
HAL Id: hal-02286412
https://telecom-paris.hal.science/hal-02286412v1

Submitted on 16 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Controlling self-organising software applications with
archetypes

Bassem Debbabi, Ada Diaconescu, Philippe Lalanda

To cite this version:
Bassem Debbabi, Ada Diaconescu, Philippe Lalanda. Controlling self-organising software applications
with archetypes. IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Sep
2012, Lyon, France. �10.1109/SASO.2012.21�. �hal-02286412�

https://telecom-paris.hal.science/hal-02286412v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Controlling self-organising software applications with archetypes

Bassem Debbabi

LIG laboratory, University of Grenoble

Grenoble, France

Email: name.surname@imag.fr

Ada Diaconescu*

CNRS LTCI, Telecom ParisTech

Paris, France

Email: name.surname@telecom-paristech.fr

Philippe Lalanda

LIG laboratory, University of Grenoble

Grenoble, France

Email: name.surname@imag.fr

Abstract—Self-organisation is a promising solution for build-
ing complicated, large-scale software systems that must meet
stringent adaptability and survivability requirements. At the
same time, controlling self-organising software to ensure global
system properties and functions is a difficult problem. This
paper proposes a solution that uses architectural templates,
or archetypes, replicated across a set of identical agents, and
interpreted at runtime to control the agents’ self-organising be-
haviour and results. The solution ensures, by construction, that
any resulting software system meets a set of predefined goals,
or constraints, while maintaining many of the self-organisation
related advantages. A framework prototype was implemented
and tested to show the viability of the proposed approach, in
the context of a distributed data-mediation application.

Keywords-self-organisation; self-growing software; architec-
tural templates; autonomic lifecycle management.

I. INTRODUCTION

Modern software systems seem to face two antagonis-

tic requirements. To remain useful, they must constantly

provide a predefined set of business functions and Quality

of Service (QoS) properties. To manage their large-scales

and adapt to ever changing conditions they must rely on

decentralised processes that continuously reassemble their

contents. Allowing a system to self-organise its internal

composition during execution, while not impending on its

core functionalities and properties, is a difficult task, at best.

This paper presents an approach - called Cube1 - that aims

to simultaneously address these antagonistic requirements.

The main idea relies on the use of a predefined architectural

template, or archetype, which constrains the self-organising

behaviour of a set of identical agents in order to control

their produced results. In this solution, essential system goals

are explicitly and formally specified in the archetype, which

is then copied and distributed to all agents. Each agent is

capable of reading, interpreting and expressing any part of

the archetype, during runtime. This means that an agent

is able to create and manage a software application part

that conforms to the constraints defined in a corresponding

archetype part. Creating an application part implies deploy-

ing, instantiating, configuring and interconnecting software

components of various types while meeting the constraints

* This work has been funded by MINALOGIC’s MEDICAL project.
1Cube project: http://cube.imag.fr

defined in its archetype part. Each agent determines which

archetype part to express depending on the application parts

created by other agents. The final objective is to enable

agents to self-organise so as to individually express different

archetype parts and to interconnect the resulting application

parts in order to collaboratively create a software application

that matches the overall archetype. While all resulting ap-

plications match the archetype, each application may feature

its own context-dependent specificities (e.g. concrete compo-

nent implementations, number of instances and deployment

platforms). This approach can be employed to autonomously

manage the lifecycle of large-scale distributed applications,

ensuring both their instantiation and subsequent adaptations.

The proposed solution raises three main types of diffi-

culties. First, decentralised agent processes must be able to

partition the archetype into complementary parts that cover

the entire archetype. Second, agents must assign archetype

parts among themselves so that each part, if it must be

unique, is expressed by a single agent. Third, archetype

constraints that span several archetype parts must be met

via collaborations among the subset of agents involved

in expressing those archetype parts. Several solutions are

possible to address these difficulties - e.g., [1] [2] [3].

In the solution presented here, one agent is assigned

to each execution platform in the system (Figure 1). The

first two difficulties are simultaneously addressed as agents

dynamically divide the archetype into parts. Each agent

expresses a maximum of archetype components, starting

from an externally-designated point and until local resolution

capacities are reached. It then forwards the process to neigh-

bouring agents, designating their archetype starting points.

An agent’s assigned archetype part is the part it manages

to express. The process is kicked-off at system start-up

and whenever the managed application changes. To address

the third problem, coordination procedures are mediated via

hierarchical, dynamically-designated leader agents, which

control access to properties that must hold within a certain

application region, or Scope (section II). This solution

prevents multiple agents from simultaneously expressing

the same archetype component, when the archetype forbids

component replication. In case the number of agents to

coordinate for ensuring non-local properties becomes ex-

tremely large, the hierarchical solution can be replaced with

1



CACube
Agents

Managed 
Distributed
Application

Scopes

Archetype

CACACACA

Figure 1. Cube agents managing distributed application

a completely decentralised algorithm (e.g. [4] or [5]).

Our previous work on this topic focused on highlighting

the motivation and core principles of the Cube approach [1];

identifying archetype partitioning and agent assignment op-

tions, and exploring mutual agent creation and decentralised

coordination [2]. An analogy between the proposed solution

and morphogenesis - the biological organism development

process - is briefly presented in [3]. These preliminary

works allowed us to identify multiple strategic choices for

implementing different Cube application parts. Yet, these

parts proved difficult to alter or extend individually in order

to create alternative variants for various scenarios.

To surpass this limitation, this paper proposes a modu-

lar, adaptable and extensible Cube agent architecture and

framework. Choices made in the presented framework can

be replaced with alternative approaches without disturb-

ing the remaining agent functions. They currently include

a hierarchical approach for Scope formation (previously

defined dynamically based on event propagation distances

[2]); an assignment policy associating one agent to each

machine (previously assigning one agent to each component

instance [2]); and a hybrid distributed coordination strategy

(previously decentralised but confined to a single platform).

