
HAL Id: hal-02282190
https://telecom-paris.hal.science/hal-02282190

Submitted on 9 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the CVP for the root lattices via folding with deep
ReLU neural networks

Vincent Corlay, Joseph Boutros, Philippe Ciblat, Loïc Brunel

To cite this version:
Vincent Corlay, Joseph Boutros, Philippe Ciblat, Loïc Brunel. On the CVP for the root lattices via
folding with deep ReLU neural networks. IEEE International Symposium on Information Thoery
(ISIT), Jul 2019, Paris, France. �hal-02282190�

https://telecom-paris.hal.science/hal-02282190
https://hal.archives-ouvertes.fr


On the CVP for the root lattices
via folding with deep ReLU neural networks

Vincent Corlay†,∗, Joseph J. Boutros‡, Philippe Ciblat†, and Loı̈c Brunel∗
† Telecom ParisTech, 46 Rue Barrault, 75013 Paris, France, v.corlay@fr.merce.mee.com

‡ Texas A&M University, Doha, Qatar, ∗Mitsubishi Electric R&D Centre Europe, Rennes, France

Abstract—Point lattices and their decoding via neural networks
are considered in this paper. Lattice decoding in Rn, known
as the closest vector problem (CVP), becomes a classification
problem in the fundamental parallelotope with a piecewise linear
function defining the boundary. Theoretical results are obtained
by studying root lattices. We show how the number of pieces in
the boundary function reduces dramatically with folding, from
exponential to linear. This translates into a two-layer ReLU
network requiring a number of neurons growing exponentially in
n to solve the CVP, whereas this complexity becomes polynomial
in n for a deep ReLU network.

I. INTRODUCTION AND MOTIVATIONS

The objective of this paper is two-fold. Firstly, we introduce
a new paradigm to solve the CVP. This approach enables to
find efficient decoding algorithms for some dense lattices. For
instance, such a neural network for the Gosset lattice is a
key component of a neural Leech decoder. Secondly, we also
aim at contributing to the understanding of the efficiency of
deep learning, namely the expressive power of deep neural
networks. As a result, our goal is to present new decoding
algorithms and interesting functions that can be efficiently
computed by deep neural networks.

Deep Learning is about two key aspects: (i) Finding a
function class Φ = {f} that contains a function f∗ “close
enough” to a target function. (ii) Finding a learning algorithm
L for the class Φ. Of course the choices of (i) and (ii) can
be either done jointly or separately but in either case they
impact each other. Research on the expressive power of deep
neural networks focuses mostly on (i) [7][11], by studying
some specific functions contained in the function class of a
network. Typically, the aim is to show that there exist functions
that can be well approximated by a deep network with a
polynomial number of parameters whereas an exponential
number of parameters is required for a shallow network. This
line of work leads to “gap” theorems and “capacity” theorems
for deep networks and it is similar to the classical theory of
Boolean circuit complexity [8].

In this scope, several papers investigate specifically deep
ReLU networks [10][9][11][14][12][2] (See [9, Section 2.1]
for a short introduction to ReLU neural networks). Since a
ReLU network computes a composition of piecewise affine
functions, all functions in Φ are continuous piecewise linear
(CPWL). Hence, the efficiency of Φ can be evaluated by
checking whether a CPWL function with a lot of affine pieces
belongs to Φ. For example, there exists at least one function in
Rn with Ω

(
(w/n)

L−1
wn
)

affine pieces that can be computed

with a w-wide deep ReLU network having L hidden layers [9].
A two-layer network would need an exponential number of
parameters for this same function. In [11] they further show
that any random deep network achieves a similar exponential
behavior.

Some results in the literature are established by considering
elementary oscillatory functions (see e.g. [15] - VII-F) or
piecewise linear functions with regions of random shape. It is
not clear whether such types of functions may arise naturally
in computer science and engineering fields.

