tests. The modal

overlap factor is defined as µ = ηnf , where n is the asymptotic value of the

modal density, and η is the modal loss factor.

The first test consists in simulating impulse responses of plates with dif-

ferent values of n et η. Then it consists in varying the signal-to-noise ratio.

The last test focuses on the sensibility of the method accuracy to the obser-

vation and excitation point. For each parameter, we define a nominal value.

During the test procedures, solely one parameter varies, the other parameters

are set to their nominal value. Table 1 gives the chosen nominal values for

the test.

Influence of the modal density and damping

The considered value of the modal density n is the asymptotic value n∞

given by Eq. (5). The modal density is modified by changing the area S, the

other parameters (stiffness, mass density, thickness and damping) are kept

constant, set to their nominal value (cf. Table 1) along the procedure. Then,

a similar test, consisting in varying solely the modal loss factor, is performed.

20



Table 1: Chosen nominal values for every parameter used in the hybrid impulse responses

syntheses.

Parameter Unit Value

Plate length m 0.5

Plate width m 0.19

Plate thickness m 2.5×10−3

Volumic mass kg.m-3 420

Loss factor % 1

D1 N.m 17.2

D2 N.m 1.05

D3 N.m 1.31

D4 N.m 1.87

Maximum frequency of analysis Hz 2700

The results of both tests are displayed in Figure 5. It represents the error

ratio ∆K/K = Kest−K
K

, where Kest is the estimated number of components

and K is the right number of components.

The test confirms the accuracy of the method to estimate the right num-

ber of modes, even when the modal overlap is large. However, this accuracy

tends to deteriorate when the modal overlap factor exceeds 100 %. The

method is therefore robust in the low- and in the mid- frequency ranges.

Influence of the signal-to-noise ratio

The influence of the signal-to-noise ratio on the method robustness is

tested according to the following procedure: every mechanical and geomet-

rical parameters of the simulated plates are set to their nominal value, the
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Figure 5: Enumeration accuracy as a function of a) the modal density, and b) the modal

loss factor

signal-to-noise ratio is modified by controlling the excitation level, i.e. the

level of the simulated force signal. The signal-to-noise ratio is then defined
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by the following relation:

RSB = 20 log10

[

Aγ

Anγ

]

, (20)

where Aγ is the RMS (Root Mean Square) value of the noiseless simulated

acceleration signal, and Anγ
is the RMS value of the noise signal, recorded

on the accelerometer.
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Figure 6: Enumeration accuracy as a function of the signal-to-noise ratio.

The results of the test are displayed in Figure 6. They show that the

method is very accurate when the noise level is weak: the estimation error

is quasi-null for SNR values larger than 70 dB. When the noise is no longer

insignificant, the method accuracy deteriorates, yet still good, the estimation
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error being less than 5 % for SNR values larger than 40 dB. In practice, the

SNR is usually larger than 50 dB.

Influence of the driving-point

The driving-point may be influential on the method accuracy: the sinu-

soid amplitudes are controlled by the driving-point position. Sinusoids with a

small amplitude are quickly drowned into noise, making them undetectable.

For the test, every parameter is set to its nominal value, and solely the

driving-point is modified. Positions follow a mesh spanning the bottom-left

quadrant of the simulated plate (the results on the other quadrants are the

same by symmetry). The results are displayed in Figure 7.

The effect of nodal lines is obvious: positions for which the normalised

positions x/Lx and y/Ly are simple ratios (1/2, 2/5, 1/3, 1/4, and 1/5) lead

to the largest errors of estimation. For these positions, numerous modes are

excited at their node positions, hence a larger error of estimation. For other

positions, the estimation is accurate (less than 2 %).

3.2. Tests on realistic simulated impulse response of flat panels

3.2.1. Presentation of the tests

The ability of the method to estimate the Young modulus and the mass

density of 47 simulated plates is tested in this section. The dimensions of

the plates are set to a unique arbitrary value for all of them : Lx = 400 mm,

Ly = 280 mm, and h = 2.5 mm. Modal loss factors are the same for every

mode and for every plate. The value is set to 1 %. The values of the Young

modulus and the mass density are chosen so that they correspond to typical

values of different kind of materials:
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Figure 7: Error of estimation on the number of modes as a function of the driving-point

position on the bottom-left quadrant of the simulated plate.

1. Softwood (Cedar, Pine, Spruce, ...)

2. Hardwood (Mahogany, Maple, Oak, ...)

3. Polymers ( Poly(methyl methacrylate), Carbon fibers, ...)

4. Metals (Aluminum, Iron, Gold, ...)

The properties of the materials are displayed in Figure 8. In real life, soft-

wood and hardwood are orthotropic materials, and present different Young

moduli. For the tests, we chose a single equivalent Young modulus E∗, com-

puted from Eq. (8).

The method is then applied an hundred times to each simulated plate.