In addition, this paper identifies necessary archetype

meta-types and defines a formal extensible archetype lan-

guage. The language defines a core set of elements and

supports various domain-specific extensions. Similarly, the

presented framework provides a core set of functionalities

and supports various extensions via well-defined plug-ins.

A framework implementation was developed and evaluated

for autonomously creating and managing a data-mediation

application for home resource monitoring. Experimental

results indicate the viability of the proposed approach and

open several directions for future research.

II. ARCHETYPE-CONTROLLED SELF-ORGANISATION

An archetype defines a system’s architectural template,

represented as a directed acyclic graph (DAG), with man-

aged element Types as nodes (e.g. components or execution

platforms) and Constraints between them as arcs (e.g. com-

ponent interconnections or deployment preferences) (subsec-

tion IV-B). All agents receive an archetype copy. Agents

are initially identical and can read, interpret and express

any archetype part in order to produce a corresponding

application part. At runtime, each agent differentiates and

only focuses on expressing one archetype part. An agent’s

archetype expression starts from a pre-existing application

component instance, created via an internal or external

process (section IV-C). The agent first matches the compo-

nent to existing archetype statement(s). The archetype point

where the component is determined to fit represents the

agent’s starting point for archetype expression. Archetype

expression basically involves finding or creating component

instances of types defined in the archetype, and placing and

connecting them as indicated in the archetype constraints.

The agent progressively resolves interconnected constraints

and generates a growing application part, until it reaches a

constraint that it cannot resolve locally.

To forward the process, the agent must connect to agents

that are specialised in expressing archetype elements that

are bordering its own archetype part. If such specialised

agents are already available, the agent must find and connect

to them. It must then attempt to merge the application

part it produced with these agents’ respective application

parts, by connecting component instances on the border of

its part to component instances managed by neighbouring

agents, following archetype constraints. If such agents do

not yet exist, as is the case when the application is initially

created, the agent must co-opt one or several non-specialised

agents and point them to the archetype starting points that

correspond to the researched elements. In either case, the

newly co-opted agents continue the process in parallel,

each one from its designated archetype position and until

reaching its local limits, hence progressively defining and

expressing additional archetype parts. The process stops

when the entire archetype is covered and the corresponding

application fully grown. Partial runtime failures trigger the

agents that border missing application parts to re-organise,

as in the initial procedure, filling-in detected gap(s), and

regenerating a compliant solution (not yet implemented).

Agent synchronisation and coordination problems must be

addressed to avoid overlapping archetype parts from being

simultaneously assigned to multiple agents. Nonetheless,

duplicated archetype parts only represent a problem when

the repeated expression of such parts infringes on archetype

constraints. For example, a constraint can impose that a

single component instance of a certain type exists within

a network domain. In this case, if an archetype part defining

that component type is expressed more than once within that

domain, the component will be instantiated several times

and infringe the constraint. This problem is equivalent to

the previously identified difficulty - ensuring a property

that spans multiple archetype parts. To solve this difficulty

the presented solution uses a hierarchical control design. It

introduces a new archetype element - the Scope - represent-

ing an application deployment area within which a desired

property must hold. For example, a Scope can represent an

2



administrative network domain, a geographical location, or

a set of platforms sharing certain characteristics. A unique,

property-specific Scope controller (or Leader) is elected

among agents within each Scope. When having to resolve a

non-local constraint within a Scope, agents must contact the

Scope Leader to ensure the synchronisation and coordination

of their parallel actions (e.g. the Leader indicates whether

an instance of a certain type already exists).

Before the agent self-organisation process starts, an ini-

tialisation phase is executed to: assign each available system

platform to one or several of the archetype-defined Scopes;

to instantiate a Top Scope Leader at a location designated

in the archetype; and, to designate one Scope Leader per

Scope and register it with the Top Scope Leader.

III. DATA-MEDIATION SYSTEM EXAMPLE

As an application example, we consider the autonomic

lifecycle management of a distributed data-mediation sys-

tem for monitoring the consumption of home resources,

including electricity, gas and water. Generally, the purpose

of data-mediation applications is to collect data from several

sources, then transport and process the data so that it can be

consumed by several sinks. Their architecture takes the form

of a directed acyclic graph (DAG), where nodes are data-

mediator components - or Mediators - (receiving, processing

and forwarding data) and arcs are connections between Me-

diators (transmitting data). The use case considers multiple

data sources representing resource monitoring probes and

one sink representing a global cost calculator for consumed

resources. The data-mediation application consists of a num-

ber of interconnected Mediators, each one processing data

from sources or other Mediators to calculate consumption

costs at various granularity levels, including home, city and

country [2]. Cube’s role is to create and maintain a data-

mediation application that meets the architectural constraints

specified in the designer’s archetype. Experiments concen-

trate on the initial creation of the data-mediation application.

While the archetype of this sample system seems rela-

tively simple (subsection V-A), actually managing the life-

cycle of full-scale running applications conforming with

archetype constraints can become highly difficult, risky and

costly. Considering that millions of houses in a country may

join the system, the number of mediators to be deployed

on gateways and servers can similarly reach the order of

millions. Moreover, whenever a house joins or leaves the

system, corresponding data-mediation branches have to be

set in place or removed from the overall system. As a simple

example, consider that a new gas probe (GP ) is added to one

of the homes. Data provided by the new GP must be sent to

a central house collector (HC), which merges data from all

probes in that house. Implicitly, the GP mediator must be

connected to a HC mediator. The HC instance must either

exist already or be created on the gateway. Similarly, data

from the HC must be transported to a city aggregator (CA),

which merges data from a number of houses and sends it to

city calculator (CC). The CC merges data from all CAs in

a city and sends the results to a national aggregator (NA),

which estimates the country’s total consumption.

Considering for example that the mediation infrastructure

is already set in place at the city and national level, let’s see

how Cube intervenes to automatically create the mediation

branch for connecting the new GP to the existing media-

tion graph. The Cube agent managing the house gateway

automatically detects the new GP instance and consults the

archetype for any constraints on components of the GP type.