Our work lies somewhere between [9][14] and [11]: our
functions are neither elementary nor random. We discovered
them in the context of sphere packing and lattices which are
solution to many fundamental problems in number theory,
chemistry, communication theory, string theory, and cryptog-
raphy [4]. Hence, in contrary to existing works, we do not
search for a specific class of functions to justify the success of
deep learning. We set technical problems, study the functions
arising from lattices, and show that deep networks are suited
to tackle them as we obtain similar gap theorems between
shallow and deep models.

II. MAIN RESULTS

A ReLU network with a finite number of neurons is not
capable to infer infinite periodic functions (see [15] - VII-F).
Hence, it cannot implement a simple modulo operation. As
a result, we allow a low complexity pre-processing of the
point to be decoded to obtain an equivalent position in the
fundamental parallelotope P(B) of the lattice.

1) Theorems 1&2 show that the decision boundary for
the hyperplane logical decoder (HLD) [5] is given by
a continuous piecewise linear function, for any lattice
with a Voronoi-reduced basis. Corollary 1 guarantees
the same result for a semi-Voronoi-reduced basis.

2) For the lattice An with a basis defined by the Gram
matrix (4) and a point in P(B), Theorem 4 proves that
the decision function has Ω(2n) affine pieces.

3) Also for An, the number of pieces is reduced to O(n)
after folding as stated in Theorem 5.

4) Results of Section V-B and V-C, based on Theorem 5,
implies that there exists a ReLU network of depth
O
(
n2
)

and width O
(
n2
)

solving the CVP.
5) Theorem 6 shows that a ReLU network with only one

hidden layer needs Ω (2n) neurons to solve the CVP.
Moreover, the theory presented in this paper is not limited
to An. It extends very well to other dense lattices. Indeed, we



already obtained similar results for all root lattices. They will
however be presented in future communications due to lack of
space. Finally, this paradigm seems not to be limited to lattices
as it may extend to binary block codes (see e.g. Figure 4 in
[15] - VII-F).

III. LATTICES AND POLYTOPES

A lattice Λ is a discrete additive subgroup of Rn. For a
rank-n lattice in Rn, the rows of a n × n generator matrix
G constitute a basis of Λ and any lattice point x is obtained
via x = zG, where z ∈ Zn. For a given basis B = {bi}ni=1,
P(B) denotes the fundamental parallelotope of Λ and V(x) the
Voronoi cell of a lattice point x [5]. The minimum Euclidean
distance of Λ is dmin(Λ) = 2ρ, where ρ is the packing radius.

A vector v ∈ Λ is called Voronoi vector if the half-space
{y ∈ Rn : y · v ≤ 1

2v · v} has a non empty intersection
with V(0). The vector is said relevant if the intersection is an
n− 1-dimensional face of V(0). We denote by τf the number
of relevant Voronoi vectors, referred to as the Voronoi number
in the sequel. For root lattices [4], the Voronoi number is equal
to the kissing number τ . For random lattices, we typically have
τf = 2n+1 − 2. The set τf (x), for x ∈ Λ, is the set of lattice
points having a common Voronoi facet with x.

The next definition, introduced in [5], is important for the
rest of the paper.

Definition 1. Let B be the Z-basis of a rank-n lattice Λ in Rn.
B is said Voronoi-reduced (VR) if, for any point y ∈ P(B), the
closest lattice point x̂ to y is one of the 2n corners of P(B),
i.e. x̂ = ẑG where ẑ ∈ {0, 1}n.

Lattice decoding refers to the method of finding the closest
lattice point, the closest in Euclidean distance sense. This
problem is also known as the closest vector problem. The
neural lattice decoder employs P(B) as its main compact
region [5], thus it is important to characterize P(B) as made
below.

A k-dimensional element of P(B) is referred to as k-face.
P(B) has 2n 0-faces, called corners or vertices. This set
of corners is denoted CP(B). Moreover, the subset of CP(B)

obtained with zi = 1 is C1
P(B) and C0

P(B) for zi = 0. The
remaining faces of P(B) are parallelotopes. For instance, a
n − 1-dimensional facet of P(B), say Fi, is itself a paral-
lelotope of dimension n − 1 defined by n − 1 vectors of B.
Throughout the paper, the term facet refers to a n− 1-face.

