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Second-Order Multidimensional ICA:
Performance Analysis

Dana Lahat, Jean-François Cardoso, and Hagit Messer, Fellow, IEEE

Abstract—Independent component analysis (ICA) and blind
source separation (BSS) deal with extracting a number of mutually
independent elements from a set of observed linear mixtures. Moti-
vated by various applications, this paper considers a more general
andmore flexible model: the sources can be partitioned into groups
exhibiting dependence within a given group but independence
between two different groups. We argue that this is tantamount
to considering multidimensional components as opposed to the
standard ICA case which is restricted to one-dimensional compo-
nents. The core of the paper is devoted to the statistical analysis
of the blind separation of multidimensional components based
on second-order statistics, in a piecewise-stationary model. We
develop the likelihood and the associated estimating equations
for the Gaussian case. We obtain closed-form expressions for the
Fisher information matrix and the Cramér–Rao bound of the
de-mixing parameters, as well as the mean-square error (MSE)
of the component estimates. The derived MSE is valid also for
non-Gaussian data. Our analysis is verified through numerical
experiments, and its performance is compared to classical ICA
in various dependence scenarios, quantifying the gain in the
accuracy of component recovery in presence of multidimensional
components.

Index Terms—Blind source separation, joint block diagonaliza-
tion, multidimensional independent component analysis, perfor-
mance analysis, second-order methods.

I. INTRODUCTION

I N their most basic setting, independent component analysis
(ICA) and blind source separation (BSS) aim at extracting
mutually independent elements from observed mixtures.

The model is of observations of an vector , modeled
as

(1)

where is an full-rank matrix and is a vector of
independent sources. A natural extension of practical interest
is to assume that the sources can be partitioned into
groups with the sources of different groups being statistically in-
dependent while the sources in the same group are not indepen-
dent and cannot be made independent by any linear transform
on . In the following, we use the term dependent sources to
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indicate such a source model. As we shall see shortly, the mul-
tiplicative model (1) of dependent sources, which suffers from
inherent indeterminacies, is equivalent to the additive model [1]

(2)

of multidimensional components, in which these indetermina-
cies are avoided.
Multidimensional data may occur due to various complex re-

lations within the dependent elements. The dimension of a de-
pendent group may not always reflect the actual number of its
underlying elements. As a result, in multidimensional models,
there is not always a physically meaningful interpretation to
separating the multidimensional components back into single-
dimensional elements. Various phenomena can yield data that
is multidimensional in nature. For example, in the analysis of
MEG stimuli [2], energies of evoked signals may become sta-
tistically dependent due to similar activation and termination
times. In addition, a single isolated neural source is of little diag-
nostic value, and consequently the number of detected sources
may be reduced through a clustering procedure, based on spa-
tial topography [3]. In natural image analysis, subspaces origi-
nate from features which represent positions, orientations, spa-
tial frequencies and phases [4]. In fetal ECG detection [1], [5],
multidimensionality is explained by a certain 3D electric model
of the heart, and may change during pregnancy. Finally, in the
separation of astrophysical emissions, multidimensionality may
reflect not only dependence between different emissions due
to astrophysical processes [6], but also spatial nonstationarity,
when observations are taken over a large enough patch of the
sky [7], [8].
The idea of solving the dependent sources/multidimensional

components problem in terms of subspace separation through
ICA was first demonstrated in [5], on fetal ECG recordings. The
perspective of multidimensional ICA (MICA), of vector-valued
components whose representation is based on unambiguous
projections on the sources’ respective subspaces, was presented
in [5], and an elaborate geometric framework was suggested
in [1]. The notion of independent feature subspaces and in-
dependent subspace analysis (ISA) was introduced in [4] and
[9]. In the ISA framework, independent and identically dis-
tributed (i.i.d.) non-Gaussian observations are separated into
feature-invariant subspaces by a criterion which maximizes
the independence between norms of projections on linear sub-
spaces. ISA algorithms usually assume that the sources have a
spherically symmetric distribution; examples are given in [4],
[10]–[12]. This can be obtained in practice by a preliminary
whitening stage. Whitening simplifies the optimization by
restricting the de-mixing matrix to be orthogonal; this results in
a smaller number of variables to adjust. However, by assuming



that the empirical covariance of the observations is the identity
matrix, whitening ignores finite-data effects. Whitening errors
which are introduced in this preliminary stage cannot be com-
pensated for by the following rotation stage [13]. Hence, such
methods are sub-optimal with respect to methods which do
not preprocess the data by whitening [14], [15]. An algorithm
which solves ISA through joint block diagonalization (JBD) of
cumulant matrices, where JBD is performed by joint diagonal-
ization (JD) and permutation-recovery, with a pre-whitening
stage, is described in [16]. An ISA algorithm without the
whitening constraint is given, for example, in [17]. A non-para-
metric dependence measure, whose minimization is based on
one-dimensional ICA as a step in separating multidimensional
channels for non-Gaussian i.i.d. pre-whitened data, is found
in [18]. The above-mentioned algorithms require as an input
the correct subspace dimensions. An algorithm which extends
[10] by automatically detecting the subspace dimensions and
clustering the data is proposed in [19]. Conditions under which
the two-step procedure of ICA and then clustering is sufficient
for separation are discussed in [20]; this analysis is valid for
i.i.d. pre-whitened data and specific distribution types.
In the above-mentioned works, the performance of the algo-