In doing so it determines that GP must be connected to a

HC within the same household. Hence, it searches for an

existing HC on the local gateway and connects the GP

to it. If an HC does not yet exist, Cube creates one and

connects it to a CA that it must find in the same city; this

is indicated in the HC’s archetype constraints. During this

process, the Cube agent on the gateway must contact the

Cube agent on the server where the CA executes in order

to connect the two mediators - HC and CA. At this point,

the new branch is created and the resulting application shape

conforms to the archetype. This was achieved without having

to re-plan and re-implement the entire deployment schema of

the overall mediation graph. In the following section we will

reuse this simple scenario to exemplify the Cube archetype

and resolver. Section V details the full example.

IV. CUBE FRAMEWORK

A. Cube Agent Internal Architecture

The internal architecture of a Cube agent follows a rather

“classic” control loop structure (Figure 2). Technology-

specific Monitors and Executors (Ms-Es) ensure data-

collection and modification-reification from and into the

managed application part, respectively. A Resolver compo-

nent provides the control decision logic indirectly linking

Runtime Model Part

Archetype

Managed Application Part

Cube Agent

Resolution

Execute

Reification

Monitor

Notification

M
essages Exchange

Constraint 
ResolversUses

Monitors Executors

Scope M
anager

Uses

Messages Exchange

Resolver

Figure 2. Cube agent internal architecture

3



data collection to application modification. The Resolver

analyses the current state and context of the managed

application part and plans changes for meeting management

goals. Goals are expressed as a set of formally-defined

constraints in the archetype. The Resolver actually consists

of a core component (Resolver in Figure 2) and an ex-

tensible set of constraint-specific components (Constraint

Resolvers). The core Resolver can read the archetype and

create Constraint Resolution Graphs (subsection IV-C). Each

Constraint Resolver (CR) is specialised in resolving one

constraint type - e.g., one CR for component interconnec-

tion constraints and another one for component deployment

constraints. To express an archetype part, the core Resolver

creates the overall constraint graph of that part and forwards

constraint resolution tasks to the corresponding CRs. This

architecture allows extending both the archetype - via addi-

tional constraint types - and the agent Resolver that must ex-

press the archetype - via additional CRs. Similarly, specific

Ms-Es can be introduced for each technology implementing

the managed application part. Additional Monitors can be

introduced to provide context-specific information.

Communication between the Ms-Es and the Resolver

is mediated via a Runtime Model Part. This represents a

local runtime view of the application part that the agent is

managing. Model elements only provide information that

is necessary for the agent Resolver to determine if they

meet their archetype constraints. Ms-Es implement a causal

relation [6] between the Managed Application Part and

the Runtime Model Part. This means that any runtime

modification in the Managed Application Part is reflected

into the Runtime Model Part (via the Monitors) and any

modification in the Runtime Model Part, once validated by

the Resolver, is reflected into the Managed Application Part

(via the Executors). In this context, for meeting the archetype

goals, the agent Resolver aims to create and maintain a

Runtime Model Part that meets the constraints specified

in the expressed archetype part. Different CRs propose

modifications to the Runtime Model Part in order to resolve

different constraint types. The core Resolver arbitrates and

solves potential conflicts among their propositions (not used

in the presented use case). The Resolver validates the

Runtime Model Part when it determines that it meets the

constraints in the expressed archetype part. At that point, the

concerned Executors are notified to reflect (or implement)

the Runtime Model Part into the managed application part.

The borders of an agent’s Runtime Model Part may

represent links to remote elements in the Runtime Model

Parts of neighbouring agents. This is the case whenever

an interconnection constraint exists between components

that were instantiated on different platforms, managed by

different agents. When such cross-platform constraints exist,

the concerned agents must collaborate and jointly solve the

constraints. Consequently, before validating its own Runtime

Model Part, an agent might have to wait until a collaborating

agent confirms the resolution of a cross-platform constraint.

Finally, at any one time, the complete Runtime Model of the

overall application can be seen as partitioned into Runtime

Model Parts managed by interconnected Cube agents.

B. Archetype Specification

Cube archetypes are specified in a descriptive, structured,

mark-up meta-language (based on xml), which agent Re-

solvers can process at runtime. We defined a set of Cube-

specific core meta-types2 (xml tags), which can be extended

as needed with domain-specific meta-types. The current

prototype only uses the core meta-types, as follows.

A Cube archetype is divided into three main parts: Types,

Constraints and Global Configurations. The first two parts

define the administrative goals for the managed application’s

shape (e.g. interconnected component instances) and config-

uration (e.g. deployment settings). These goals represent the

persistent objectives that Cube agents permanently strive to

attain. The third archetype part provides invariant system

configurations (exemplified in the use case).

Archetype Types define the application’s managed ele-

ments, which can be of three core meta-types:

• <component>: a software component type;

• <node>: a type of deployment platform or physical

device where component instances execute;

• <scope>: a deployment area, defined as a group of

nodes of a certain type.

These core meta-types can be extended with domain-

specific meta-types - e.g. <data-mediator> component type.

Archetype Constraints specify various restrictions, or con-

ditions to be met, on the previously defined Types. They

define the limits within which context-sensitive agents can

opportunistically assemble available resources into various

application instances, hence controlling essential application

properties. Constraints can be Unary - involving a single

managed element (e.g. limiting the number of input connec-

tions of a component instance - or simply component); or

Binary - involving two elements (e.g. two components being

connected). Notably, Constraints are directed, which implies

that they only concern the Constraint’s source managed

element, while taking into account an existing destination

element. For example, in Figure 4, the “connect” constraint

directed from GP to HC implies that the Resolver must

make sure that any GP instance is connected to a HC

instance, but not vice-versa. This implies that GP is the

only managed element directly concerned by this constraint.

Each Constraint type is tagged with a number of markers

from a predefined set: check [c], find [f] and perform [p].