The driving-point position is randomly set, according to an uniform distribu-
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tion within the plate dimensions, limited to the second and third quartiles of

each dimension (x ∈
[

Lx

4
3Lx

4

]

and y ∈
[

Ly

4
3Ly

4

]

). The analyzed signals

are the mean signals of 5 simulated impulse responses, corresponding to 5

different driving-points.

3.2.2. Results

Results are displayed in Figure 8. The estimated values of E and ρ are

systematically close to the theoretical values, with a negligible deviation.

The estimation bias is within a range from 0 to 10 %.

The tests shows that the method enables a robust estimation of the me-

chanical parameters of the flat panels using a few driving-point transfer func-

tion measurements, 5 in this example, located at randomly chosen positions.

The presented method enables a straightforward characterization of mate-

rials used by luthiers for musical instrument manufacturing. Besides, these

macroparameters are discriminant. Indeed, materials of the same class group

together in the Ashby diagram: their Young modulus and mass density have

the same order of magnitude.

4. Experimental results

4.1. Experimental protocol

Two plates have been tested: one is a steel square plate, the other one

is a red cedar plate, used for guitar soundboard manufacturing. Panels are

hung with wires, fixed to their upper corners. This experimental setup is

intended to approach free-edge boundary conditions, while minimizing the

added dissipation due to suspensions. The impulse response s(t) is obtained
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Figure 8: a) Median value of the errors of estimation of the macroparameters β, ρ, and E
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of E and ρ for the 47 plates.
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Table 2: geometric and mechanical properties of the steel plate.

Parameter Unit Value

Plate length m 0.24

Plate width m 0.24

Plate thickness m 4.6×10−3

Young’s modulus GPa 200

mass density kg.m-3 7623

Plate mass kg 2.02

by a synchronous and co-localized measurement of the excitation signal, using

a small impact hammer (PCB Piezotronics 086E80), and the acceleration

signal, by means of a small accelerometer (PCB Piezotronics 352C23, 0.2g).

The plate is impacted at the same point than the measurement and the

process is repeated thrice. The experimental protocol is displayed in Figure 9.

The analyzed signal is the average of the impulse responses obtained from

the three acquisitions. This is therefore a non-physical signal, yet it contains

the physical eigenmodes of the system. The interest of the averaging is to

avoid weak sinusoids due to nodal lines.

4.2. Results

4.2.1. Steel plate

The geometry and the mechanical properties of the steel plate are shown

in Table 2. Since the steel is an alloy, its mechanical properties can vary.

However, the typical values are in the same order of magnitude. A Young’s

modulus of 200 GPa is typical of steel alloys.
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Figure 9: Experimental setup for panel mobility measurement.

Modal density

Figure 10 shows the modal density estimated via the modal frequen-

cies given by ESPRIT. The mobility computed from the modal parameters
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estimated by ESPRIT is in good agreement with the measured mobility,

indicating that the modal parameter estimation is correct.

The modal density shows a typical behavior of a flat panel with free edges:

it is slightly decreasing, tending toward a constant value in the high frequency

range. this asymptotic value is around 0.0055 mode per Hz, which means

one mode every 180 Hz. The comparison with the analytical modal density

of the plate with typical properties of the steel confirms the good accuracy of

the estimation, they are indeed very close, and are in good agreement with

the discrete modal density computed from the modal frequencies estimated

by ESPRIT.

Young’s modulus and mass density

The direct weighing of the panel gives the mass density: 7623 kg.m-3 (cf.

Table 2). The mass density estimated via the present method is close to

the value obtained from direct weighing (0.08 %). The estimated Young’s

modulus is 192 GPa, the difference with the typical value is 8 GPa. This

difference represents 9.6 %, showing that the results are in good agreement

with expected values. It shows that the steel alloy, used to make this panel,

is rather flexible ahead of typical steel alloys. The mass density is estimated

with an error less than 0.1 %, and the estimated Young’s modulus is in the

order of magnitude of that of steel alloys.

Modal loss factor

Figure 11 shows the estimated loss factor of the steel plate as a function of

the frequency. It shows very low value, which is typical of metallic materials.

The modal loss factor profile shows a sudden increase at frequencies higher
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Figure 10: a) measured mobility and estimated mobility of the steel plate, computed from

the modal parameters estimated by ESPRIT. The estimated mode positions are denoted by

circles. b) Discrete modal density estimated by ESPRIT and estimated analytical modal

density. The analytical modal density of the plate having typical mechanical properties of

the steel (cf. Table 2) is plotted for comparison.