rithms is examined numerically [1], [4], [5], [9], [18], [19], or
their convergence to the correct separation point is discussed
theoretically [10]–[12], [16], [17], [20]. However, to the best of
our knowledge, no complete performance analysis, in the sense
of closed-form expressions for an expected figure of merit or
bound, has been conducted to any of these scenarios.
Cramér–Rao lower bounds (CRLB) on the estimation error of

the mixing matrix and of the source parameters in ICA have al-
ready been discussed in the literature. Optimal performance and
lower bounds were analyzed, for example, for the following
scenarios: system identification for non-Gaussian sources
[21]; second-order static-mixture noisy ICA [22]; noise-free
static-mixture ICA for non-Gaussian sources [23]–[25]; sta-
tionary parametric Gaussian sources [26] and non-stationary
sources [27]. A lower bound on source separation due to
whitening has been derived in [14] and [15].
In this paper, we consider a second-order basedmethodwhich

extends the maximum likelihood (ML) treatment of [28] and the
performance analysis of [27] and [29] to the case of non-sta-
tionary Gaussian dependent sources/multidimensional compo-
nents. We provide a complete small-error performance analysis,
in the sense of closed-form expressions for the Fisher informa-
tion matrix (FIM), CRLB and mean-square error (MSE). We do
not discuss algorithms which achieve these measures; such al-
gorithms can be found in [30]. As in [28], there is no whitening
constraint. Preliminary results can be found in [31].
It should be noted that the Gaussian non-stationary anal-

ysis, discussed in this paper, is also appropriate for stationary
non-white processes. As demonstrated by [32] and [33], in
full analogy to the time-domain procedure, second-order ICA
can also be performed in the frequency-domain on non-white
processes, due to the asymptotic properties of the Fourier
coefficients. In this case, the index implies a frequency index.
An application of the proposed performance analysis to the
separation of astrophysical emissions, in the frequency domain,
can be found in [8].
The structure of this paper is as follows. In Section II, we

present the two points of view, of dependent sources versus mul-

tidimensional components. In Section III, we describe our sta-
tistical model. We derive a contrast function, whose minimiza-
tion is equivalent to the ML solution for Gaussian piecewise
stationary data. We show that this minimization can be obtained
by joint block diagonalization (JBD) of a set of sample covari-
ance matrices. We then derive the estimating equations, whose
component-wise form forms the basis for the detailed error anal-
ysis in Section IV. The small-error analysis in Section IV is
done exclusively in terms of well-defined quantities, i.e., com-
ponents and projections. From the Taylor expansion of the esti-
mating equations, we calculate the error covariance of the ML
estimates, and this result is propagated to yield the total MSE
in component estimation. Section V deals with identifiability
of the model. Namely, the required number of stationary inter-
vals, as well as conditions on the source covariance matrices, to
guarantee existence, uniqueness and identifiability of the model.
Numerical results are presented in Section VI. Numerical sim-
ulations demonstrate that our CRLB is achievable when the
model assumptions hold and that our MSE expression for com-
ponent reconstruction holds also for non-Gaussian data, as ex-
pected from our theoretical analysis. Furthermore, the simula-
tions show a significant gain of the multidimensional approach
over the cruder approach based on one-dimensional separation
following a clustering of the dependent sources, as suggested in
[34].
The following notations and conventions are used throughout

this paper. Bold lowercase letters denote vectors; regular low-
ercase letters denote scalars; bold uppercase letters denote
matrices; regular uppercase letters denote functions, operators
or constants. Transposition is denoted by ; trace is denoted

by for any vector .

for any stochastic vectors with
. denotes the Frobenius norm; denotes

the Kronecker delta. The Kronecker product is denoted by .
stands for zero mean stochastic terms whose standard

deviation is proportional to , or to higher powers thereof.
stands for deterministic terms which are bounded above,

up to a constant factor, by .

