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Independent component analysis (ICA) and blind source separation (BSS) deal with extracting a number of mutually independent elements from a set of observed linear mixtures. Motivated by various applications, this paper considers a more general and more flexible model: the sources can be partitioned into groups exhibiting dependence within a given group but independence between two different groups. We argue that this is tantamount to considering multidimensional components as opposed to the standard ICA case which is restricted to one-dimensional components. The core of the paper is devoted to the statistical analysis of the blind separation of multidimensional components based on second-order statistics, in a piecewise-stationary model. We develop the likelihood and the associated estimating equations for the Gaussian case. We obtain closed-form expressions for the Fisher information matrix and the Cramér-Rao bound of the de-mixing parameters, as well as the mean-square error (MSE) of the component estimates. The derived MSE is valid also for non-Gaussian data. Our analysis is verified through numerical experiments, and its performance is compared to classical ICA in various dependence scenarios, quantifying the gain in the accuracy of component recovery in presence of multidimensional components.

I. INTRODUCTION

I N their most basic setting, independent component analysis (ICA) and blind source separation (BSS) aim at extracting mutually independent elements from observed mixtures. The model is of observations of an vector , modeled as [START_REF] Cardoso | Multidimensional independent component analysis[END_REF] where is an full-rank matrix and is a vector of independent sources. A natural extension of practical interest is to assume that the sources can be partitioned into groups with the sources of different groups being statistically independent while the sources in the same group are not independent and cannot be made independent by any linear transform on . In the following, we use the term dependent sources to D. Lahat and H. Messer are with the School of Electrical Engineering, Tel Aviv University, 69978 Tel Aviv, Israel (e-mail: danal@eng.tau.ac.il; messer@eng.tau.ac.il).
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indicate such a source model. As we shall see shortly, the multiplicative model [START_REF] Cardoso | Multidimensional independent component analysis[END_REF] of dependent sources, which suffers from inherent indeterminacies, is equivalent to the additive model [START_REF] Cardoso | Multidimensional independent component analysis[END_REF] (2) of multidimensional components, in which these indeterminacies are avoided.

Multidimensional data may occur due to various complex relations within the dependent elements. The dimension of a dependent group may not always reflect the actual number of its underlying elements. As a result, in multidimensional models, there is not always a physically meaningful interpretation to separating the multidimensional components back into singledimensional elements. Various phenomena can yield data that is multidimensional in nature. For example, in the analysis of MEG stimuli [START_REF] Kohl | Non-independent BSS: A model for evoked MEG signals with controllable dependencies[END_REF], energies of evoked signals may become statistically dependent due to similar activation and termination times. In addition, a single isolated neural source is of little diagnostic value, and consequently the number of detected sources may be reduced through a clustering procedure, based on spatial topography [START_REF] Ossadtchi | Automated interictal spike detection and source localization in magnetoencephalography using independent components analysis and spatio-temporal clustering[END_REF]. In natural image analysis, subspaces originate from features which represent positions, orientations, spatial frequencies and phases [START_REF] Hyvärinen | Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces[END_REF]. In fetal ECG detection [START_REF] Cardoso | Multidimensional independent component analysis[END_REF], [START_REF] Lathauwer | Fetal electrocardiogram extraction by source subspace separation[END_REF], multidimensionality is explained by a certain 3D electric model of the heart, and may change during pregnancy. Finally, in the separation of astrophysical emissions, multidimensionality may reflect not only dependence between different emissions due to astrophysical processes [START_REF] Bedini | Separation of correlated astrophysical sources using multiple-lag data covariance matrices[END_REF], but also spatial nonstationarity, when observations are taken over a large enough patch of the sky [START_REF] Cardoso | Component separation with flexible models-Application to multichannel astrophysical observations[END_REF], [START_REF] Lahat | Multidimensional ICA and its performance analysis applied to CMB observations[END_REF].

The idea of solving the dependent sources/multidimensional components problem in terms of subspace separation through ICA was first demonstrated in [START_REF] Lathauwer | Fetal electrocardiogram extraction by source subspace separation[END_REF], on fetal ECG recordings. The perspective of multidimensional ICA (MICA), of vector-valued components whose representation is based on unambiguous projections on the sources' respective subspaces, was presented in [START_REF] Lathauwer | Fetal electrocardiogram extraction by source subspace separation[END_REF], and an elaborate geometric framework was suggested in [START_REF] Cardoso | Multidimensional independent component analysis[END_REF]. The notion of independent feature subspaces and independent subspace analysis (ISA) was introduced in [START_REF] Hyvärinen | Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces[END_REF] and [START_REF] Hyvärinen | Beyond independent components[END_REF]. In the ISA framework, independent and identically distributed (i.i.d.) non-Gaussian observations are separated into feature-invariant subspaces by a criterion which maximizes the independence between norms of projections on linear subspaces. ISA algorithms usually assume that the sources have a spherically symmetric distribution; examples are given in [START_REF] Hyvärinen | Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces[END_REF], [START_REF] Hyvärinen | FastISA: A fast fixed-point algorithm for independent subspace analysis[END_REF]- [START_REF] Shen | Generalised FastICA for independent subspace analysis[END_REF]. This can be obtained in practice by a preliminary whitening stage. Whitening simplifies the optimization by restricting the de-mixing matrix to be orthogonal; this results in a smaller number of variables to adjust. However, by assuming that the empirical covariance of the observations is the identity matrix, whitening ignores finite-data effects. Whitening errors which are introduced in this preliminary stage cannot be compensated for by the following rotation stage [START_REF] Cardoso | Blind signal separation: Statistical principles[END_REF]. Hence, such methods are sub-optimal with respect to methods which do not preprocess the data by whitening [START_REF] Cardoso | On the performance of orthogonal source separation algorithms[END_REF], [START_REF] Lathauwer | A prewhiteninginduced bound on the identification error in independent component analysis[END_REF]. An algorithm which solves ISA through joint block diagonalization (JBD) of cumulant matrices, where JBD is performed by joint diagonalization (JD) and permutation-recovery, with a pre-whitening stage, is described in [START_REF] Theis | Towards a general independent subspace analysis[END_REF]. An ISA algorithm without the whitening constraint is given, for example, in [START_REF] Choi | Relative gradient learning for independent subspace analysis[END_REF]. A non-parametric dependence measure, whose minimization is based on one-dimensional ICA as a step in separating multidimensional channels for non-Gaussian i.i.d. pre-whitened data, is found in [START_REF] Kirshner | ICA and ISA using Schweizer-Wolff measure of dependence[END_REF]. The above-mentioned algorithms require as an input the correct subspace dimensions. An algorithm which extends [START_REF] Hyvärinen | FastISA: A fast fixed-point algorithm for independent subspace analysis[END_REF] by automatically detecting the subspace dimensions and clustering the data is proposed in [START_REF] Gruber | Hierarchical extraction of independent subspaces of unknown dimensions[END_REF]. Conditions under which the two-step procedure of ICA and then clustering is sufficient for separation are discussed in [START_REF] Szabó | Undercomplete blind subspace deconvolution[END_REF]; this analysis is valid for i.i.d. pre-whitened data and specific distribution types.