A polyhedron is defined as the intersection of a finite
number of half-spaces generated by hyperplanes:

Po = {x ∈ Rn : xA ≤ b, A ∈ Rn×m, b ∈ Rm}.

A polyhedron is convex if none of the bounding hyperplanes
crosses its interior. A convex polyhedron is called a polytope
[6]. In this paper, we use not only parallelotopes but also
simplices. A n-simplex associated to B is given by

S(B) = {y ∈ Rn : y =

n∑
i=0

αibi,

n∑
i=1

αi ≤ 1, αi ≥ 0 ∀ i}.

It is clear that the corners of S(B), the set CS(B), are the n+1
points {0, b1, ..., bn}.

We say that a function g : Rn−1 → R is continuous piece-
wise linear (CPWL) if there exists a finite set of polyhedra
covering Rn−1 (which implies continuity), and g is affine over
each polyhedron. The number of pieces of g is the number of
distinct expressions of the local affine functions.

Finally, ∨ and ∧ denote respectively the maximum and the
minimum operator. We define a convex (resp. concave) CPWL
function formed by a set of affine functions related by the
operator ∨ (resp. ∧). If {gk} is a set of K affine functions,
the function f = g1 ∨ ... ∨ gK is CPWL and convex.

IV. THE DECISION BOUNDARY FUNCTION

Given a VR basis, after translating the point to be decoded
inside P(B), the HLD decoder proceeds in estimating each
zi-component separately [5]. The HLD computes the position
of y relative to a boundary via a Boolean equation to guess
whether zi = 0, i.e. the closest lattice point belongs to C0

P(B),
or zi = 1 when the closest lattice point is in C1

P(B). This
boundary cuts P(B) into two regions. It is composed of
Voronoi facets of the corner points. The next step is to study
the decision boundary function. For the rest of the paper,
without loss of generality, the integer coordinate to be
decoded is z1.

We recall that a variable uj(y) in the Boolean equations of
the HLD is obtained as:

uj(y) = sign(y · vj − pj) ∈ {0, 1}, (1)

where vj is the orthogonal vector to the boundary hyperplane
{y ∈ Rn : y · vj − pj = 0}. The latter contains the Voronoi
facet of a point x ∈ C1

P(B) and a point from τf (x)∩C0
P(B). The

decision boundary cutting P(B) into two regions, with C0
P(B)

on one side and C1
P(B) on the other side, is the union of these

Voronoi facets. Each facet can be defined by an affine function
over a compact subset of Rn−1, and the decision boundary is
locally described by one of these functions.

Let {ei}ni=1 be the canonical orthonormal basis of the vector
space Rn. For y ∈ Rn, the j-th coordinate is yj = y · ej .
Denote ỹ = (y2, . . . , yn) ∈ Rn−1 and let H = {hj} be the
set of affine functions involved in the decision boundary. The
affine boundary function hj : Rn−1 → R is

hj(ỹ) = y1 =

(
pj −

∑
k 6=1

ykv
k
j

)
/v1

j . (2)

For the sake of simplicity, in the sequel hj shall denote the
function defined in (2) or its associated hyperplane {y ∈ Rn :
y · vj − pj = 0} depending on the context.

Theorem 1. Consider a lattice defined by a VR basis B =
{bi}ni=1. Suppose that the n− 1 points B\{b1} belong to the
hyperplane {y ∈ Rn : y·e1 = 0}. Then, the decision boundary
is given by a CPWL function f : Rn−1 → R, expressed as

f(ỹ) = ∧Mm=1{∨lmk=1gm,k(ỹ)}, (3)

where gm,k ∈ H, 1 ≤ lm < τf , and 1 ≤M ≤ 2n−1.



0

0.5

1.5

1

1.5

2

2.5

3

1
2

1.50.5
1

0.50 0

Fig. 1. CPWL decision boundary function for A3. The basis vectors are
represented by the blue lines. The corner points in C1P(B)

are in red and the
corner points in C0P(B)

in black.

In the next theorem, the orientation of the axes relative to
B does not require {bi}ni=2 to be orthogonal to e1, neither b1
and e1 to be collinear.