II. DEPENDENT SOURCES VERSUS
MULTIDIMENSIONAL COMPONENTS

The separation problem of interest can be stated by parti-
tioning the source vector and matrix as

(3)

where , the th column block of , has dimension ,
vector has dimension and . Given

the pattern and the observations ,
the problem of blind separation of dependent sources is that of
findingmatrices such that is full-rank and such that the cor-
responding source vectors are as independent
as possible. This notion is given a definite meaning in Section III
where we set up a simple statistical model which, via its likeli-
hood function, yields a quantitative measure of independence.
However, before we write down a likelihood function, it is nec-
essary to discuss the indeterminacies inherent to the blind sep-
aration of dependent sources and to explain how these indeter-



minacies lead to the alternate point of view of multidimensional
ICA.
With the partition (3), the multiplicative, source-mixing

model (1) can also be written as an additive model (2), where
we define the th component as the vector

(4)

In a blind context, the component vector is better defined
than the source vector . Indeed, for any invertible
matrix , the pair and the pair
contribute the same quantity
to the observations. It is thus impossible to discriminate between
the representation of a component by the pair
and by the pair . Therefore, matrix can, at
best, be blindly identified only up to right multiplication by an
invertible matrix. This is the familiar scale indetermi-
nacy of standard ICA, carried over to dimension , with an

matrix factor instead of a simple scalar factor.
Since matrix is determined only up to a right factor ,

only its column space, , can be blindly identified. It is
thus useful to introduce the separating projectors: these are the

oblique projection matrices onto along
for all . By definition, they satisfy

, are unaffected if is changed into , and allow
one to write

(5)

The notation (5) is the geometric counterpart of (4). The set of
unambiguous oblique projections is the matrix-free counter-
part of the inverse matrix .
For later reference we mention that if is partitioned into

horizontal blocks, where the th block has dimension
, then the th oblique projector is given by

(6)

We also define the orthogonal projection matrix onto
, that is,

(7)

denoting by the Moore–Penrose pseudoin-
verse (49) of . Obviously, projector is unaffected if is
changed into .
In summary, the source separation model based on a mixing

matrix is recast as a component separation model (2), where
the th component is restricted to an -dimensional sub-
space, represented by the uniquely defined orthogonal projector
. The th component is recovered via (5) using the oblique

projector .
As a final note in this section, we would like to emphasize that

the component perspective goes beyond the mere avoidance of
scale indeterminacy. The various examples of multidimensional
data in Section I demonstrate that in a multidimensional setup, a
“mixing matrix” and “dependent sources” may not always have
a physical interpretation of their own.

III. MODEL, LIKELIHOOD AND CONTRAST FUNCTION

We derive a likelihood function for the separation of depen-
dent sources by generalizing the Gaussian piecewise stationary
model of Pham and Cardoso [28]. We show, following the same
guidelines as [28], how this likelihood yields a contrast function

for separating dependent sources, which is a joint block diago-
nalization criterion. We then establish the estimating equations
for the mixing matrix , that is, the equations satisfied by its
maximum likelihood value. Finally, we recast these equations
in terms of the component model parameters, the oblique pro-
jections .

A. Piecewise Stationary Model

Let us consider a piecewise stationary model as follows. The
observation interval is partitioned into domains

, where domain contains samples, so that
. We assume that is independent of

if and that, for any has zero mean and
covariance matrix . The linear model (1) implies that

(8)

where is the covariance matrix of for . The
empirical counterpart and natural estimate of is

(9)

The model of dependent sources, discussed in Section II, corre-
sponds to the block-diagonal structure

. . . (10)

where is the covariance matrix of for . The

set is such that it cannot be further jointly block di-

agonalized into smaller blocks. Hence, is JBD-irre-
ducible (this notion of irreducibility is analogous to that pro-
posed by [16] and [35]).
In the following, we use to denote a block-

diagonal matrix constructed from the set of matrices in brackets.
Therefore, (10) can be rewritten as

We shall also use the related notation which, given
an matrix , returns the block-diagonal matrix with
block pattern which has the same diagonal blocks as and
has zeros in the off-diagonal blocks.

B. Likelihood

If is normally distributed, then the log-likelihood for the
model just described is

(11)

as we now explain. The first equality comes from the assump-
tion of independence for . The second equality follows



from the Gaussian assumption and uses the
notation . The third equality results from the
piecewise stationary model that for and
uses the property for any vector and ma-
trix of appropriate dimensions.
Using the notation

(12)

for any two positive-definite matrices and , the
log-likelihood (11) can be rewritten as

(13)

where denotes the
term which is irrelevant to the maximization of the likelihood
with respect to its parameters, since it depends only on the data,
not on the model. The second equality uses (8) and then the
invariance of (12) under any invertible transform: for any two
positive-definite matrices and for any invertible ,

(14)

The last step introduces the notation to denote a weighted
average of any sequence indexed by with weights :

(15)

C. Contrast Function for a Mixture of Dependent Sources

We can now focus on the case of interest: a mixture of de-
pendent sources. The contrast function is obtained by maxi-
mizing the likelihood with respect to the nuisance parameters

for fixed . Following the derivation in Appendix B,

the ML estimate of is and

where we define the contrast function [36], [48]

(16)

and where, for brevity, the dependence of on the data

via is not denoted explicitly. Note that (16) is the
multidimensional analogue of its one-dimensional counterpart
in [28].
The scalar , defined in (12), is the Kull-

back–Leibler divergence between the distributions
and [37], and thus is a measure of mismatch between
two positive-definite matrices and . Therefore, in our

piecewise stationary model, maximizing (13) is equivalent to
minimizing the average mismatch between the
sample covariance matrices and their expected counterparts.
Since with equality if and only if is
block diagonal with block pattern , then, for any positive-def-
inite matrix , the divergence is a measure
of the block-diagonality of . Therefore, minimizing
can be understood as joint block diagonalization (JBD) of the

set of covariance matrices by matrix (see also
[38] and [39]).