In the above-mentioned works, the performance of the algorithms is examined numerically [START_REF] Cardoso | Multidimensional independent component analysis[END_REF], [START_REF] Hyvärinen | Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces[END_REF], [START_REF] Lathauwer | Fetal electrocardiogram extraction by source subspace separation[END_REF], [START_REF] Hyvärinen | Beyond independent components[END_REF], [START_REF] Kirshner | ICA and ISA using Schweizer-Wolff measure of dependence[END_REF], [START_REF] Gruber | Hierarchical extraction of independent subspaces of unknown dimensions[END_REF], or their convergence to the correct separation point is discussed theoretically [START_REF] Hyvärinen | FastISA: A fast fixed-point algorithm for independent subspace analysis[END_REF]- [START_REF] Shen | Generalised FastICA for independent subspace analysis[END_REF], [START_REF] Theis | Towards a general independent subspace analysis[END_REF], [START_REF] Choi | Relative gradient learning for independent subspace analysis[END_REF], [START_REF] Szabó | Undercomplete blind subspace deconvolution[END_REF]. However, to the best of our knowledge, no complete performance analysis, in the sense of closed-form expressions for an expected figure of merit or bound, has been conducted to any of these scenarios.

Cramér-Rao lower bounds (CRLB) on the estimation error of the mixing matrix and of the source parameters in ICA have already been discussed in the literature. Optimal performance and lower bounds were analyzed, for example, for the following scenarios: system identification for non-Gaussian sources [START_REF] Shalvi | Maximum likelihood and lower bounds in system identification with non-Gaussian inputs[END_REF]; second-order static-mixture noisy ICA [START_REF] Belouchrani | A blind source separation technique based on second-order statistics[END_REF]; noise-free static-mixture ICA for non-Gaussian sources [START_REF] Vigneron | Fisher information in source separation problems[END_REF]- [START_REF] Ollila | Compact Cramér-Rao bound expression for independent component analysis[END_REF]; stationary parametric Gaussian sources [START_REF] Doron | Cramér-Rao-induced bound for blind separation of stationary parametric Gaussian sources[END_REF] and non-stationary sources [START_REF] Cardoso | Separation of non-stationary sources: Algorithms and performance[END_REF]. A lower bound on source separation due to whitening has been derived in [START_REF] Cardoso | On the performance of orthogonal source separation algorithms[END_REF] and [START_REF] Lathauwer | A prewhiteninginduced bound on the identification error in independent component analysis[END_REF].

In this paper, we consider a second-order based method which extends the maximum likelihood (ML) treatment of [START_REF] Pham | Blind separation of instantaneous mixtures of non stationary sources[END_REF] and the performance analysis of [START_REF] Cardoso | Separation of non-stationary sources: Algorithms and performance[END_REF] and [START_REF] Cardoso | Separation of non stationary sources; achievable performance[END_REF] to the case of non-stationary Gaussian dependent sources/multidimensional components. We provide a complete small-error performance analysis, in the sense of closed-form expressions for the Fisher information matrix (FIM), CRLB and mean-square error (MSE). We do not discuss algorithms which achieve these measures; such algorithms can be found in [START_REF] Lahat | Joint block diagonalization algorithms for optimal separation of multidimensional components[END_REF]. As in [START_REF] Pham | Blind separation of instantaneous mixtures of non stationary sources[END_REF], there is no whitening constraint. Preliminary results can be found in [START_REF] Lahat | Optimal performance of second-order multidimensional ICA[END_REF].

It should be noted that the Gaussian non-stationary analysis, discussed in this paper, is also appropriate for stationary non-white processes. As demonstrated by [START_REF] Pham | Blind separation of mixtures of independent sources through a quasi-maximum likelihood approach[END_REF] and [START_REF] Cardoso | The three easy routes to independent component analysis; contrasts and geometry[END_REF], in full analogy to the time-domain procedure, second-order ICA can also be performed in the frequency-domain on non-white processes, due to the asymptotic properties of the Fourier coefficients. In this case, the index implies a frequency index. An application of the proposed performance analysis to the separation of astrophysical emissions, in the frequency domain, can be found in [START_REF] Lahat | Multidimensional ICA and its performance analysis applied to CMB observations[END_REF].

The structure of this paper is as follows. In Section II, we present the two points of view, of dependent sources versus mul-tidimensional components. In Section III, we describe our statistical model. We derive a contrast function, whose minimization is equivalent to the ML solution for Gaussian piecewise stationary data. We show that this minimization can be obtained by joint block diagonalization (JBD) of a set of sample covariance matrices. We then derive the estimating equations, whose component-wise form forms the basis for the detailed error analysis in Section IV. The small-error analysis in Section IV is done exclusively in terms of well-defined quantities, i.e., components and projections. From the Taylor expansion of the estimating equations, we calculate the error covariance of the ML estimates, and this result is propagated to yield the total MSE in component estimation. Section V deals with identifiability of the model. Namely, the required number of stationary intervals, as well as conditions on the source covariance matrices, to guarantee existence, uniqueness and identifiability of the model. Numerical results are presented in Section VI. Numerical simulations demonstrate that our CRLB is achievable when the model assumptions hold and that our MSE expression for component reconstruction holds also for non-Gaussian data, as expected from our theoretical analysis. Furthermore, the simulations show a significant gain of the multidimensional approach over the cruder approach based on one-dimensional separation following a clustering of the dependent sources, as suggested in [START_REF] Lahat | ICA of correlated sources mismodeled as uncorrelated: Performance analysis[END_REF].

The following notations and conventions are used throughout this paper. Bold lowercase letters denote vectors; regular lowercase letters denote scalars; bold uppercase letters denote matrices; regular uppercase letters denote functions, operators or constants. Transposition is denoted by ; trace is denoted by for any vector . for any stochastic vectors with .

denotes the Frobenius norm; denotes the Kronecker delta. The Kronecker product is denoted by .

stands for zero mean stochastic terms whose standard deviation is proportional to , or to higher powers thereof.

stands for deterministic terms which are bounded above, up to a constant factor, by .