Theorem 2. Consider a lattice defined by a VR basis B =
{bi}ni=1. Without loss of generality, assume that b11 > 0. Sup-
pose also that x1 > λ1, ∀x ∈ C1

P(B) and ∀λ ∈ τf (x)∩ C0
P(B).

Then, the decision boundary is given by a CPWL function as
in (3).

See [15] - VII-B for the proofs. Some interesting lattices
may not admit a VR basis, e.g. see E6 in [5]. In this case,
if Vol(P(B) \ ∪x∈C(B)V(x)) � Vol(P(B)) then HLD yields
efficient decoding. A basis satisfying this condition is called
quasi-Voronoi-reduced. The new definition below presumes
that B is quasi-Voronoi-reduced in order to make a successful
discrimination of z1 via the boundary function. Also, a surface
in Rn defined by a function g of n − 1 arguments is written
as Surf(g) = {(g(ỹ), ỹ) ∈ Rn : ỹ ∈ Rn−1}.
Definition 2. Let B be a basis of Λ. Assume that B
and {ei}ni=1 have the same orientation as in Theorem 1.
The basis is called semi-Voronoi-reduced (SVR) if there
exists at least two points x1, x2 ∈ C1

P(B) such that
Surf(∨`1k=1g1,k)

⋂
Surf(∨`2k=1g2,k) 6= ∅, where `1, `2 ≥ 1, g1,k

are the facets between x1 and all points in τf (x1)∩C0
P(B), and

g2,k are the facets between x2 and all points in τf (x2)∩C0
P(B).

The above definition of a SVR basis imposes that the
boundaries around two points of C1

P(B), defined by the two
convex functions ∨`mk=1gm,k, m = 1, 2, have a non-empty
intersection. Consequently, the min operator ∧ leads to a
boundary function as in (3).

Corollary 1. P(B) for a SVR basis B admits a decision
boundary defined by a CPWL function as in (3).

Example 1. Consider the lattice A3 defined by the Gram
matrix (4). To better illustrate the symmetries we rotate the
basis to have b1 collinear with e1. Theorem 2 ensures that the
decision boundary is a function. The function is illustrated on
Figure 1 and its equation is (we omit the ỹ in the formula to

0

0.5

1

1.5

1.5

2

2.5

3

1 21.50.5 10.50 0

Fig. 2. “Neighbor” figure of CP(B) for A3. Each edge connects a point
x ∈ C1P(B)

to an element of τf (x) ∩ C0P(B)
. The i edges connected to a

point x ∈ C1P(B)
are the 1-faces of a regular i-simplex.

lighten the notations):

f =
[
hp1
∨ h1 ∨ h2

]
∧
[

(hp2
∨ h1) ∧ (hp2

∨ h2)
]
∧
[
hp3

]
,

where hp1
, hp2

and hp3
are hyperplanes orthogonal to b1

(the p index stands for plateau). On Figure 2 each edge
is orthogonal to a local affine function of f and labeled
accordingly. The [·] groups all the set of convex pieces of f
that includes the same hpj . Functions for higher dimensions
are available in [15] - VII-A.

From now on, the default orientation of the basis with
respect to the canonical axes of Rn is assumed to be the
one of Theorem 1. We call f the decision boundary function.
The domain of f (its input space) is D ⊂ Rn−1. The domain
D is the projection of P(B) on the hyperplane {ei}ni=2. It is
a bounded polyhedron that can be partitioned into disjunct
convex (and thus connected) regions which we call linear
regions. For any ỹ in one of these regions, f is described
by a unique local affine function hj . The number of those
regions is equal to the number of affine pieces of f .

V. FOLDING-BASED NEURAL DECODING OF An

In this section, we first prove that the lattice basis from
the n× n Gram matrix in (4) is VR (all bases are equivalent
modulo rotations and reflections). We count the number of
pieces of the decision boundary function. We then build a
deep ReLU network which computes efficiently this function
via folding. Finally, we use the fact that the n−2-dimensional
hyperplanes partitioning D are not in “general position” in
order to prove that a two-layer network needs an exponential
number of neurons to compute the function.