Markers indicate the way in which the Resolver must use the

Constraint during the resolution process and consequently

the operations that the corresponding Constraint Resolvers

2A more thorough description of the archetype language is available from
the project’s Documentation and Catalogue sections - http://cube.imag.fr

4



must support (discussed in IV-C). Generally, [c] indicates

that the constraint must be verified before the concerned

managed element can be validated; [f] indicates that the

constraint can be used for acquiring an instance of the con-

straint’s concerned managed element; [p] indicates that the

constraint may require modifications to the Runtime Model

Part, for expressing solutions in the managed application.

The Cube framework provides a predefined set of core

Constraints, which can be applied to the aforementioned core

Types and any of their extensions:

• <connect v1, v2>[c, f, p]: connect the two components

indicated as values of variables v1 and v2;

• <on-node v1, v2>[c, f, p]: ensure that the component

in v1’s value is on the node in v2’s value;

• <in-components v>[c]: ensure that the component in

v has no more than a maximum number of input

connections (where the max. is given as an attribute);

• <out-components v>[c]: ensure that the component in

v has no more than a maximum number of outputs;

• <in-scope v1, v2>[c, f, p]: ensure that the node in v1’s

value is in the scope in v2’s value;

• <components-per-node v>[c]: limit the maximum

number of components that can execute on the node

in v (where the type of components and the maximum

value are given as attributes);

• <components-per-scope v>[c]: limit the number of

components that execute in the scope in v;

• <self-sizing v>[c, f, p]: replicate components of v’s

type when their input connections are saturated;

• <on-same-node v1, v2>[c]: ensure that the two com-

ponents in v1 and v2 are on the same node;

• <in-same-scope v1, v2>[c]: ensure that the two com-

ponents in v1 and v2 are in the same scope;

• <find-local v>[f]: find on the local node an element of

the type indicated by variable v;

• <create-local v>[f]: create component of v’s type;

• <find-scope v>[f]: find a scope instance of v’s type.

Additional Constraints can be defined as necessary for each

targeted application. They must be matched by correspond-

ing Constraint Resolver (CR) plug-ins.

Finally, the archetype’s Global Configurations provide

system property values shared by all Cube agents - e.g. the

unique resource identifier (URI) of the Top Scope Leader.

Figure 3 partially shows the archetype that defines the data-

mediation example discussed in section III.

C. Cube Resolver

An agent Resolver must constantly ensure that the agent’s

model conforms to the archetype. To validate the model,

the Resolver constructs and solves a directed Constraints

Resolution Graph representing its archetype part, where the

vertices are typed variables (corresponding to instances of

archetype Types) and the arcs are constraints (corresponding

to archetype Constraints). To solve the constraints graph

<archetype id="org.example.cube">
<types>

<scope id="CITY"/>
<node id="SERVER"/>
<node id="GATEWAY"/>
<component id="GP"/>
<component id="HC"/>
<component id="CA"/>
<!-- more types -->

<types>
<constraints

vars="gp:GP; hc:HC; ca:CA;

g:GATEWAY; s:SERVER; c:CITY">

<on-node v1="ca" v2="s"/>
<in-scope v1="s" v2="c"/>
<in-scope v1="g" v2="c"/>
<find-scope v="c"/>
<!-- more constraints -->

</constraints>
</archetype>

<on-node v1="gp" v2="g"/>
<connect v1="gp" v2="hc"/>
<on-node v1="hc" v2="g" priority="1"/>
<connect v1="hc" v2="ca" priority="3"/>
<create-local v="hc" priority="2"/>

Figure 3. Partial archetype for house and city mediators

the Resolver uses a backtracking-based algorithm, trying to

find an acceptable value for each graph variable. When a

candidate value does not satisfy a variable’s constraints, it

is tagged as non viable and stored in the variable’s history.

To solve each Constraint type, the Resolver calls a differ-

ent specific Constraint Resolver (CR). Depending on each

constraint’s markers - [c], [f] and/or [p] - the associated

CR provides the corresponding functions: check(), find(),

perform() and/or cancel(). Check() verifies the constraint on

a variable by assessing the conformity of the variable’s value

(true or false). Find() proposes valid values for a variable,

either from its entire range, or considering given values for

its related variables. Perform() updates the model to reify a

constraint solution; cancel() annuls such operation.

The resolution process is triggered in three cases. First, an

agent detects a model change (e.g. a new component, created

manually). Second, the archetype imposes the existence of

at least one instance of a Type; Cube agents must create it

upon start-up. Third, a Cube agent asks another Cube agent

to “find” a component instance. In all cases, once a managed

element is found, the Resolver determines and validates its

constraints. As a first step, the Resolver determines all the

element’s constraints marked as [c]. For each constraint, it

calls check() on the corresponding CR. If the answer is True

the element is valid. Otherwise, whether a new element value

is obtained or the element remains invalid (i.e. no archetype

solution). To check Binary constraints, a value must be

found for the second element associated to the one being

solved. Hence, as a second step, the Resolver determines

all constraints marked as [f] for this second element, then

calls find() on the associated CRs (in the order given by

the constraints’ priorities). As a third step, when a value for

the second element is found, the Resolver calls perform()

on the Binary constraint’s CR, to update the model. At this

point, the Resolver moves on to solving the second element

and the process restarts recursively from this point. If the

proposed element value cannot be validated, the Resolver

calls cancel() and tries to “find” an alternative value. When

the second element is valid the Binary constraint can also

be validated along with the initial, concerned element.