II. DEPENDENT SOURCES VERSUS MULTIDIMENSIONAL COMPONENTS

The separation problem of interest can be stated by partitioning the source vector and matrix as

where , the th column block of , has dimension , vector has dimension and . Given the pattern and the observations , the problem of blind separation of dependent sources is that of finding matrices such that is full-rank and such that the corresponding source vectors are as independent as possible. This notion is given a definite meaning in Section III where we set up a simple statistical model which, via its likelihood function, yields a quantitative measure of independence. However, before we write down a likelihood function, it is necessary to discuss the indeterminacies inherent to the blind separation of dependent sources and to explain how these indeter-minacies lead to the alternate point of view of multidimensional ICA.

With the partition (3), the multiplicative, source-mixing model (1) can also be written as an additive model ( 2), where we define the th component as the vector

In a blind context, the component vector is better defined than the source vector . Indeed, for any invertible matrix , the pair and the pair contribute the same quantity to the observations. It is thus impossible to discriminate between the representation of a component by the pair and by the pair . Therefore, matrix can, at best, be blindly identified only up to right multiplication by an invertible matrix. This is the familiar scale indeterminacy of standard ICA, carried over to dimension , with an matrix factor instead of a simple scalar factor. Since matrix is determined only up to a right factor , only its column space, , can be blindly identified. It is thus useful to introduce the separating projectors: these are the oblique projection matrices onto along for all

. By definition, they satisfy , are unaffected if is changed into , and allow one to write (

The notation ( 5) is the geometric counterpart of ( 4). The set of unambiguous oblique projections is the matrix-free counterpart of the inverse matrix . For later reference we mention that if is partitioned into horizontal blocks, where the th block has dimension , then the th oblique projector is given by [START_REF] Bedini | Separation of correlated astrophysical sources using multiple-lag data covariance matrices[END_REF] We also define the orthogonal projection matrix onto , that is, [START_REF] Cardoso | Component separation with flexible models-Application to multichannel astrophysical observations[END_REF] denoting by the Moore-Penrose pseudoinverse (49) of . Obviously, projector is unaffected if is changed into . In summary, the source separation model based on a mixing matrix is recast as a component separation model [START_REF] Kohl | Non-independent BSS: A model for evoked MEG signals with controllable dependencies[END_REF], where the th component is restricted to an -dimensional subspace, represented by the uniquely defined orthogonal projector . The th component is recovered via (5) using the oblique projector .

As a final note in this section, we would like to emphasize that the component perspective goes beyond the mere avoidance of scale indeterminacy. The various examples of multidimensional data in Section I demonstrate that in a multidimensional setup, a "mixing matrix" and "dependent sources" may not always have a physical interpretation of their own.

III. MODEL, LIKELIHOOD AND CONTRAST FUNCTION

We derive a likelihood function for the separation of dependent sources by generalizing the Gaussian piecewise stationary model of Pham and Cardoso [START_REF] Pham | Blind separation of instantaneous mixtures of non stationary sources[END_REF]. We show, following the same guidelines as [START_REF] Pham | Blind separation of instantaneous mixtures of non stationary sources[END_REF], how this likelihood yields a contrast function for separating dependent sources, which is a joint block diagonalization criterion. We then establish the estimating equations for the mixing matrix , that is, the equations satisfied by its maximum likelihood value. Finally, we recast these equations in terms of the component model parameters, the oblique projections .

A. Piecewise Stationary Model

Let us consider a piecewise stationary model as follows. The observation interval is partitioned into domains , where domain contains samples, so that . We assume that is independent of if and that, for any has zero mean and covariance matrix . The linear model [START_REF] Cardoso | Multidimensional independent component analysis[END_REF] implies that [START_REF] Lahat | Multidimensional ICA and its performance analysis applied to CMB observations[END_REF] where is the covariance matrix of for . The empirical counterpart and natural estimate of is [START_REF] Hyvärinen | Beyond independent components[END_REF] The model of dependent sources, discussed in Section II, corresponds to the block-diagonal structure . . . [START_REF] Hyvärinen | FastISA: A fast fixed-point algorithm for independent subspace analysis[END_REF] where is the covariance matrix of for . The set is such that it cannot be further jointly block diagonalized into smaller blocks. Hence, is JBD-irreducible (this notion of irreducibility is analogous to that proposed by [START_REF] Theis | Towards a general independent subspace analysis[END_REF] and [START_REF] Gutch | Independent subspace analysis is unique, given irreducibility[END_REF]).

In the following, we use to denote a blockdiagonal matrix constructed from the set of matrices in brackets. Therefore, [START_REF] Hyvärinen | FastISA: A fast fixed-point algorithm for independent subspace analysis[END_REF] 

can be rewritten as

We shall also use the related notation which, given an matrix , returns the block-diagonal matrix with block pattern which has the same diagonal blocks as and has zeros in the off-diagonal blocks.

B. Likelihood

If is normally distributed, then the log-likelihood for the model just described is [START_REF] Shen | Block Jacobi-type methods for log-likelihood based linear independent subspace analysis[END_REF] as we now explain. The first equality comes from the assumption of independence for . The second equality follows from the Gaussian assumption and uses the notation . The third equality results from the piecewise stationary model that for and uses the property for any vector and matrix of appropriate dimensions.

Using the notation [START_REF] Shen | Generalised FastICA for independent subspace analysis[END_REF] for any two positive-definite matrices and , the log-likelihood [START_REF] Shen | Block Jacobi-type methods for log-likelihood based linear independent subspace analysis[END_REF] can be rewritten as [START_REF] Cardoso | Blind signal separation: Statistical principles[END_REF] where denotes the term which is irrelevant to the maximization of the likelihood with respect to its parameters, since it depends only on the data, not on the model. The second equality uses [START_REF] Lahat | Multidimensional ICA and its performance analysis applied to CMB observations[END_REF] and then the invariance of ( 12) under any invertible transform: for any two positive-definite matrices and for any invertible ,

The last step introduces the notation to denote a weighted average of any sequence indexed by with weights :

(15)

C. Contrast Function for a Mixture of Dependent Sources

We can now focus on the case of interest: a mixture of dependent sources. The contrast function is obtained by maximizing the likelihood with respect to the nuisance parameters for fixed . Following the derivation in Appendix B, the ML estimate of is and where we define the contrast function [START_REF] Comon | Independent component analysis[END_REF], [START_REF] Comon | Independent component analysis[END_REF] (

) 16 
and where, for brevity, the dependence of on the data via is not denoted explicitly. Note that ( 16) is the multidimensional analogue of its one-dimensional counterpart in [START_REF] Pham | Blind separation of instantaneous mixtures of non stationary sources[END_REF].