Consider a basis for the lattice An with all vectors from
the first lattice shell. Also, the angle between any two basis
vectors is π/3. Let Jn denote the n × n all-ones matrix and
In the identity matrix. The Gram matrix is

Γ = GGT = Jn + In. (4)

Theorem 3. A lattice basis defined by the Gram matrix (4) is
Voronoi-reduced.



See [15] - VII-C for the proof. Consequently, discriminating
a point in P(B) with respect to the decision boundary leads
to an optimal decoder.

A. Number of pieces of the decision boundary function

We count the number of pieces, and thus linear regions, of
the decision boundary function f . We start with the following
lemma involving i-simplices.

Lemma 1. Consider an An-lattice basis defined by the Gram
matrix (4). The decision boundary function f has a number
of affine pieces equal to

n∑
i=0

i× (# regular i-simplices), (5)

where, for each i-simplex, only one corner x belongs to C1
P(B)

and the other corners constitute the set τf (x) ∩ C0
P(B).

Proof. A key property of this basis is

∀x ∈ C0
P(B), x

′ ∈ An\{bj , 0}, 2 ≤ j ≤ n :

x+ bj ∈ τf (x+ b1), x+ x′ 6∈ τf (x+ b1) ∩ C0
P(B).

(6)

It is obvious that ∀x ∈ C0
P(B): x + b1 ∈ C1

P(B). This
implies that any given point x ∈ C1

P(B) and its neighbors
τf (x) ∩ C0

P(B) form a regular simplex S of dimension
|τf (x) ∩ C0

P(B)|. This clearly appears on Figure 2. Now,
consider the decision boundary function of a k-simplex sepa-
rating the top corner (i.e. C1

S ) from all the other corners (i.e.
C0
S ). This function is convex and has k pieces. The maximal

dimensionality of such a simplex is obtained by taking the
points 0, b1, and the n− 1 points bj , j ≥ 2.

Theorem 4. Consider an An-lattice basis defined by the Gram
matrix (4). The decision boundary function f has a number
of affine pieces equal to

n∑
i=1

i ·
(
n− 1

n− i

)
. (7)

Proof. From Lemma 1, what remains to be done is to count
the number of k-simplices. We walk in C0

P(B) and for each of
the 2n−1 points x ∈ C0

P(B) we investigate the dimensionality
of the simplex where the top corner is x + b1 ∈ C1

P(B).
This is achieved by counting the number of elements in
τf (x+ b1) ∩ C0

P(B), via the property given by (6). Starting
from the origin, one can form a n-simplex with 0, b1, and the
n − 1 other basis vectors. Then, from any bj1 , j1 6= 1, one
can only add the n − 1 remaining basis vectors to generate
a simplex in P(B). Indeed, if we add again bj1 , the point
goes outside P(B). Hence, we get a n− 1-simplex and there
are

(
n−1

1

)
ways to choose bj1 : any basis vectors except b1.

Similarly, if one starts the simplex from bj1 + bj2 , one can
form a n − 2-simplex in P(B) and there are

(
n−1

2

)
ways to

choose bj1 + bj2 . In general, there are
(
n−1
k

)
ways to form

a n− k-simplex. Applying the previous lemma and summing
over k = n− i = 0 . . . n− 1 gives the announced result.

B. Decoding via folding

Obviously, at a location ỹ, we do not want to compute all
affine pieces in (3) whose number is given by (7) in order to
evaluate f . To reduce the complexity of this evaluation, the
idea is to exploit the symmetries of f by “folding” the function
and mapping distinct regions of the input domain to the same
location. If folding is applied sequentially, i.e. fold a region
that has already been folded, it is easily seen that the gain
becomes exponential. The notion of folding the input space in
the context of neural networks was introduced in [9].