D. Estimating Equations in Terms of the Mixing Matrix

The next step is to solve for the mixing matrix . This is
obtained by characterizing the stationary points of the log-like-
lihood (13) and thus also of the contrast function (16). For this
purpose, we calculate the derivative of the likelihood function

with respect to , for

fixed (we omit the dependence of on the data, for
brevity). The first-order variation of when
is replaced by (where denotes the identity matrix)
can always be expressed by the Taylor expansion

(17)

higher-order terms in

for some matrix , called the relative

gradient of with respect to . Similarly to the
derivation for the one-dimensional case in [28], one obtains that

(18)

In order to obtain the ML estimate of , we equate (18) to zero.
Since (18) depends on the nuisance parameters, we can now
replace with its ML estimate, derived in Section III-C. This
procedure yields the estimating equations

(19)

It can be shown that , the first-order variation of ,
derived similarly to (17), obeys

Therefore, the solution of (19) is the ML estimate of as well
as the stationary points of (16). The estimating equations (19)
read block-wise

(20)

where are understood as block indices. Using the horizontal
blocks of matrix , (20) is rewritten as

(21)

Note that the th block of (19), that is, of (20), degen-
erates into the identity matrix: the diagonal blocks do not
yield any constraints, reflecting the indeterminacy discussed in
Section II.



E. Estimating Equations in Terms of the Projectors

The estimating equations (21) can also be expressed as con-
ditions on the oblique projectors . To do so, we multiply (21)
on the left by and on the right by . In the middle, we in-

sert , to obtain

(22)

We split the expression inside the angular brackets into two fac-
tors which can be re-expressed as follows. The leftmost factor
is

(23)

where the first equality uses the property that for any invertible
matrix and for any rank- matrix ,

(24)

(it is immediate to verify that (24) fulfills all four criteria of
theMoore–Penrose pseudoinverse (49)) and the second equality
uses definition (6) of the projectors. The rightmost factor is

(25)

Substituting (23) and (25) in (22), the estimating equations (21)
also read

(26)

which is the desired form: the values of the oblique projectors
for which the contrast function is stationary are the solutions
of the estimating equations (26). Since (20) yields the ML esti-
mates of , (26) yields the ML estimates of . The estimating
equations (26) will allow us to lead the error analysis from the
components’ point of view, as we shall see in Section IV.

IV. ERROR ANALYSIS

We turn to the error analysis of the estimates, obtained by
minimizing the contrast function (16). Our purpose is to derive
a closed-form expression for the MSE in component estimation.
In Section IV-A we define the error in component estimation.
We express this error as a function of the error in the oblique
projections and of the observations. The error in the oblique pro-
jections, which is due to all components, is decomposed into
pairwise error terms. Following a first-order expansion of the
estimating equations (26), we obtain in Section IV-B an expres-
sion for the pairwise error terms, which depends on the model
parameters and on the observations. In Section IV-C, we de-
rive the covariance of the pairwise error terms and thus also of
the error in the oblique projections. This derivation provides us
with the FIM and CRLB for these estimated parameters, when
the Gaussian model holds. Finally, in Section IV-D, based on
the former results, we obtain a closed-form expression for the
(normalized) MSE for component separation.
We consider an asymptotic analysis in the regime of small

errors, in which the results are obtained from a first-order ex-
pansion of the estimating equations. In the following, we de-
fine asymptotic conditions as with fixed . The

analysis is conducted under the assumption that the model of
Section III-A holds.
In order to avoid ambiguities, for certain parameters, a “ ” is

used to denote the ‘true’ model quantities, and a hat denotes the
value which solves the estimating equations. For instance,
denotes the true mixing matrix, while denotes the solution of
(20), which is also theML estimate if the Gaussian model holds.

A. Error Decomposition

A difficulty in error analysis for the multidimensional
problem stems from the inability to characterize the estimation
error of the mixing matrix, due to the severe indeterminacies
it suffers from, as discussed in Section II. We thus begin by
defining convenient error terms. In order to focus on well-de-
fined quantities, we consider the errors in , the ML
estimates of the oblique projectors:

(27)

The estimated th component is thus

so that, using , the error in the th component
is decomposed as

(28)

where we have defined error matrices

(29)

The term in (28) is inserted since it arises naturally in the
derivation of the first-order expansion of the estimating equa-
tions (Appendix C, (58)); recall that . The
double-indexed term gives the linearized estimating equa-
tions their pairwise form, as will be seen shortly.
For , the term in (28) is called the th-

contamination error, that is, the contamination due to the th
component in the reconstruction of the th component. The term

is called the th-reconstruction error, since this term
represents a distortion of but not any contamination by
the other components.