The scalar , defined in [START_REF] Shen | Generalised FastICA for independent subspace analysis[END_REF], is the Kullback-Leibler divergence between the distributions and [START_REF] Kullback | On information and sufficiency[END_REF], and thus is a measure of mismatch between two positive-definite matrices and . Therefore, in our piecewise stationary model, maximizing ( 13) is equivalent to minimizing the average mismatch between the sample covariance matrices and their expected counterparts. Since with equality if and only if is block diagonal with block pattern , then, for any positive-definite matrix , the divergence is a measure of the block-diagonality of . Therefore, minimizing can be understood as joint block diagonalization (JBD) of the set of covariance matrices by matrix (see also [START_REF] Bousbia-Salah | Blind separation of non stationary sources using joint block diagonalization[END_REF] and [START_REF] Pham | Blind separation of cyclostationary sources using joint block approximate diagonalization[END_REF]).

D. Estimating Equations in Terms of the Mixing Matrix

The next step is to solve for the mixing matrix . This is obtained by characterizing the stationary points of the log-likelihood [START_REF] Cardoso | Blind signal separation: Statistical principles[END_REF] and thus also of the contrast function [START_REF] Theis | Towards a general independent subspace analysis[END_REF]. For this purpose, we calculate the derivative of the likelihood function with respect to , for fixed (we omit the dependence of on the data, for brevity). The first-order variation of when is replaced by (where denotes the identity matrix) can always be expressed by the Taylor expansion [START_REF] Choi | Relative gradient learning for independent subspace analysis[END_REF] higher-order terms in for some matrix , called the relative gradient of with respect to . Similarly to the derivation for the one-dimensional case in [START_REF] Pham | Blind separation of instantaneous mixtures of non stationary sources[END_REF], one obtains that [START_REF] Kirshner | ICA and ISA using Schweizer-Wolff measure of dependence[END_REF] In order to obtain the ML estimate of , we equate [START_REF] Kirshner | ICA and ISA using Schweizer-Wolff measure of dependence[END_REF] to zero. Since [START_REF] Kirshner | ICA and ISA using Schweizer-Wolff measure of dependence[END_REF] depends on the nuisance parameters, we can now replace with its ML estimate, derived in Section III-C. This procedure yields the estimating equations [START_REF] Gruber | Hierarchical extraction of independent subspaces of unknown dimensions[END_REF] It can be shown that , the first-order variation of , derived similarly to [START_REF] Choi | Relative gradient learning for independent subspace analysis[END_REF], obeys Therefore, the solution of ( 19) is the ML estimate of as well as the stationary points of [START_REF] Theis | Towards a general independent subspace analysis[END_REF]. The estimating equations [START_REF] Gruber | Hierarchical extraction of independent subspaces of unknown dimensions[END_REF] read block-wise [START_REF] Szabó | Undercomplete blind subspace deconvolution[END_REF] where are understood as block indices. Using the horizontal blocks of matrix , ( 20) is rewritten as [START_REF] Shalvi | Maximum likelihood and lower bounds in system identification with non-Gaussian inputs[END_REF] Note that the th block of [START_REF] Gruber | Hierarchical extraction of independent subspaces of unknown dimensions[END_REF], that is, of (20), degenerates into the identity matrix: the diagonal blocks do not yield any constraints, reflecting the indeterminacy discussed in Section II.

E. Estimating Equations in Terms of the Projectors

The estimating equations [START_REF] Shalvi | Maximum likelihood and lower bounds in system identification with non-Gaussian inputs[END_REF] can also be expressed as conditions on the oblique projectors . To do so, we multiply [START_REF] Shalvi | Maximum likelihood and lower bounds in system identification with non-Gaussian inputs[END_REF] on the left by and on the right by . In the middle, we insert , to obtain [START_REF] Belouchrani | A blind source separation technique based on second-order statistics[END_REF] We split the expression inside the angular brackets into two factors which can be re-expressed as follows. The leftmost factor is [START_REF] Vigneron | Fisher information in source separation problems[END_REF] where the first equality uses the property that for any invertible matrix and for any rank-matrix ,

(it is immediate to verify that ( 24) fulfills all four criteria of the Moore-Penrose pseudoinverse (49)) and the second equality uses definition ( 6) of the projectors. The rightmost factor is [START_REF] Ollila | Compact Cramér-Rao bound expression for independent component analysis[END_REF] Substituting ( 23) and ( 25) in ( 22), the estimating equations ( 21) also read [START_REF] Doron | Cramér-Rao-induced bound for blind separation of stationary parametric Gaussian sources[END_REF] which is the desired form: the values of the oblique projectors for which the contrast function is stationary are the solutions of the estimating equations [START_REF] Doron | Cramér-Rao-induced bound for blind separation of stationary parametric Gaussian sources[END_REF]. Since (20) yields the ML estimates of , (26) yields the ML estimates of . The estimating equations [START_REF] Doron | Cramér-Rao-induced bound for blind separation of stationary parametric Gaussian sources[END_REF] will allow us to lead the error analysis from the components' point of view, as we shall see in Section IV.

IV. ERROR ANALYSIS

We turn to the error analysis of the estimates, obtained by minimizing the contrast function [START_REF] Theis | Towards a general independent subspace analysis[END_REF]. Our purpose is to derive a closed-form expression for the MSE in component estimation. In Section IV-A we define the error in component estimation. We express this error as a function of the error in the oblique projections and of the observations. The error in the oblique projections, which is due to all components, is decomposed into pairwise error terms. Following a first-order expansion of the estimating equations [START_REF] Doron | Cramér-Rao-induced bound for blind separation of stationary parametric Gaussian sources[END_REF], we obtain in Section IV-B an expression for the pairwise error terms, which depends on the model parameters and on the observations. In Section IV-C, we derive the covariance of the pairwise error terms and thus also of the error in the oblique projections. This derivation provides us with the FIM and CRLB for these estimated parameters, when the Gaussian model holds. Finally, in Section IV-D, based on the former results, we obtain a closed-form expression for the (normalized) MSE for component separation.

We consider an asymptotic analysis in the regime of small errors, in which the results are obtained from a first-order expansion of the estimating equations. In the following, we define asymptotic conditions as with fixed . The analysis is conducted under the assumption that the model of Section III-A holds.