31



0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

η
(%

)

Frequency (Hz)

Figure 11: Estimated loss factor as a function of the frequency of the steel plate.

than 2200 Hz. This increase might be due to radiation losses. Indeed, for

finite plates, the radiation is weak below a certain frequency, called critical

frequency, and becomes important at higher frequencies [37]. The critical

frequency depends on the mechanical properties of the plate and on the

sound velocity ca of the acoustic waves in the surrounding fluid:

fc =
c2a
2π

β. (21)

In the case of the studied steel plate in the air, the critical frequency,

computed from Eq. (21), with ca = 343 m.s-1, is around 2550 Hz, which is in

agreement with the observed increase of the loss factor in Figure 11.
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Table 3: Properties of the red cedar plate. The bending stiffness values are those estimated

by Růžek.

Parameter Unit Value

Plate length m 0.5

Plate width m 0.19

Plate thickness m 2×10−3

Mass density kg.m-3 427.5

Plate mass kg 0.102

D1 N.m 9.52

D2 +D4 N.m 4.89

D3 N.m 0.94

D∗, after Eq. (7) N.m 2.86

4.2.2. Red cedar plate

The method is now applied to a red cedar plate, used for guitar sound-

board manufacturing. The geometry and the mechanical properties of the

plate are shown in Table 3.

Modal density

As for Figure 10, Figure 12 shows the modal density estimated via the

modal frequencies given by ESPRIT. The mobility computed from the modal

parameters estimated by ESPRIT is in good agreement with the measured

mobility, indicating that the modal parameter estimation is correct.

The discrete modal density estimated by ESPRIT is similar to typical

modal density profile of freely vibrating plates: it slightly decreases with fre-

quency and tends toward a constant value in the high frequency range. It
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Figure 12: a) measured mobility and estimated mobility of the red cedar plate, computed

from the modal parameters estimated by ESPRIT. The estimated mode positions are de-

noted by circles. b) Discrete modal density estimated by ESPRIT and estimated analytical

modal density.
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also exhibits a few local maxima and minima located around the analytical

value of the modal density, since the wood plate is both bidimensional and

orthotropic. Eigenmodes are in fact not evenly distributed, leading some-

times to very close or very distant consecutive modes, which results in local

extrema in the discrete modal density.

Young’s modulus and mass density

The estimated mass density is 411 kg.m-3, which corresponds to a 4 % bias

with the theoretical value, 427.5 kg.m-3. The estimated bending stiffness is

2.84 N.m. This value can be compared with the bending stiffness estimated

by M. Růžek, using a method derived from the RIFF method [38] and a

method developed by Chardon et al. [39]. This method estimates the bending

stiffness of the studied red cedar plate at 2.86 N.m, which is similar to the

estimated bending stiffness, using our method (the difference is 0.79 %). This

shows that the method presented in this paper gives results very similar to

independent methods. Consequently, it is possible to estimate a bending

stiffness of an orthotropic plate.

Modal loss factor

Figure 13 shows the estimated loss factor of the red cedar plate. It shows

a constant value slightly larger than 1 %. This profile has been previously

observed in studies on wood materials [1, 40, 41]. The expected critical

frequency for this structure is above 10 kHz, which is beyond the frequency

band of analysis: unlike for the steel plate, the modal loss factor of the red

cedar plate does not exhibit a sudden increase in the analyzed frequency

band. The radiation effect is then not observable.
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Figure 13: Estimated loss factor as a function of the frequency of the red cedar plate.

5. Conclusions

The study presented in this paper shows that it is possible to estimate,

with good accuracy, the Young modulus and the mass density of flat panel,

with solely a few measurement points, using affordable and easily handleable

experimental devices. This method is therefore suitable for a daily practice

in an artisan workshop, such as a luthier workshop for instance.

The method is based on an accurate estimation of the modal density of

the structure and an estimation of the mean mobility. The modal density is

estimated via the subspace method ESPRIT, associated with the signal enu-

meration technique ESTER. The mean mobility is computed as the mobility
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of the equivalent structure with an infinite damping. The Young modulus

and the mass density of the panel are estimated by fitting the experimental

data with the theoretical expressions giving the modal density and the mean

mobility.

The method is validated following different steps. First, the enumeration

technique is tested using hybrid syntheses, aiming at reproducing experimen-

tal conditions. Simulations show that the enumeration is accurate as long

as the modal overlap does not exceed 100 %, namely in the low and the

mid-frequency domains. The second step tests the method for estimating

the Young modulus and the mass density of a lot of 47 simulated plates. It

shows that the Young modulus and the mass density can be estimated, with

an error systematically less than 10 %, with 5 driving-point transfer function

measurements, located at random positions.

Experimental applications of the method on metallic and wood plates

confirm its ability to accurately estimate the characteristic parameters of the

flat panel with a few driving-point transfer function measurements. For these

applications, solely 3 measurements were performed. The mass density of a

metallic plate is estimated, according to an error less than 0.1 % and less

than 4 % for a wood plate.

The method can be applied in the instrument making context and will

be implemented in the lutherie assistance system PAFI (Plateforme d’aide à

la facture instrumentale).
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[22] B. David, Caractérisations acoustiques de structures vibrantes par mise
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