Figure 4 shows how this resolution process works when

a new GP instance is detected on a gateway. First, the

5



gp

on-node connect hc

(a) (b) (c)

x1:GP

x2:Gateway x3:HC

gp

on-node connect

x1:GP

x2:Gateway x3:HC

in-scope

x4:City

home1

grenoble

gp

on-node connect

x1:GP

x2:Gateway x3:HC

in-scope

x4:City

home1

grenoble

connect x5:CA

create-local

on-node

x6:Server
in-scope

on-node

server1

ca

Figure 4. Example of Constraint Resolution Graph

Resolver creates a top variable (x1) of type GP and value

gp (the detected instance) - Figure 4-a. To validate x1, the

Resolver retrieves GP ’s [c] constraints from the archetype:

<on-node>- gp must be on a Gateway Node; and, <con-

nect>- gp must be connected to a HC component. To

“check” the <on-node> constraint, a value for the related

variable x2 of type Gateway must be found. Here, x2’s

value is found directly from x1’s node attribute, available

from the model (gp.node=home1). Next, the Resolver calls

perform() on the “on-node” CR, adding gp to home1 in

the model. Since home1 was changed, the Resolver must

“check” its constraints. It retrieves its [c] constraints: <in-

scope>- home1 must belong to a City Scope. As before,

the Resolver first tries to get a Scope value from x2’s

attributes and it finds Grenoble, which is a valid value of

type City. Hence, the “in-scope” CR returns True, then the

“on-node” CR returns True, which validates this branch of

GP ’s resolution graph (green values in Figure 4-b).

To resolve GP ’s <connect> constraint the Resolver must

“find” a value for the x3 variable of type HC. Since it can-

not find this value from x1’attributes, it determines HC’s [f]

constraints: <on-node>, <create-local> and <connect>, in

this order of priority as specified in the archetype. Calling

find() on the “on-node” CR returns no value, since a HC

instance does not yet exist on the home1 gateway. Hence,

the Resolver calls find() on the next CR - “create-local”,

which instantiates an HC component and returns its value.

The Resolver assigns this value to x3 and calls perform()

on the “connect” CR, between x1 and x3.

The Resolver must now “check” the new HC instance

(Figure 4-c). Its “on-node” CR returns True, but its “con-

nect” CR returns False (hc not yet connected to a CA

instance). Hence, the Resolver first finds a value of type CA

for x5. CA only has an <on-node> [f] constraint, placing

it on a Server Node. To find such Node (x6), the Resolver

uses the <in-scope> [f] constraint associated to the Server

Type and obtains server1 in the scope Grenoble of type

City. The Cube agent on the gateway contacts the Cube

agent on server1 for finding a CA instance. The remote

agent constructs a local resolution graph with CA as its top

element (not shown) and starts to solve it. It calls find()

on the local <on-node> CR and obtains a ca value (since

a CA instance already exists). This value is sent to the

gateway agent, which assigns it to x5 and calls perform()

to connect x3 to x5 (remote connection). It then rechecks

x5, which remains valid, hence rendering the proposed HC

instance valid and validating the new GP instance. The

Resolver validates this solution locally and also with the

other participating agents (the one controlling the ca instance

on server1). When the model is validated, the Executors are

notified to reify the solution into the managed application.

D. Essential Principles, Advantages and Limitations

Applications based on the presented approach conform

to a fixed template (defined by an archetype) and support

flexible template instantiations (context-sensitive solutions

determined by agents). This approach offers a compro-

mise between controlling essential application properties and

enabling application survival and adaptation in changing

runtime contexts. Self-organising Cube agents simultane-

ously and progressively find and create flexible application

solutions, which allows the archetype expression process to

scale. Agents do not have to determine when a complete

solution is found before instantiating it. Also they will not

attempt to find globally optimal solutions or to ensure 100%

availability for managed systems. The main target is long-

term survivability, adaptability and viability.

Using archetypes to express functional application goals

renders Cube only applicable to cases where system archi-

tecture can guarantee system functionality. Compositionality

is another essential assumption, asserting that if all archetype

parts are correctly expressed and integrated then the resulting

application is also correct (i.e. conforms to the archetype).

This implies that a global solution can be obtained by

composing local solutions that were developed with minimal

mutual knowledge (i.e. local agent knowledge and Scope

level properties). Both assumptions were considered reason-

able for data-mediation systems considered so far.

With respect to the decidability of the constraint resolution

process, the core constraints and resolvers provided so far

are decidable if the number of available solutions for each

constraint is finite (e.g. a limited number of implementa-

tions can be found for a component type). The resolution

process sequentially addresses each constraint that applies

to a managed element, using a backtracking process to

progressively build and verify the solutions’ tree. Each set

of constraints is decidable if its solution tree is finite. For

each managed element being expressed, once a solution

that meets all its constraints is found, the solution is set in

place and not rolled-back to accommodate other element’s

expression. This “greedy” approach ensures the convergence

of the archetype resolution process, as the application grows

monotonically towards a complete solution. Regarding the

archetype’s expressiveness, the extensibility of the provided

language and associated resolver should ensure support

6



find-scope

WP HC

connect
on-same-node

GP

Gateway

EP

connect
on-same-node

Server

CA connect
 in-same-scope CCconnect NAconnect

Datacenter

City Central

in-components (10)

connect
on-same-node

on-node

Co
m
po

ne
nt
s

N
od

es
Sc

op
es

self-sizing

instances-per-scope (1)

find-scope

on-node on-node

on-nodeon-node

in-scopein-scopein-scope

self-sizing

find-local
in-components (50)

Figure 5. Complete constraints graph for use case archetype

for a large spectrum of domain-specific archetypes. The

applicability of the proposed “greedy” resolution technique

will have to be analysed case by case for each extension.

Similarly, the stability of the resulting application will have

to be studied depending on the context-sensitive adaptation

of included Constraint Resolvers - this is a “classic” problem

in autonomic and control systems. Supported uncertainty

sources include the discovery of concrete Type instances that

were not known at system design time - e.g. new component

implementations or machines; dynamic communication net-

works impacting discovery; and evolving data flow sources.

V. USE CASE

A. Home Resource Monitoring Archetype

Figure 5 provides a graphical view of the complete use

case archetype. The archetype specifies two Scopes: City -

regrouping all Nodes in a city; and Central - regrouping all

Nodes of the national data centre. It also specifies three Node

Types - Gateway, Server and Datacenter - and seven

Component Types - Gas Probe (GP ), Water Probe (WP ),

Electricity Probe (EP ), House Cost Calculator (HC), City

Aggregator (CA), City Calculator (CC) and National Ag-

gregator (NA). Different instances of the defined Types can

exist during runtime (e.g. Paris, Grenoble and Lyon are

instances of the City Scope Type).