In order to avoid ambiguities, for certain parameters, a " " is used to denote the 'true' model quantities, and a hat denotes the value which solves the estimating equations. For instance, denotes the true mixing matrix, while denotes the solution of [START_REF] Szabó | Undercomplete blind subspace deconvolution[END_REF], which is also the ML estimate if the Gaussian model holds.

A. Error Decomposition

A difficulty in error analysis for the multidimensional problem stems from the inability to characterize the estimation error of the mixing matrix, due to the severe indeterminacies it suffers from, as discussed in Section II. We thus begin by defining convenient error terms. In order to focus on well-defined quantities, we consider the errors in , the ML estimates of the oblique projectors: [START_REF] Cardoso | Separation of non-stationary sources: Algorithms and performance[END_REF] The estimated th component is thus so that, using , the error in the th component is decomposed as [START_REF] Pham | Blind separation of instantaneous mixtures of non stationary sources[END_REF] where we have defined error matrices [START_REF] Cardoso | Separation of non stationary sources; achievable performance[END_REF] The term in ( 28) is inserted since it arises naturally in the derivation of the first-order expansion of the estimating equations (Appendix C, (58)); recall that . The double-indexed term gives the linearized estimating equations their pairwise form, as will be seen shortly.

For , the term in ( 28) is called the thcontamination error, that is, the contamination due to the th component in the reconstruction of the th component. The term is called the th-reconstruction error, since this term represents a distortion of but not any contamination by the other components.

B. Influence Function

In order to evaluate the covariance of the estimation error, we first establish the first-order expansion of in terms of the finite-sample covariance matrices [START_REF] Lahat | Joint block diagonalization algorithms for optimal separation of multidimensional components[END_REF] The key assumption for blind separation is block-decorrelation: for . However, because of finite sample size, this does not hold for its empirical counterpart, i.e.,

. In this section, we develop the performance analysis in the regime of small errors, that is, we analyze the error terms at first-order in when asymptotic conditions hold. From [START_REF] Cardoso | Separation of non stationary sources; achievable performance[END_REF], decreases with at the same rate as . Assuming that asymptotic conditions hold, then (see Appendix C). The first-order expansion of the estimating equations ( 26) yields (see Appendix C) a set of pairs of equations: [START_REF] Lahat | Optimal performance of second-order multidimensional ICA[END_REF] with one such pair of equations for each pair of components. Equation [START_REF] Lahat | Optimal performance of second-order multidimensional ICA[END_REF] shows that asymptotically, for each pair of components, the projector error terms are related to the corresponding set of matrices , which represents the block-decorrelation error. Such a pairwise decoupling is customary in the asymptotic analysis of ICA algorithms, e.g., [START_REF] Pham | Blind separation of mixtures of independent sources through a quasi-maximum likelihood approach[END_REF] and [START_REF] Pham | Joint approximate diagonalization of positive definite hermitian matrices[END_REF].

In order to proceed, it is convenient to vectorize the matrices using the operator which stacks the columns of a matrix into a vector. The pair of (31) can thus be rewritten in matrix form as [START_REF] Pham | Blind separation of mixtures of independent sources through a quasi-maximum likelihood approach[END_REF] where [START_REF] Cardoso | The three easy routes to independent component analysis; contrasts and geometry[END_REF] and is a symmetric matrix with [START_REF] Lahat | ICA of correlated sources mismodeled as uncorrelated: Performance analysis[END_REF] In the above, we have introduced the commutation matrix [START_REF] Magnus | The commutation matrix: Some properties and applications[END_REF] such that [START_REF] Gutch | Independent subspace analysis is unique, given irreducibility[END_REF] for any matrix . Assuming that is invertible (see Section V), then [START_REF] Comon | Independent component analysis[END_REF] Equation [START_REF] Comon | Independent component analysis[END_REF] shows how the empirical correlation between components, that is, the fact that is non-zero in finite sample size, results in non-zero errors . Note the similarity between [START_REF] Comon | Independent component analysis[END_REF] and its one-dimensional, source-wise counterpart in [START_REF] Pham | Joint approximate diagonalization of positive definite hermitian matrices[END_REF] and [START_REF] Pham | Blind separation of instantaneous mixtures of non stationary sources[END_REF]. Equation [START_REF] Comon | Independent component analysis[END_REF] is the desired closed-form, first-order expression for the error terms in [START_REF] Pham | Blind separation of instantaneous mixtures of non stationary sources[END_REF].

C. Error Covariance for the Projectors

We are almost ready now to calculate the covariance matrix of , defined in [START_REF] Cardoso | Separation of non-stationary sources: Algorithms and performance[END_REF]. First, we notice that , where are given explicitly by [START_REF] Comon | Independent component analysis[END_REF] for . For one more step is required, because is not given by [START_REF] Comon | Independent component analysis[END_REF]. Since is given, we exploit it by constraining . Therefore, , which implies , hence

. We can thus rewrite . Vectorizing , its covariance matrix is given by [START_REF] Kullback | On information and sufficiency[END_REF] where the first equality is due to (48c) and the last equality is due to the lack of correlation between the components.

It remains now to calculate the four covariance matrices in [START_REF] Kullback | On information and sufficiency[END_REF]. These will be taken from the covariance of [START_REF] Comon | Independent component analysis[END_REF]. For this aim, we shall calculate the covariance matrix of the stochastic vector . We show in Appendix D that

Using [START_REF] Bousbia-Salah | Blind separation of non stationary sources using joint block diagonalization[END_REF], the covariance matrix of (36), for any , is given by [START_REF] Magnus | The commutation matrix: Some properties and applications[END_REF] where the last step is proved in Appendix E. Further manipulations on (41) (Appendix F) yield, for ,

as the cross-covariance matrix between and . All the covariance matrices on the RHS of (37) are now given in explicit form by [START_REF] Bellman | Introduction to Matrix Analysis[END_REF] and [START_REF] Lathauwer | Decompositions of a higher-order tensor in block terms. Part II: Definitions and uniqueness[END_REF], which concludes the closed-form derivation of . Under the Gaussian assumption, the results in this section have the following interpretation. Since is the first-order expansion of the relative gradient [START_REF] Doron | Cramér-Rao-induced bound for blind separation of stationary parametric Gaussian sources[END_REF] of the log-likelihood [START_REF] Shen | Block Jacobi-type methods for log-likelihood based linear independent subspace analysis[END_REF], then [START_REF] Pham | Blind separation of mixtures of independent sources through a quasi-maximum likelihood approach[END_REF] with [START_REF] Bousbia-Salah | Blind separation of non stationary sources using joint block diagonalization[END_REF] imply that is the FIM for the pair , whose estimation error is given by (see ( 29)). In [START_REF] Magnus | The commutation matrix: Some properties and applications[END_REF], we obtain that the covariance matrix of the estimation errors is (approximately) equal to the pseudoinverse of the FIM. Therefore, [START_REF] Magnus | The commutation matrix: Some properties and applications[END_REF] is the asymptotically achievable CRLB on the estimation of the pair , and ( 42) is the CRLB for alone. Since we have shown that [START_REF] Bellman | Introduction to Matrix Analysis[END_REF] is the CRLB for , and is a linear function thereof (up to terms), [START_REF] Kullback | On information and sufficiency[END_REF] is the CRLB for .