B. Influence Function

In order to evaluate the covariance of the estimation error,
we first establish the first-order expansion of in terms of the
finite-sample covariance matrices

(30)

The key assumption for blind separation is block-decorrelation:

for . However, because
of finite sample size, this does not hold for its empirical coun-

terpart, i.e., . In this section, we develop the
performance analysis in the regime of small errors, that is, we



analyze the error terms at first-order in when
asymptotic conditions hold. From (29), decreases with at
the same rate as . Assuming that asymptotic conditions hold,
then (see Appendix C).
The first-order expansion of the estimating equations (26)

yields (see Appendix C) a set of pairs of equations:

(31)

with one such pair of equations for each pair of com-
ponents. Equation (31) shows that asymptotically, for each pair
of components, the projector error terms are related

to the corresponding set of matrices ,
which represents the block-decorrelation error. Such a pairwise
decoupling is customary in the asymptotic analysis of ICA al-
gorithms, e.g., [32] and [40].
In order to proceed, it is convenient to vectorize the matrices

using the operator which stacks the columns of a
matrix into a vector. The pair of (31) can thus be rewritten
in matrix form as

(32)

where

(33)

and is a symmetric matrix with

(34)

In the above, we have introduced the commutation
matrix [41] such that

(35)

for any matrix . Assuming that is invertible (see
Section V), then

(36)

Equation (36) shows how the empirical correlation between

components, that is, the fact that is non-zero in finite
sample size, results in non-zero errors . Note the similarity
between (36) and its one-dimensional, source-wise counterpart
in [40] and [28]. Equation (36) is the desired closed-form,
first-order expression for the error terms in (28).

C. Error Covariance for the Projectors

We are almost ready now to calculate the covari-
ance matrix of , defined in (27). First, we notice that

,
where are given explicitly by (36) for . For
one more step is required, because is not given by
(36). Since is given, we exploit it by constraining

. Therefore, , which implies
, hence . We can thus

rewrite . Vectorizing , its
covariance matrix is given by

(37)

where the first equality is due to (48c) and the last equality is
due to the lack of correlation between the components.
It remains now to calculate the four covariance matrices in

(37). These will be taken from the covariance of (36). For this
aim, we shall calculate the covariance matrix of the stochastic
vector . We show in Appendix D that

(38)

where

(39)

and

(40)

Using (38), the covariance matrix of (36), for any , is given
by

(41)

where the last step is proved in Appendix E. Further manipula-
tions on (41) (Appendix F) yield, for ,

(42)

and

(43)

as the cross-covariance matrix between and .
All the covariance matrices on the RHS of (37) are now given in
explicit form by (42) and (43), which concludes the closed-form
derivation of .
Under the Gaussian assumption, the results in this section

have the following interpretation. Since is the first-order
expansion of the relative gradient (26) of the log-likelihood
(11), then (32) with (38) imply that is the FIM for the pair

, whose estimation error is given
by (see (29)). In (41), we obtain that the
covariance matrix of the estimation errors is (approximately)
equal to the pseudoinverse of the FIM. Therefore, (41) is the



asymptotically achievable CRLB on the estimation of the
pair , and (42) is the CRLB for

alone. Since we have shown that (42) is the CRLB
for , and is a linear function thereof (up to

terms), (37) is the CRLB for .

D. Mean Square Error

The final step in our analysis is to propagate expression (37)
for the covariance matrix of the oblique projection matrices
into an expression for the component estimation error. Let us
define the estimation error of a given component by a normal-
ized MSE:

(44)

where the normalization is by the average power of the th
component,

(45)

and where the last step uses and (9).
Using (28), (44) can now be rewritten as

(46)

where the second equality is analogous to that in (45), and the
last equality uses (9) and then Property A.1 in Appendix A.
Now, in order to obtain the expectation of (46), we employ the

reasonable assumption, that , and thus , are statistically
independent of the total power of the observations, . This
follows from the fact that reliable JBD cannot be obtained with
less than two matrices, see Section V. Hence, we can write

(47)

where is given in (37), with (42) and (43). Note
that due to (48d) and the statistical independence between any
two different components, only the first and fourth summands
on the RHS of (37) contribute to (47). We have thus obtained
a closed-form expression for the MSE, which can be fully ex-
pressed by the model parameters and the weights

, up to terms. In the Gaussian case, this is also
the minimal MSE (MMSE).
It should be noted that all the derivations in this Section IV

and in the related appendices do not rely neither on Gaussian
distribution nor on statistics of order larger than 2. Therefore,
(42), (43), (37) and (47) hold also for non-Gaussian observa-
tions. That is, they still reflect the error covariance and MSE
if we apply (16) for their separation; however, the CRLB, FIM

and MMSE interpretation of the derived expressions no longer
applies.

V. IDENTIFIABILITY

In this section, we discuss conditions under which blind iden-
tification of the component subspaces is possible.