Next, the archetype specifies various Constraints on the

defined Types. It specifies the way Components are in-

terconnected (<connect>) and assigned to Nodes (<on-

node>and <on-same-node>) and to Scopes (<in-same-

scope>). It defines the Node’s inclusion into Scopes (<in-

scope>) and the Scope’s management strategy (<find-

scope>). Notably, it imposes that a single CC instance can

exist in a city (<components-per-scope>). For performance

considerations, it limits to 10 the maximum number of inputs

of CA instances (<in-components max=10>). Finally, for

CA and NA types, it indicates that at least one non-saturated

instance must be available at any one time (<self-sizing>).

B. Self-growing data-mediation chains

When Cube agents equipped with archetype copies are

launched on the system’s platforms, they first self-organise

with respect to the archetype-specified Scopes. Scope Lead-

ers are automatically elected and Node groups are formed

within each Scope. Once the Scope infrastructure is set in

place, Cube agents start creating local Mediator components

and cooperating among themselves to construct distributed

mediation chains. Let us examine this process considering

the use case archetype (constraints graph in Figure 5).

In the Datacenter, the local Cube agent spontaneously

creates the NA Mediator upon its initiation, because of the

self-size archetype constraint specified on the NA Type. This

constraint indicates that at least one accessible component

instance of the concerned Type must be available at any one

time. To validate this constraint, Cube agents create a new

component instance when none can be found or whenever

the existing ones are saturated. The same applies for CA

components on Server machines, meaning that at least one

CA instance is created when the Cube system starts. When

CA is instantiated, a CC component must also be acquired

- found or created - within the same Scope and connected

to the CA instance. As a single CC instance can exist

within any City Scope (“instances-per-scope(1)” constraint

on CC), Cube agents must ask the Scope Leader of their

City Scope for permission before creating a CC instance.

If a CC already exists (i.e. created by another agent), the

Scope Leader returns its reference and the demanding agent

connects its CA instance to it.

Relying on this initial setting, when probes of type EP ,

GP or WP are installed in a home, Cube creates the

corresponding mediation branches to connect them to the

existing mediation graph, as illustrated in previous sections.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The presented Cube prototype is implemented using

Apache Felix iPOJO3 technology, which runs on an OSGi4

platform. IPOJO relies on a service-oriented component

model where component dependencies are expressed as

service requirements, which are dynamically provided by

other components. Component implementations are pack-

aged as bundles and can be hot-deployed on OSGi Ser-

vice Platforms. Bundles can be deployed from local sites

(e.g. file system) or from a remote repository (e.g. OSGi

Bundle Repository). The Cube prototype capitalises on the

dynamic capabilities of the iPOJO/OSGi service architecture

to implement the different Cube agent modules. Remote

repository and hot-deployment support allows Cube agents

to dynamically find Component Type implementations and

deploy them onto their local platforms. The service-oriented

model enables Cube agents to maintain partially instantiated

applications, where some application services can remain

unresolved (rather than throwing exceptions) until the re-

quired services become available. Finally, Cube agents can

3http://felix.apache.org/site/apache-felix-ipojo.html
4http://www.osgi.org

7



feature a dynamically extensible architecture, where specific

components (such as Constraint Resolvers or Ms-Es) can be

deployed, instantiated and plugged-into agents at runtime, as

needed to resolve various archetype parts. This enables Cube

agent instances to be individually customised, at runtime,

depending on their actual specialisation (expressed archetype

parts). This helps minimise individual Cube agent overheads.

The presented prototype implements Cube’s core frame-

work - i.e., Resolver and Runtime Model container - and a

set of specific extensions for enabling Cube to express the

use case archetype. Extensions mainly include the necessary

Constraint Resolvers - e.g. “on-node”, “connect” and so on.

Support for Cube agent communication is also implemented

as an internal iPOJO component, currently based on TCP/IP

sockets and easily replaceable as needed.

An initial set of experiments was carried-out in the

described use case. Their main purpose was to validate

the prototype’s functionality in a distributed platform with

respect to the archetype constraints identified so far. As the

archetype and resolution process were the main experimental

targets, mediator components were not actually instantiated

- achieving conforming model parts for each agent repre-

sented the equivalent result. Initial performance measure-

ments taken in this context provide an indication of the

order of magnitude of delays to be expected from an agent’s

resolution process. Most importantly, they indicate the way

in which such delays will depend on the archetype part

sizes and the agent collaboration involved. Most definitely,

large-scale testing on a variety of scenarios and platforms

is required in future work to provide a comprehensive

performance evaluation of the Cube approach. Here, we

mainly discuss which functional parts of the Cube resolution

process are most likely to introduce the delays. At the same

time, since agents work in parallel on separate platforms, we

estimate that delay characteristics will remain similar to the

ones presented here even as the number of agents increases

considerably. Certainly, delays may increase if the number

of agents that must coordinate their actions increases.

Table I
USE CASE SCOPES AND NODES INSTANCES

Scope Type Scope Instance Node Type Node Instance

Central central1 Datacenter datacenter

City

Paris
Server P-server1..3

Gateway P-home1..5

Grenoble
Server G-server1

Gateway G-home1..3

Cube prototype was tested using the configuration de-

picted in Table I. This configuration defines the available

instances corresponding to the archetype-defined Scope and

Node Types. For example, we defined one instance of the

“Central” Scope Type - central1 and two instances of the

“City” Scope Type - Paris and Grenoble. Regarding Node

instances, we provided one platform of “Datacenter” Type

for the “Central” Scope instance and so on.