D. Mean Square Error

The final step in our analysis is to propagate expression [START_REF] Kullback | On information and sufficiency[END_REF] for the covariance matrix of the oblique projection matrices into an expression for the component estimation error. Let us define the estimation error of a given component by a normalized MSE: [START_REF] Tong | Indeterminacy and identifiability of blind identification[END_REF] where the normalization is by the average power of the th component, [START_REF] Gutch | Second order subspace analysis and simple decompositions[END_REF] and where the last step uses and (9). Using ( 28), ( 44) can now be rewritten as [START_REF] Graham | Kronecker Products and Matrix Calculus With Applications, ser. Mathematics and its Applications[END_REF] where the second equality is analogous to that in [START_REF] Gutch | Second order subspace analysis and simple decompositions[END_REF], and the last equality uses (9) and then Property A.1 in Appendix A. Now, in order to obtain the expectation of ( 46), we employ the reasonable assumption, that , and thus , are statistically independent of the total power of the observations, . This follows from the fact that reliable JBD cannot be obtained with less than two matrices, see Section V. Hence, we can write [START_REF] Petersen | The matrix cookbook[END_REF] where is given in [START_REF] Kullback | On information and sufficiency[END_REF], with [START_REF] Bellman | Introduction to Matrix Analysis[END_REF] and [START_REF] Lathauwer | Decompositions of a higher-order tensor in block terms. Part II: Definitions and uniqueness[END_REF]. Note that due to (48d) and the statistical independence between any two different components, only the first and fourth summands on the RHS of (37) contribute to [START_REF] Petersen | The matrix cookbook[END_REF]. We have thus obtained a closed-form expression for the MSE, which can be fully expressed by the model parameters and the weights , up to terms. In the Gaussian case, this is also the minimal MSE (MMSE).

It should be noted that all the derivations in this Section IV and in the related appendices do not rely neither on Gaussian distribution nor on statistics of order larger than 2. Therefore, ( 42), ( 43), ( 37) and ( 47) hold also for non-Gaussian observations. That is, they still reflect the error covariance and MSE if we apply [START_REF] Theis | Towards a general independent subspace analysis[END_REF] for their separation; however, the CRLB, FIM and MMSE interpretation of the derived expressions no longer applies.

V. IDENTIFIABILITY

In this section, we discuss conditions under which blind identification of the component subspaces is possible.

A. Degrees of Freedom

Let us compare the number of degrees of freedom in the model with the number of constraints in the data. Since we focus on second-order methods, the data are represented only by their sample covariance matrices. These are symmetric matrices so that our model should try to fit scalar numbers. The model is adjusted by varying the mixing matrix and the source covariance matrices. However, there is some redundancy between these matrices, because of the factorizations discussed in Section II: each submatrix has degrees of freedom, where of them can be factored into the corresponding source covariance matrices. This leaves effective degrees of freedom in the mixing matrix , and degrees of freedom in each . Hence, the model has effective free scalar parameters. It turns out that Hence, as soon as , we have , that is, there are more (or, at least, as many) scalar statistics as free parameters in the model.

However, since any two positive-definite matrices can be exactly jointly diagonalized [START_REF] Bellman | Introduction to Matrix Analysis[END_REF]Theorem 6], the JBD-irreducibility requirement of Section III-A will be violated if we let for multidimensional data. The latter assumption implies that is a necessary condition for identifiability in the presence of multidimensional components. Otherwise, one can suffice with .

B. Identifiability and Uniqueness

The previous argument makes it plausible that for randomly chosen source covariance matrices, the component subspaces can be identified blindly. As shown in [START_REF] Lathauwer | Decompositions of a higher-order tensor in block terms. Part II: Definitions and uniqueness[END_REF], existence and uniqueness of JBD, up to trivial indeterminacies (see Section II) and for is guaranteed with probability one when the entries of the source covariance matrices are drawn from a continuous probability density function. It thus remains to specify when this uniqueness does not hold. For one-dimensional ICA, it has been shown by [START_REF] Tong | Indeterminacy and identifiability of blind identification[END_REF] that non-identifiability occurs when the covariances of the different sources, as a function of the domain index, are proportional. Recently, [START_REF] Gutch | Second order subspace analysis and simple decompositions[END_REF] have developed analogous conditions for the multidimensional case, in terms of the source covariance matrices . We thus assume that all the required conditions for uniqueness and identifiability, as given by [START_REF] Lathauwer | Decompositions of a higher-order tensor in block terms. Part II: Definitions and uniqueness[END_REF] and [START_REF] Gutch | Second order subspace analysis and simple decompositions[END_REF], hold. We postulate that these conditions suffice for to be invertible, as the derivation of the singular points of is beyond the scope of this paper.

VI. NUMERICAL RESULTS

In this section, we validate experimentally the performance analysis of Section IV. Two algorithms which minimize [START_REF] Theis | Towards a general independent subspace analysis[END_REF], and thus solve [START_REF] Pham | Blind separation of mixtures of independent sources through a quasi-maximum likelihood approach[END_REF], are suggested in [START_REF] Lahat | Joint block diagonalization algorithms for optimal separation of multidimensional components[END_REF]. Both converge to the same separation point. For the following simulations we preferred the quasi-Newton realization, due to its faster convergence rate.

In the following simulation, we construct the data so that the analysis requirements of Section IV hold, including small-error regime. Therefore, the theoretical prediction of the MSE is expected to be an accurate prediction of the measured error. We set adjacent domains with samples for a total of samples. In each experiment, the matrices are drawn as , where is an upper triangular matrix with independent entries uniformly distributed on . The underlying sources are created by left-multiplying the Cholesky factorization of with statistically independent, zero mean, unit variance numbers. These numbers are drawn from various distributions, in order to validate our claim that the second-order analysis holds not only for Gaussian sources.