A. Degrees of Freedom

Let us compare the number of degrees of freedom in the
model with the number of constraints in the data. Since we focus
on second-order methods, the data are represented only by their
sample covariance matrices. These are symmetric ma-
trices so that our model should try to fit

scalar numbers. The model is adjusted by varying the mixing
matrix and the source covariance matrices. However, there is
some redundancy between these matrices, because of the factor-
izations discussed in Section II: each submatrix has
degrees of freedom, where of them can be factored into the
corresponding source covariance matrices. This leaves

effective degrees of freedom in the mixing ma-
trix , and degrees of freedom in each .
Hence, the model has

effective free scalar parameters. It turns out that

Hence, as soon as , we have , that is,
there are more (or, at least, as many) scalar statistics as free
parameters in the model.
However, since any two positive-definite matrices can be

exactly jointly diagonalized [42, Theorem 6], the JBD-irre-
ducibility requirement of Section III-A will be violated if we
let for multidimensional data. The latter assumption
implies that is a necessary condition for identifiability
in the presence of multidimensional components. Otherwise,
one can suffice with .

B. Identifiability and Uniqueness

The previous argument makes it plausible that for ran-
domly chosen source covariance matrices, the component
subspaces can be identified blindly. As shown in [43], exis-
tence and uniqueness of JBD, up to trivial indeterminacies (see
Section II) and for is guaranteed with probability one
when the entries of the source covariance matrices are drawn
from a continuous probability density function. It thus remains
to specify when this uniqueness does not hold. For one-dimen-
sional ICA, it has been shown by [44] that non-identifiability
occurs when the covariances of the different sources, as a
function of the domain index, are proportional. Recently, [45]
have developed analogous conditions for the multidimensional
case, in terms of the source covariance matrices . We thus
assume that all the required conditions for uniqueness and



TABLE I
PERFORMANCE OF SECOND-ORDER MULTIDIMENSIONAL ICA: ANALYTICAL VERSUS EMPIRICAL NORMALIZED MSE, AVERAGED

OVER 5000 MONTE-CARLO TRIALS. EMPIRICAL RESULTS: JBD ALGORITHM WITH CORRECT VERSUS

. EACH SCENARIO, THAT IS, DIFFERENT , IS TESTED ONCE WITH GAUSSIAN AND ONCE WITH NON-GAUSSIAN DATA.
THE LAST ROW OF THE TABLE SUMMARIZES THE COLUMNS

identifiability, as given by [43] and [45], hold. We postulate that
these conditions suffice for to be invertible, as the derivation
of the singular points of is beyond the scope of this paper.

VI. NUMERICAL RESULTS

In this section, we validate experimentally the performance
analysis of Section IV. Two algorithms which minimize (16),
and thus solve (32), are suggested in [30]. Both converge to the
same separation point. For the following simulations we pre-
ferred the quasi-Newton realization, due to its faster conver-
gence rate.
In the following simulation, we construct the data so that the

analysis requirements of Section IV hold, including small-error
regime. Therefore, the theoretical prediction of the MSE is ex-
pected to be an accurate prediction of the measured error. We
set adjacent domains with samples for a
total of samples. In each experiment, the matrices

are drawn as , where is an upper trian-
gular matrix with independent entries uniformly distributed on

. The underlying sources are created by left-multiplying

the Cholesky factorization of with statistically in-
dependent, zero mean, unit variance numbers. These numbers
are drawn from various distributions, in order to validate our
claim that the second-order analysis holds not only for Gaussian
sources.
As explained in Section II, there is no scale indeterminacy to

resolve. Since the JBD algorithms [30] do not guarantee global
convergence, the following steps were taken in order to avoid
permutation errors. We chose to initialize the JBD algorithm
[30] with . In this case, permutation errors are avoided by
choosing mixing matrices which are strictly diagonally-dom-
inant. In the following simulations,

and are i.i.d. Such values allow for sufficient vari-
ability of the mixing matrix to test our small-error analysis,
while maintaining global convergence. Cases in which an al-
gorithm does converge to an undesired local minimum are due
to permutation errors. These are easily detected, since they re-
sult in a significantly larger MSE. Therefore, as a final safety
measure, we verified that no such large errors appeared in our
results.
Table I compares the empirical with the analytical MSE for

several scenarios with varying component dimensions and dis-
tributions. The second column states the arbitrary index given to
each component. The third column denotes the dimension of the
th component in the scenario. In each scenario, different and

are drawn. The fourth column gives the analytical MSE
for each component (47), which is calculated using the correct
model parameters. Each scenario is evaluated using 5000Monte
Carlo trials. For each scenario, two data types were tested. In
columns 5–8, Gaussian, zero mean, unit-variance numbers are
used to create the underlying sources. In columns 10–13, ei-
ther uniform, Laplacian, or Gaussian mixture (peaks centered
at ) zero-mean, unit-variance numbers, denoted U, L, and
GM, respectively, are used to create the underlying sources.
Note that left-multiplication of the non-Gaussian numbers with
the Cholesky factorization of changes their distribution;
however, it is still non-Gaussian. The non-Gaussian distribu-
tion, used to generate the data for each scenario, is given in
column 9.
The fifth and tenth columns give the averaged empirical MSE