The actual testing platform consisted of three PCs con-

nected via a local area network (LAN). The first PC rep-

resented the Datacentre Node (Pentium 4 2.0 GHz, 1 Gb

RAM). The second PC (Core Duo 1.83 GHz,3 Gb RAM)

hosted all Node instances of the Server Type (P − server1

to P − server3 and G − server1), each one running in a

separate OSGi instance (and process) to simulate different

machines. Finally, the third PC (Core 2 Duo 3.06 GHz, 4

Gb RAM) hosted all Node instances of the Gateway Type

(P −home1 to P −home5 and G−home1 to G−home3),

running in separate OSGi instances. All OSGi instances ran

on an OpenJDK 1.6 JVM executing on a Linux Ubuntu OS.

Figure 6 depicts the average times (over 10 runs) that

Cube agents on these platforms took to initially self-organise

into Scopes and then to assign and resolve their archetype

parts. Measured execution times only represent the time

needed for agents to determine and resolve their local

constraint graphs. They do not include the technology-

specific delays for the actual creation and interconnection

of Mediator instances once their models are validated.

Let us analyse the performance of different agents depend-

ing on their hosting Nodes and expressed archetype parts.

With respect to initial Scope constitution, we notice that

agents join their Scopes within a rather small lapse of time

(less than 20 [ms]). This time will essentially depend on

the communication delays between the agent and the Top

Scope Leader, as well as on the Top Scope Leader’s load at

the time the agent contacts it. The archetype partition and

resolution times for different Cube agents was also quite

small (less than 200 [ms]) and will also critically depend on

communication delays with Scope Leaders and other agents.

Most notably, an agent’s resolution delay will increase if it

depends on the resolution process of another agent, as it must

wait until this other agent validates its own local model.

Average resolution times were approximately the same

across agents running on home gateways, since they all

Figure 6. Average times of scope and archetype part resolution

8



performed similar tasks. Considering the servers, the average

time on P − server1 is greater than that of similar servers

in the Paris Scope. As this server was always started first,

it had to create the CC component that must be unique

in the Paris Scope and connect it to the NA component

managed by the datacentre agent. The other Paris servers

simply connected their CA components to the existing CC.

A similar situation can be observed for G−server1, which

is the only one in the Grenoble Scope. Finally, the resolution

time is the smallest for the datacenter agent, since it must

only create the local NA instance.

VII. RELATED WORK

An exhaustive picture of related work is difficult to

provide, since the presented approach finds itself at the

intersection of several research fields and sub-fields. We

focus on positioning Cube’s autonomic lifecycle manage-

ment approach considering two key engineering currents: i)

“traditional” model-based approaches (top-down), including

Model Driven Engineering, model-based self-deployment

and self-management; and, ii) relatively “recent”, nature-

inspired approaches (bottom-up), including self-organising

systems, emergent control or embryomorphic engineer-

ing. Cube positions itself in-between these poles, using

archetypes to control the results of self-organising processes.

Model-driven top-down solutions typically define an ar-

chitectural model of the targeted application and employ an

automatic interpreter for generating, deploying, instantiating,

(re)configuring and/or repairing a distributed application. In

this context, architectural models can be concrete - defining

the precise application to instantiate and manage (e.g. [7]

and [8]); or abstract - only indicating the application types,

type dependencies and or general constraints (e.g. [9], [10]).

Automatic model interpreters can work whether off-line -

for initially creating model-compliant application instances

(e.g. [8]), or online - for providing dynamic management

functions (e.g. [7], [9] and [10]). Cube uses abstract architec-

tural models (via the archetype) and online interpretation and

expression (via the agents). An important limitation in most

model-oriented approaches stems from centralising both the

model interpretation processes and the Runtime Model of

the resulting application (e.g., [7] and [9]). This limits the

scalability of the targeted application both in terms of the

number of managed components and of the frequency of

required adaptation operations. Cube avoids this difficulty

by employing self-organising agents as interpreters, each

one only expressing limited archetype parts and maintaining

local Runtime Model Parts of application parts.

Seen from the “bottom-up” perspective, this approach

can be viewed as a means of introducing better control

in self-organising and/or emergent systems. Similarly, [11]

proposes to have decentralised processes guided by either

a shared template - i.e. abstract architectural model, or by

a shared recipe - i.e. set of rules. Cube perfectly fits this

category and features important resemblances with existing

solutions that adopted similar approaches - e.g. [10] or [12].

In [10], abstract architectural models are employed to guide

the self-organisation of pre-existing software services into a

global application solution. This approach adopts aggregate

gossiping to exchange and merge partial solution config-

urations among participating processes. When a complete,

model-compliant solution is reached it is used to guide the

actual application self-assembly process. Cube does not try

to explicitly find a global solution before setting it into

practice. Instead, each agent creates a partial solution and

instantiates it as soon as it can be validated. Application

parts can be created (or removed) and plugged-into (or out

of) the existing application later on, without having to restart

the entire self-assembly process. In the Organic Computing

context, [12] introduces the Restore Invariant Approach

(RIA), in which a system’s state is being continually verified

against a predefined invariant (i.e. constraint or ’behaviour

corridor’) and reconfigured whenever it deviates from its

viability space. Cube imposes archetypes as a particular kind

of invariant and provides a reusable and extensible definition

language and framework for implementing this solution.

Cube resembles certain clustering-based approaches for

decentralised self-management (e.g. [13]), which employ

task fragmentation and coordination among parallel pro-

cesses. In the exemplified load-balancing solution in [13] lo-

cal results combine straight-forwardly into a global solution.

As this cannot be assumed in the contexts we target, Cube

provides specific agent coordination techniques for obtaining

conforming global solutions from multiple local parts.