As explained in Section II, there is no scale indeterminacy to resolve. Since the JBD algorithms [START_REF] Lahat | Joint block diagonalization algorithms for optimal separation of multidimensional components[END_REF] do not guarantee global convergence, the following steps were taken in order to avoid permutation errors. We chose to initialize the JBD algorithm [START_REF] Lahat | Joint block diagonalization algorithms for optimal separation of multidimensional components[END_REF] with . In this case, permutation errors are avoided by choosing mixing matrices which are strictly diagonally-dominant. In the following simulations, and are i.i.d. Such values allow for sufficient variability of the mixing matrix to test our small-error analysis, while maintaining global convergence. Cases in which an algorithm does converge to an undesired local minimum are due to permutation errors. These are easily detected, since they result in a significantly larger MSE. Therefore, as a final safety measure, we verified that no such large errors appeared in our results.

Table I compares the empirical with the analytical MSE for several scenarios with varying component dimensions and distributions. The second column states the arbitrary index given to each component. The third column denotes the dimension of the th component in the scenario. In each scenario, different and are drawn. The fourth column gives the analytical MSE for each component [START_REF] Petersen | The matrix cookbook[END_REF], which is calculated using the correct model parameters. Each scenario is evaluated using 5000 Monte Carlo trials. For each scenario, two data types were tested. In columns 5-8, Gaussian, zero mean, unit-variance numbers are used to create the underlying sources. In columns 10-13, either uniform, Laplacian, or Gaussian mixture (peaks centered at ) zero-mean, unit-variance numbers, denoted U, L, and GM, respectively, are used to create the underlying sources. Note that left-multiplication of the non-Gaussian numbers with the Cholesky factorization of changes their distribution; however, it is still non-Gaussian. The non-Gaussian distribution, used to generate the data for each scenario, is given in column 9.

The fifth and tenth columns give the averaged empirical MSE for each component [START_REF] Tong | Indeterminacy and identifiability of blind identification[END_REF]. Columns 6 and 11 give the ratio of MSE for component separation: simulated versus analytical. Columns 7-8 and 12-13 compare the averaged empirical MSE using our JBD criterion with the averaged empirical MSE obtained from one-dimensional modeling (JD) and then grouping the separated elements into the multidimensional components, according to the known partition . These values are denoted in Table I as . We point out that the conditions derived in [START_REF] Szabó | Undercomplete blind subspace deconvolution[END_REF] for the global optimum to be achieved by properly grouping the ICA elements refer to a different separation criterion and are thus inapplicable here.

The last row of Table I summarizes the results of each column. First, note that all the (normalized) MSE values are much smaller than 1, illustrating the quality of the component separation. Second, note that all values in column 6 and 11 are close to 1, showing that our analysis predicts correctly the achievable separation accuracy. The good match between predicted and empirical MSE demonstrates that indeed only second-order statistics are required for our theoretical analysis, and that for Gaussian data, the CRLB is indeed achievable. As expected [START_REF] Lahat | ICA of correlated sources mismodeled as uncorrelated: Performance analysis[END_REF], there is a significant gain (columns 8 and 13) due to using the correct model, as proposed in this paper. An important result is that in scenarios 2 and 3, which include one-dimensional components along with higher-dimensional ones, the gain for the one-dimensional components is , as well. Obviously, when the sources are independent, as in scenario 5, there is no difference between JD and JBD, hence we put "1" in this cell.

VII. CONCLUSION

In this paper, we presented the concept of BSS of multidimensional components as a new perspective on the dependent sources model. Based on a piecewise stationary model, we derived an ML-based criterion [START_REF] Theis | Towards a general independent subspace analysis[END_REF] which singles out the multidimensional, unambiguous components from their sum. This criterion can be interpreted as the JBD of a set of covariance matrices. Error analysis of this criterion provided us with a closed-form expression of the covariance of the oblique projections, which are the unambiguous counterparts of the mixing matrix in the component representation. Our error analysis reveals that for Gaussian data, our separation criterion achieves, up to higher-order terms, the CRLB, and is thus optimal in the MSE sense (MMSE). We then derived a closed-form expression for the MSE of the component estimates, in terms of the covariance matrices of the components. This expression is valid, though no longer optimal, also for non-Gaussian data, when the other model assumptions hold. Our derivations were verified in numerical simulations. The performance of JBD was compared with that of classical one-dimensional joint diagonalization and our treatment of multidimensional components was shown to yield a significant gain in their separation.

APPENDIX A SOME ALGEBRAIC PROPERTIES

For ease of reference, we list some useful algebraic properties. Properties which are not proved below can be found in [START_REF] Magnus | The commutation matrix: Some properties and applications[END_REF], [START_REF] Graham | Kronecker Products and Matrix Calculus With Applications, ser. Mathematics and its Applications[END_REF], and [START_REF] Petersen | The matrix cookbook[END_REF].

For any matrices (with appropriate dimensions), where the first equality uses (48d) and then (48e). In the second equality, , followed by (48c). In the third equality, we simply add the trace notation. The desired result follows from (48d).

  

TABLE I PERFORMANCE

 I OF SECOND-ORDER MULTIDIMENSIONAL ICA: ANALYTICAL VERSUS EMPIRICAL NORMALIZED MSE, AVERAGED OVER 5000 MONTE-CARLO TRIALS. EMPIRICAL RESULTS: JBD ALGORITHM WITH CORRECT VERSUS . EACH SCENARIO, THAT IS, DIFFERENT , IS TESTED ONCE WITH GAUSSIAN AND ONCE WITH NON-GAUSSIAN DATA. THE LAST ROW OF THE

  TABLE SUMMARIZES THE COLUMNS
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DERIVATION OF THE CONTRAST FUNCTION

This appendix details the steps to obtain the contrast function [START_REF] Theis | Towards a general independent subspace analysis[END_REF], by maximizing the log-likelihood [START_REF] Cardoso | Blind signal separation: Statistical principles[END_REF] with respect to . This maximization can be obtained using Property B.1 below, which implies that (50) Therefore, for any domain due to (50), since is block-diagonal by definition. Since the samples are statistically independent, the log-likelihood [START_REF] Cardoso | Blind signal separation: Statistical principles[END_REF] can be maximized by optimizing each domain separately, which concludes the derivation.

Property B.1 (Closest Block Diagonal Matrix): Given pattern , the best, in the Kullback-Leibler divergence sense, block-diagonal approximation to a positive-definite matrix , is :

from which (50) follows.

Proof: For a given pattern , let and be any two positive-definite matrices. Then, the Kullback-Leibler divergence between and can be decomposed into (51)

The proof of (51) is straightforward using the definition (12) of the Kullback-Leibler divergence. In (51), is independent of . Setting zeroes (and minimizes, since

) the rightmost term of (51).