for each component (44). Columns 6 and 11 give the ratio of
MSE for component separation: simulated versus analytical.
Columns 7–8 and 12–13 compare the averaged empirical MSE
using our JBD criterion with the averaged empirical MSE ob-
tained from one-dimensional modeling (JD) and then grouping
the separated elements into the multidimensional components,



according to the known partition . These values are denoted in

Table I as . We point out that the conditions derived in
[20] for the global optimum to be achieved by properly grouping
the ICA elements refer to a different separation criterion and are
thus inapplicable here.
The last row of Table I summarizes the results of each

column. First, note that all the (normalized) MSE values are
much smaller than 1, illustrating the quality of the component
separation. Second, note that all values in column 6 and 11
are close to 1, showing that our analysis predicts correctly
the achievable separation accuracy. The good match between
predicted and empirical MSE demonstrates that indeed only
second-order statistics are required for our theoretical analysis,
and that for Gaussian data, the CRLB is indeed achievable.
As expected [34], there is a significant gain (columns 8 and
13) due to using the correct model, as proposed in this paper.
An important result is that in scenarios 2 and 3, which include
one-dimensional components along with higher-dimensional
ones, the gain for the one-dimensional components is ,
as well. Obviously, when the sources are independent, as in
scenario 5, there is no difference between JD and JBD, hence
we put “1” in this cell.

VII. CONCLUSION

In this paper, we presented the concept of BSS of multi-
dimensional components as a new perspective on the depen-
dent sources model. Based on a piecewise stationary model,
we derived an ML-based criterion (16) which singles out the
multidimensional, unambiguous components from their sum.
This criterion can be interpreted as the JBD of a set of covari-
ance matrices. Error analysis of this criterion provided us with
a closed-form expression of the covariance of the oblique pro-
jections, which are the unambiguous counterparts of the mixing
matrix in the component representation. Our error analysis re-
veals that for Gaussian data, our separation criterion achieves,
up to higher-order terms, the CRLB, and is thus optimal in the
MSE sense (MMSE).We then derived a closed-form expression
for the MSE of the component estimates, in terms of the co-
variance matrices of the components. This expression is valid,
though no longer optimal, also for non-Gaussian data, when the
other model assumptions hold. Our derivations were verified in
numerical simulations. The performance of JBD was compared
with that of classical one-dimensional joint diagonalization and
our treatment of multidimensional components was shown to
yield a significant gain in their separation.

APPENDIX A
SOME ALGEBRAIC PROPERTIES

For ease of reference, we list some useful algebraic proper-
ties. Properties which are not proved below can be found in [41],
[46], and [47].
For any matrices (with appropriate dimensions),

(48a)

(48b)

(48c)

(48d)

(48e)

Definition A.1: The Moore–Penrose pseudoinverse of a ma-
trix is the matrix that obeys

(49a)

(49b)

(49c)

(49d)

Property A.1: Let be matrices, symmetric.
Then

Proof: Starting from the LHS,

where the first equality uses (48d) and then (48e). In the second
equality, , followed by (48c). In the
third equality, we simply add the trace notation. The desired
result follows from (48d).

APPENDIX B
DERIVATION OF THE CONTRAST FUNCTION

This appendix details the steps to obtain the contrast func-
tion (16), by maximizing the log-likelihood (13) with respect
to . This maximization can be obtained using
Property B.1 below, which implies that

(50)

Therefore, for any domain

due to (50), since is block-diagonal by definition. Since
the samples are statistically independent, the log-likelihood (13)
can be maximized by optimizing each domain separately, which
concludes the derivation.
Property B.1 (Closest Block Diagonal Matrix): Given pat-

tern , the best, in the Kullback–Leibler divergence sense,
block-diagonal approximation to a positive-definite matrix ,
is :

from which (50) follows.

Proof: For a given pattern , let and
be any two positive-definite matrices. Then, the Kull-
back–Leibler divergence between and can
be decomposed into

(51)



The proof of (51) is straightforward using the definition (12) of
the Kullback–Leibler divergence. In (51),
is independent of . Setting zeroes (and
minimizes, since ) the rightmost term of (51).

APPENDIX C
FIRST-ORDER EXPANSION OF THE ESTIMATING EQUATIONS

In this appendix, we show that the first-order expansion of
the estimating equations (26) leads to the linear relation (31) be-
tween the projection error terms and the sample

error terms .