In the context of “bottom-up”, Nature-inspired research,

several projects adopt concepts from developmental biology,

such as the genotype - phenotype paradigm, as an alternative

means of Software Engineering complex adaptive systems -

e.g. [14] to [18]. Cube provides a concrete framework that

is compatible with these visions, where an archetype can be

seen as a genotype, and agent-created application instances

as phenotypes. Most existing approaches use predefined

behaviours, or rules, to define individual genotypes [14],

[15] or [16]. The parallel execution of multiple agents

implementing such rules leads to the emergence of a de-

sirable system behaviour and/or structure. In some cases,

alternative behaviours are available and can be dynamically

selected in each agent [17]. In contrast to such rule-based

approaches, Cube proposes a goal-oriented solution - an

archetype represents a goal that Cube agents must collec-

tively attain. This approach simplifies system development,

as it allows developers to specify the targeted end-result

system (the what), rather than the means of achieving that

result (the how). Additionally, Cube’s dynamic archetype

interpretation facilitates the creation of adaptable, context-

aware applications, where the execution environment and the

existing application parts influence archetype expression.

Most similar to Cube, [18] proposes a morphogenetic en-

9



gineering approach for self-growing robots from functional

blueprints. While the idea is similar, Cube targets software

applications where the actual physical shape in Euclidian

space is often of little importance. Additionally, software

contexts raise adaptation challenges that are more diverse

than the element growth and shrinkage in robotic systems.

Finally, Cube must handle system growth as a continuous

process rather than as a single initial event.

VIII. CONCLUSION AND FUTURE WORK

This paper presented an approach for instantiating and

managing distributed software applications via a set of self-

organising agents, controlled by a replicated archetype. The

archetype represents the generic features that will inevitably

occur in all instantiated applications. Each application in-

stance can be unique with respect to its concrete component

implementations, number of instances and deployment on

execution platforms. This solution combines the control

capabilities of “traditional” Software Engineering methods

for ensuring core system properties (i.e. what designers can

know at system design time), with the flexibility of self-

organizing methods for ensuring system survivability and

self-adaption (i.e. what designers cannot predict and must

allow agents to decide at runtime). This approach provides

a possible solution for controlling self-organising systems.

To help implement this approach, we provided a reusable

and extensible archetype definition language and resolution

framework. The current design combines decentralised agent

collaboration (whenever possible to ensure local properties)

with property-specific hierarchical control (to ensure prop-

erties defined over larger Scopes). A framework prototype

was implemented using iPOJO service-oriented component

technology and tested to create a distributed data-mediation

application for resource home monitoring. Initial results

indicate the functional viability of the proposed solution.

Future work will concentrate on extending experiments

to include system self-repair scenarios and evaluate perfor-

mance in large-scale system contexts. In parallel, we also

intend to study existing constraint-resolution engines and

evaluate their applicability within our framework. Finally,

we are interested in exploring alternative solutions to global

agent coordination, possibly replacing Scope-based control

hierarchies with completely decentralised protocols.

REFERENCES

[1] A. Diaconescu and P. Lalanda, “A decentralized, architecture-
based framework for self-growing applications,” in Interna-
tional conference on Autonomic computing ICAC, 2009.

[2] A. Diaconescu and P. Lalanda, “Self-growing applications
from abstract architectures an application to data-mediation
systems,” in IEEE Workshop on Organic Computing, 2011.

[3] A. Diaconescu, D. Bassem, and P. Lalanda, “Self-growing
software from architectural blueprints,” in Morphogenetic
Engineering Workshop MEW, 2011.

[4] R. J. Anthony, “Emergence: A paradigm for robust and
scalable distributed applications,” in International Conference
on Autonomic Computing ICAC, 2004.

[5] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based
aggregation in large dynamic networks,” ACM Trans. Comput.
Syst., vol. 23, 2005.

[6] H. Song, G. Huang, F. Chauvel, Y. Xiong, Z. Hu, Y. Sun,
and H. Mei, “Supporting runtime software architecture: A
bidirectional-transformation-based approach,” J. Syst. Softw.,
vol. 84, no. 5, 2011.

[7] S. wen Cheng, A. cheng Huang, D. Garlan, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-based self-adaptation
with reusable infrastructure,” IEEE Computer, vol. 37, 2004.

[8] OMG, “Deployment and configuration of component-
based distributed applications specification,” 2006. [Online].
Available: http://www.omg.org/spec/DEPL/4.0/PDF

[9] A. Dearle, G. N. Kirby, and A. J. McCarthy, “A framework
for constraint-based deployment and autonomic management
of distributed applications,” International Conference on Au-
tonomic Computing ICAC, 2004.

[10] D. Sykes, J. Magee, and J. Kramer, “Flashmob: distributed
adaptive self-assembly,” in Intl. Symp. on Software Engineer-
ing for Adaptive and Self-Managing Systems SEAMS, 2011.

[11] F. Dressler, Self-Organization in Sensor and Actor Networks,
Wiley, Ed., 2007.

[12] F. Nafz, H. Seebach, J.-P. Steghfer, G. Anders, and W. Reif,
“Constraining self-organisation through corridors of correct
behaviour: The restore invariant approach,” in Organic Com-
puting A Paradigm Shift for Complex Systems, 2011.

[13] L. Baresi, S. Guinea, and G. Tamburrelli, “Towards decentral-
ized self-adaptive component-based systems,” in International
workshop on Software engineering for adaptive and self-
managing systems SEAMS, 2008.

[14] R. Doursat, “Morphogenetic engineering weds bio self-
organization to human-designed systems,” PerAda Magazine:
Towards Pervasive Adaptation, 2011.

[15] M. Ulieru and R. Doursat, “Emergent engineering: a radical
paradigm shift,” Int. J. Auton. Adapt. Commun. Syst., vol. 4,
no. 1, pp. 39–60, Dec. 2011.

[16] R. Nagpal, “Programmable self-assembly using biologically-
inspired multiagent control,” in International joint conference
on Autonomous agents and multiagent systems, 2002.

[17] K. N. Lodding, “The hitchhiker’s guide to biomorphic soft-
ware,” Queue, vol. 2, no. 4, pp. 66–75, Jun. 2004.

[18] J. Beal, “Functional blueprints: an approach to modularity in
grown systems,” in Intl. Conf. on Swarm Intelligence, 2010.

10