Given the basis orientation as in Theorem 1, the projection
of bj on D is bj itself, for j ≥ 2. We also denote the bisector
hyperplane between two vectors bj , bk by BH(bj , bk) and its
normal vector is taken to be vj,k = bj − bk. We define the
folding transformation F : D → D′ as follows: let ỹ ∈ D, for
all 2 ≤ j < k ≤ n, compute ỹ · vj,k (the first coordinate of
vj,k is zero). If the scalar product is non-positive, replace ỹ
by its mirror image with respect to BH(bj , bk). There exist
(n− 1)(n− 2)/2 hyperplanes for mirroring.

Theorem 5. Let us consider the lattice An defined by the
Gram matrix (4). We have (i) D′ ⊂ D, (ii) for all ỹ ∈ D,
f(ỹ) = f(F (ỹ)) and (iii) f has exactly

2n+ 1 (8)
pieces on D′. This is to be compared with (7).

See [15] - VII-D for the proof.

Example 1 (Continued). The function f restricted to D′ (i.e.
the function to evaluate after folding), say fD′ , is

fD′ =
[
hp1 ∨ h1

]
∧
[
hp2 ∨ h2

]
∧
[
hp3

]
. (9)

The general expression of fD′ for any dimension is available
in [15] - VII-A.

C. From folding to a deep ReLU network

For sake of simplicity and without loss of generality, in
addition to the standard ReLU activation function ReLU(a) =
max(0, a), we also allow the function max(0,−a) and the
identity as activation functions in the network.

To implement a reflection, one can use the following
strategy. Step 1: rotate the axes to have the j-th axis ej
perpendicular to the reflection hyperplane and shift the point
(i.e. the j-th coordinate) to have the reflection hyperplane
at the origin. Step 2: take the absolute value of the j-th
coordinate. Step 3: do the inverse operation of step 1.

Now consider the ReLU network illustrated in Figure 3. The
edges between the input layer and the hidden layer represent
the rotation matrix, where the j-th column is repeated twice,
and p is a bias applied on the j-th coordinate. Within the
dashed square, the absolute value of the j-th coordinate is
computed and shifted by −p. Finally, the edges between the
hidden layer and the output layer represent the inverse rotation
matrix. This ReLU network computes a reflection. We call it
a reflection block.

All reflections can be naively implemented by a simple
concatenation of reflection blocks. This leads to a very deep



p

−p

y1

y2

Fig. 3. Reflection ReLU network (called reflection block).

and narrow network of depth O(n2) and width O(n).
Regarding the 2n+1 remaining pieces after folding, we have

two options (in both cases, the number of operations involved
is negligible compared to the previous folding operations). To
directly discriminate the point with respect to f , we implement
the HLD on these remaining pieces with two additional hidden
layers (see e.g. Figure 2 in [5]): project yfolded on the
2n + 1 hyperplanes (with one layer of width 2n + 1) and
compute the associated Boolean equation with an additional
hidden layer. If needed, we can alternatively evaluate f(ỹ) via
O(log(n)) additional hidden layers. First, compute the n−1 2-
∨ via two layers of size O(n) containing several “max ReLU
networks” (see e.g. Figure 3 in [2]). Then, compute the n-
∧ via O(log(n)) layers. Note that f(ỹ) can also be used for
discrimination via the sign of yi − f(ỹ).

The total number of parameters in the whole network is
O(n4). In [15] - VII-G, we quickly discuss whether or not
this can be improved.

Eventually, the CPV is solved by using n such networks in
parallel (this could also be optimized). The final network has
width O(n2) and depth O(n2).

D. Decoding via a shallow network

A two-layer ReLU network with n inputs and w1 neurons
in the hidden layer can compute a CPWL function with at
most

∑n
j=0

(
w1

j

)
pieces [10]. This result is easily understood

by noticing that the non-differentiable part of max(0, a) is a
n−2-dimensional hyperplane that separates two linear regions.
If one sums w1 functions max(0, dj ·y), where dj , 1 ≤ j ≤ w1,
is a random vector, one gets w1 of such n − 2-hyperplanes.
The rest of the proof consists in counting the number of linear
regions that can be generated by these w1 hyperplanes. The
number provided by the previous formula is attained if and
only if the hyperplanes are in general position. Clearly, in
our situation the n − 2-hyperplanes partitioning D are not in
general position: the hyperplane arrangement is not simple.
The proof of the following theorem, available in [15] - VII-E,
consists in finding a lower bound on the number of such n−2-
hyperplanes.