Let us begin by restating that the estimates are solutions
of the estimating equations (26). That is, in the notation of
Section IV,

(52)

In the following, we linearize these equations with respect to the
error terms due to finite sample size,

(53)

Under asymptotic conditions, which are defined formally in

Section IV, converges, in the mean square, to , and
the ML estimator converges, in probability, to (asymp-
totically, for non-Gaussian components, both converge in
probability). As for the rate of convergence, the entries of both

and are zero mean random variables with a standard
deviation proportional to . Hence, asymptotically, terms
which are proportional to or are (this nota-
tion is defined in Section I) and are considered as having the
same order of magnitude.
Expanding the right-hand term within the on the LHS of

(52),

(54)

where in the last transition we used . Note that
all the terms on the RHS of (54) are , that is, first-order

terms, since .
As for the left-hand term within the on the LHS of (52),

(55)

The first equality in (55) is due to , which follows
from (6). The second equality follows from (24). The third tran-

sition is due to the fact that and the ML estimates of

and converge to their mean with a standard deviation propor-
tional to . The last step follows again from (24) and then
(6). Multiplying (55) with (54),

(56)

where in the first transition we used
and in the second one,

(57)

Averaging (56) over all domains, (52) is linearized as

(58)

Using the property and the notation of
(29), (58) is rewritten as

(59)

We have thus proved the first equation in the pair (31). The
second equation is obtained by interchanging and .

APPENDIX D
CLOSED-FORM EXPRESSION FOR (38)

In this appendix we derive the expression (38) for the covari-
ance matrix of the gradients defined by (33). Since, by the
assumptions in Section III, these gradients have zero mean,

We shall now prove that

(60)

(61)

for any , which provide the desired result.
In a first step, we relate the covariance of the gradients to the

covariance of the empirical matrices. For any ,

where we have used the alternate form of (33),

where the last equality is due to (48c). Since is independent
of if (Section III-A), the double sum merges into a
single index , leaving only

(62)



In a second step, we work out the covariance matrix of the vec-
torized empirical matrices within (62) as follows. For ,

(63)

The first equality is an expansion of the definition of .
The second equality uses Property D.1 below. The third equality
is by independence of components and . The fourth equality
is based on the assumption of Section III-A that

.
Substituting (63) into (62) with ,

(64)

which establishes (60). In (64), the second equality is due to
(48a) and then (49b); the last step follows from (34). In order
to establish (61), we right-multiply (63) by the commutation
matrix , defined in Section IV-B, and use the equality

, which follows from
(35). This turns (63) into

(65)

Substituting (65) in (62) with ,

(66)

where in the second equality we applied the property [41, The-
orem 3.1] that for any two matrices and ,

(67)

followed by (48a) and (15). In the third equality of (66), we
applied (57). Finally,

(68)

where the second equality is due to (67), and the last step is by
(40). Substituting (68) in (66) concludes the proof of (61).
Property D.1: For any four vectors ,

(69)

Proof: Equation (69) follows from

(70)

The first equality of (70) is based on the property that for any
two vectors and , where
the second step is due to (48c). The second equality of (70) is
based on (48b) and the third on (48a).

APPENDIX E
FINAL FORM OF (41)

In this appendix we prove the second equality in (41). The
desired identity is

(71)

Proof: Denote and

. With these notations and the

invertibility of (which is assured if the identifiability
conditions in Section V hold), the orthogonality conditions

and , which are required
to fulfill Property E.1 below, hold, as can be readily verified.
The equality in (71) thus results from Property E.1.
Property E.1: Let and be two symmetric matrices so

that is invertible. Assume that and have orthogonal
range spaces. Then

(72)

Proof: The outline of the proof is as follows. Multiply both
sides of (72) with . Applying the four criteria of the
Moore–Penrose pseudoinverse (49) to the resulting four sum-
mands on the RHS, three zero out using the orthogonal range
spaces of and and the fact that and are or-
thogonal projection operators. The only nonzero term is due to
(49a).

APPENDIX F
EXPLICIT FORM FOR AND

In this appendix, we obtain an explicit expression for the
blocks of matrix , where is defined in (39). This cal-
culation is the final step in the derivation of and

, given in (42) and (43).



In order to decompose and into more basic terms, we
introduce the decomposition where, for

convenience, the invertible matrices are chosen so
that the matrices have orthonormal columns. are
thus the orthonormalized of (4). It then holds that ,

(73)

and , due to (24). With the notations

and

, we can rewrite

(74)

Then, if is indeed invertible (see discussion in Section V),

(75)

which follows from (24), (73), and the fact that is always a
full-rank matrix. Since and are block-diagonal matrices,
then in order to calculate the blocks of , all that remains is
to invert .
For the upper-left block of , a block-

matrix inversion formula [47] yields

(76)

Multiplying both sides by the upper-left blocks of and ,

(77)

which follows from (24), (73), and (75). Similar arguments yield
the expression

(78)

for the upper-right block of . Inserting the
neutral term at the ‘ ’ symbol in (78)
and then applying algebraic operations similarly to (77),

(79)

By exchanging with in (77) and (79), one obtains the two
lower blocks of . Substituting these results in (41) yields (42)
and (43).
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