APPENDIX C FIRST-ORDER EXPANSION OF THE ESTIMATING EQUATIONS

In this appendix, we show that the first-order expansion of the estimating equations ( 26) leads to the linear relation [START_REF] Lahat | Optimal performance of second-order multidimensional ICA[END_REF] between the projection error terms and the sample error terms . Let us begin by restating that the estimates are solutions of the estimating equations [START_REF] Doron | Cramér-Rao-induced bound for blind separation of stationary parametric Gaussian sources[END_REF]. That is, in the notation of Section IV, (52)

In the following, we linearize these equations with respect to the error terms due to finite sample size, (53) Under asymptotic conditions, which are defined formally in Section IV, converges, in the mean square, to , and the ML estimator converges, in probability, to (asymptotically, for non-Gaussian components, both converge in probability). As for the rate of convergence, the entries of both and are zero mean random variables with a standard deviation proportional to . Hence, asymptotically, terms which are proportional to or are (this notation is defined in Section I) and are considered as having the same order of magnitude.

Expanding the right-hand term within the on the LHS of (52), (54) where in the last transition we used . Note that all the terms on the RHS of (54) are , that is, first-order terms, since . As for the left-hand term within the on the LHS of ( 52),

The first equality in (55) is due to , which follows from [START_REF] Bedini | Separation of correlated astrophysical sources using multiple-lag data covariance matrices[END_REF]. The second equality follows from [START_REF] Tichavský | Performance analysis of the FastICA algorithm and Cramér-Rao bounds for linear independent component analysis[END_REF]. The third transition is due to the fact that and the ML estimates of and converge to their mean with a standard deviation proportional to . The last step follows again from [START_REF] Tichavský | Performance analysis of the FastICA algorithm and Cramér-Rao bounds for linear independent component analysis[END_REF] and then [START_REF] Bedini | Separation of correlated astrophysical sources using multiple-lag data covariance matrices[END_REF]. Multiplying (55) with (54), (56) where in the first transition we used and in the second one, (

Averaging (56) over all domains, (52) is linearized as

Using the property and the notation of ( 29), ( 58) is rewritten as

We have thus proved the first equation in the pair [START_REF] Lahat | Optimal performance of second-order multidimensional ICA[END_REF]. The second equation is obtained by interchanging and . [START_REF] Bousbia-Salah | Blind separation of non stationary sources using joint block diagonalization[END_REF] In this appendix we derive the expression [START_REF] Bousbia-Salah | Blind separation of non stationary sources using joint block diagonalization[END_REF] for the covariance matrix of the gradients defined by [START_REF] Cardoso | The three easy routes to independent component analysis; contrasts and geometry[END_REF]. Since, by the assumptions in Section III, these gradients have zero mean,

APPENDIX D CLOSED-FORM EXPRESSION FOR

We shall now prove that (60) (61) for any , which provide the desired result. In a first step, we relate the covariance of the gradients to the covariance of the empirical matrices. For any , where we have used the alternate form of [START_REF] Cardoso | The three easy routes to independent component analysis; contrasts and geometry[END_REF],

where the last equality is due to (48c). Since is independent of if (Section III-A), the double sum merges into a single index , leaving only (62)

In a second step, we work out the covariance matrix of the vectorized empirical matrices within (62) as follows. For ,

The first equality is an expansion of the definition of . The second equality uses Property D.1 below. The third equality is by independence of components and . The fourth equality is based on the assumption of Section III-A that . Substituting (63) into (62) with ,

which establishes (60). In (64), the second equality is due to (48a) and then (49b); the last step follows from [START_REF] Lahat | ICA of correlated sources mismodeled as uncorrelated: Performance analysis[END_REF]. In order to establish (61), we right-multiply (63) by the commutation matrix , defined in Section IV-B, and use the equality , which follows from [START_REF] Gutch | Independent subspace analysis is unique, given irreducibility[END_REF]. This turns (63) into ( 65)

where in the second equality we applied the property [41, Theorem 3.1] that for any two matrices and , (67

followed by (48a) and ( 15). In the third equality of (66), we applied (57). Finally,

where the second equality is due to (67), and the last step is by [START_REF] Pham | Joint approximate diagonalization of positive definite hermitian matrices[END_REF]. Substituting (68) in (66) concludes the proof of (61). Property D.1: For any four vectors , (69)

The first equality of ( 70) is based on the property that for any two vectors and , where the second step is due to (48c). The second equality of (70) is based on (48b) and the third on (48a). [START_REF] Magnus | The commutation matrix: Some properties and applications[END_REF] In this appendix we prove the second equality in [START_REF] Magnus | The commutation matrix: Some properties and applications[END_REF]. The desired identity is (71) Proof: Denote and . With these notations and the invertibility of (which is assured if the identifiability conditions in Section V hold), the orthogonality conditions and , which are required to fulfill Property E.1 below, hold, as can be readily verified. The equality in (71) thus results from Property E.1.

APPENDIX E FINAL FORM OF

Property E.1: Let and be two symmetric matrices so that is invertible. Assume that and have orthogonal range spaces. Then (72) Proof: The outline of the proof is as follows. Multiply both sides of (72) with . Applying the four criteria of the Moore-Penrose pseudoinverse (49) to the resulting four summands on the RHS, three zero out using the orthogonal range spaces of and and the fact that and are orthogonal projection operators. The only nonzero term is due to (49a).

APPENDIX F EXPLICIT FORM FOR

AND

In this appendix, we obtain an explicit expression for the blocks of matrix , where is defined in [START_REF] Pham | Blind separation of cyclostationary sources using joint block approximate diagonalization[END_REF]. This calculation is the final step in the derivation of and , given in ( 42) and [START_REF] Lathauwer | Decompositions of a higher-order tensor in block terms. Part II: Definitions and uniqueness[END_REF].

In order to decompose and into more basic terms, we introduce the decomposition where, for convenience, the invertible matrices are chosen so that the matrices have orthonormal columns. are thus the orthonormalized of (4). It then holds that ,

and , due to [START_REF] Tichavský | Performance analysis of the FastICA algorithm and Cramér-Rao bounds for linear independent component analysis[END_REF]. With the notations and , we can rewrite

which follows from ( 24), (73), and the fact that is always a full-rank matrix. Since and are block-diagonal matrices, then in order to calculate the blocks of , all that remains is to invert . For the upper-left block of , a blockmatrix inversion formula [START_REF] Petersen | The matrix cookbook[END_REF] . Substituting these results in (41) yields ( 42) and [START_REF] Lathauwer | Decompositions of a higher-order tensor in block terms. Part II: Definitions and uniqueness[END_REF].