Theorem 6. A ReLU network with one hidden layer needs at
least n∑

i=2

(i− 1) ·
(
n− 1

n− i

)
(10)

neurons to solve the CVP for the lattice An.

VI. CONCLUSIONS

We recently applied this theory to a SVR basis of lattices
En, 6 ≤ n ≤ 8. The decision boundary function has a
number of pieces equal to

n−1∑
i=3

(
n− 3

n− i

)(
1 + (n− i) + 2

[
1 + 2(n− i) +

(
n− i

2

)]

+

[
1 + 3(n− i) + 3

(
n− i

2

)
+

(
n− i

3

)])
+ 1,

a number which we successfully linearized via folding.
From a learning perspective, our findings suggest that

many optimal decoders may be contained in the function
class Φ of deep ReLU networks. Learnability results of the
restricted model [1][3] show that the sample complexity is
then mΦ(ε, δ) = O(WL log(W )/ε), avoiding the 1/ε2 of the
general model (where W is the number of parameters in the
network and L the number of layers).

Additionally, the folding approach suits very well the non-
uniform finite sample bounds of the information bottleneck
framework [13]. Indeed, if we model the input of the network
and its i-th layer after the i-th reflection block by random
variables Y and Yi, clearly I(Y ;Yi) is reduced compared to
I(Y ;Yi−1) for any distribution of Y .

REFERENCES

[1] M. Anthony, P. Bartlett. Neural Network Learning: Theoretical Founda-
tions. Cambridge University Press, 2009.

[2] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee “Understanding deep
neural networks with rectified linear units.” International Conference
on Learning Representations, 2018.

[3] P. Bartlett, N.Harvey, C. Liaw, and A. Mehrabian, (2017). “Nearly-tight
VC-dimension and pseudodimension bounds for piecewise linear neural
networks.” arXiv preprint arXiv:1703.02930, Oct. 2017.

[4] J. Conway and N. Sloane. Sphere packings, lattices and groups.
Springer-Verlag, New York, 3rd edition, 1999.

[5] V. Corlay, J.J. Boutros, P. Ciblat, and L. Brunel, “Neural Lattice
Decoders,” arXiv preprint arXiv:1807.00592, July. 2018.

[6] H. Coxeter. Regular Polytopes. Dover, NY, 3rd ed., 1973.
[7] R. Eldan and O. Shamir. “The power of depth for feedforward neural

networks.” 29th Annual Conference on Learning Theory, pp. 907–940,
2016.

[8] J. H◦astad. “Almost optimal lower bounds for small depth circuits.” Proc.
18th ACM symposium on Theory of computing, pp. 6–20, 1986.

[9] G. Montùfar, R. Pascanu, K. Cho, and Y. Bengio, “On the Number
of Linear Regions of Deep Neural Networks,” Advances in neural
information processing systems, pp. 2924-2932, 2014.

[10] R. Pascanu, G. Montufar, and Y. Bengio. “On the number of inference
regions of deep feed forward with piece-wise linear activations,” arXiv
preprint arXiv:1312.6098, Dec. 2013.

[11] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein.
“On the expressive power of deep neural networks,” arXiv preprint
arXiv:1606.05336, Jun. 2016.

[12] I. Safran and O. Shamir. “Depth-width tradeoffs in approximating
natural functions with neural networks.” In International Conference
on Machine Learning, pp. 2979–2987, 2017

[13] O. Shamir, S. Sabato, and N. Tishby, “Learning and generalization with
the information bottleneck,” Theor. Comput. Sci., vol. 411, no.29-30,
pp. 2696–2711, 2010.

[14] M. Telgarsky. “Benefits of depth in neural networks,” 29th Annual
Conference on Learning Theory, pp. 1517–1539, 2016.

[15] The long version of this paper including an appendix is available at:
www.josephboutros.org/isit2019lattices.pdf.


