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Type-I HARQ Under the Rician Channel

Xavier Leturc Member, IEEE, Philippe Ciblat Senior Member, IEEE and

Christophe J. Le Martret, Senior Member, IEEE

Abstract

This paper addresses the per-link power and bandwidth allocation problem with the objective of

maximizing energy efficiency (EE) related metrics under a per-link minimum goodput constraint when

only statistical channel state information is available. We consider a parallel (i.e., without multiuser

interference) Rician channel model, which encompasses both Rayleigh and additive white Gaussian

noise channels as special cases. We also consider Type-I hybrid automatic repeat request with practical

modulation and coding schemes. The addressed problems are the maximization of the sum of the user’s

EE, the maximization of the EE of the user with the lowest EE and the maximization of the EE of the

network. We derive the optimal solutions of these problems in closed form using fractional programming

and a convex optimization framework. We show that substantial gains can be achieved by taking into

account the line of sight between the transmitter and the receiver instead of only considering the average

channel power.

Index Terms

HARQ, resource allocation, energy efficiency, fractional programming, convex optimization, D2D

communications.

I. INTRODUCTION

Modern wireless communications often take place in a multiuser context. The performance of

multiuser systems is led by so-called resource allocation (RA), which requires some knowledge
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about the links’ channels. In this work, we consider that only statistical channel state information

(CSI) is available to perform RA. This assumption is realistic, for instance, in ad hoc networks

[3], or in device to device (D2D) communications, which are of central importance within 5G

networks [4], [5]. Indeed, in these types of networks, RA may be performed in an assisted fashion,

i.e., there is a node called the resource manager (RM) performing RA [6]. As a consequence, the

RM, which collects all the links’ CSI, has only access to outdated CSI. Instead of performing RA

using unreliable outdated CSI, we consider that the RM uses statistical CSI to perform RA [3].

Hence, the underlying statistical channel model is crucial. In this paper, we especially focus on the

Rician fading channel, which is known to accurately represent the realistic statistical behavior of

wireless channel when there exists a line of sight (LoS) between the transmitter and the receiver

[7], [8]. This channel model encompasses both the Rayleigh and the additive white Gaussian

noise (AWGN) channels as special cases. The Rician channel model receives more attention

today in the literature due to its accuracy of modeling the channel in the context of millimeter

wave communications [7], [9], which is a promising technology for 5G communications [4].

Since we have access only to statistical CSI, we consider the use of the hybrid automatic repeat

request (HARQ) mechanism to increase the reliability of the communications. This mechanism

is a combination of automatic repeat request (ARQ) and forward error correction (FEC) allowing

the improvement of the transmission capability. Actually, FEC provides a correction capability

while ARQ allows the system to take advantage of the time varying nature of the wireless

channel. The HARQ mechanism is used today in a multiuser context, for instance in 4G long

term evolution (LTE) [10]. There exist different types of HARQ, differing in the way the packets

are sent and decoded [11]. In this paper, we find the optimal closed form solutions of the RA

problems for Type-I HARQ, which is the simplest HARQ protocol since the packets received

in error are discarded. We also numerically evaluate the performance of our proposed solutions

to Type-II HARQ, which keeps packets received in error to help the decoding step.

RA is performed by optimizing a criterion subject to quality of service (QoS) constraints.

Two well established criteria are the minimization of the total transmit power [12] and the

maximization of the data rate [13]. Although it is clear that maximizing the data rate leads to

high energy consumption and is in general not energy efficient, it is less obvious that minimizing

the transmit power may not be efficient from an energy viewpoint. these reasons, another metric

called energy efficiency (EE) has appeared in the literature and has recently gained much interest

[14], [15]. This metric, measured in bits/joule, is defined as the ratio between the goodput, i.e.,
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the number of information bits that can be transmitted without error per unit of time, and the

power consumption to transmit these bits. Hence, the EE is of interest since it captures a trade off

between the goodput and the energy consumption. In this paper, we are interested in maximizing

EE related metrics for HARQ-based systems when only statistical CSI is available. In details, we

focus on maximizing the sum of the users’ EE (SEE), the EE of the network, called global EE

(GEE) and the EE of the link with the lowest EE called minimum EE (MEE). In the following, we

introduce some notations extensively used throughout this paper, along with insights regarding

the metrics relevancy.

• The SEE maximization, referred to as the maximum SEE (MSEE), is user-centric and it is

flexible since one can plug weights in the sum to represent the links’ priority (although the

choice of the weights is not discussed in this paper).

• The GEE maximization, referred to as the maximum GEE (MGEE) is of interest as long

as maximizing the network EE is at stake.

• The MEE maximization, referred to as the maximum MEE (MMEE), is interesting when

achieving high fairness among the links’ EE is the objective, i.e., when each links’ EE is

crucial.

Our objective is to allocate to each link a transmit power and a bandwidth proportion. We

consider a parallel channel model, i.e., there is no multiuser interference.

A. Related Works

First, let us review the works studying the EE of HARQ in the single user context [16]–

[29]. In [16]–[27], the authors consider statistical CSI at the transmitter. In contrast, imperfect

CSI is assumed in [28] while perfect CSI is assumed to be available in [29]. Notice that, in

[29], the authors do not explicitly consider the HARQ mechanism, but the considered metric is

valid for Type-I HARQ. These works mainly address power and/or rate optimization between

transmissions related to the same information packet, typically using convex optimization.

Second, we focus on the works dealing with RA with EE related criteria in a multiuser

context when considering perfect CSI at the transmitter side. In this category, a lot of works

consider the use of capacity achieving codes [30]–[38] whereas practical modulation and coding

schemes (MCS) are considered in [39]. Among those works, [30]–[36], [39] does not consider

HARQ whereas this mechanism is taken into account in [37], [38]. In details, when capacity

achieving codes are considered with no HARQ, the MSEE problem is solved in [30] while the
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MMEE problem is solved in [31]. In [32], several heuristics are derived for the MSEE and

MMEE problems. The multi-cell problem is addressed in [33], [34]. In [33], the MSEE and

MGEE problems are solved while, in [36], the MEE maximization problem is addressed. In

[35], centralized and decentralized algorithms are proposed for the MGEE problem. In [34], a

distributed algorithm is proposed to solve the MMEE problem. When capacity achieving codes

are considered with HARQ and perfect CSI [37], [38], the GEE is optimized in [37] while

several RA schemes are investigated in [38]. When practical MCS along with perfect CSI are

considered without HARQ, the MGEE problem for the LTE downlink is addressed in [39].

Third, we review the works addressing the RA problem with EE related objective functions

when statistical CSI is available. This problem is addressed considering capacity achieving codes

with no HARQ and the Rayleigh channel in [40], [41]. Practical MCS with HARQ are considered

in [42], [43], which consider the Rayleigh channel. In [42], the authors maximize the harmonic

mean of the users’ EE in a relay assisted networks when Type-I HARQ is considered. In [43],

the MSEE problem is solved for Type-II HARQ.

Finally, Table I summarizes the existing works concerning the RA problem with EE related

metrics for HARQ when considering practical MCS. We see that no work addresses the RA

problem with the objective of maximizing EE related metrics under the Rician channel when

statistical CSI is available.

TABLE I

EXISTING EE-BASED RA SOLUTIONS FOR HARQ WITH PRACTICAL MCS AND STATISTICAL CSI IN THE MULTIUSER

CONTEXT.

Rayleigh Rice

Type-I [42], [43] None

Type-II [43] None

B. Contributions and Paper Organization

The contributions of this paper are the following ones:

• We optimally solve the MSEE, MGEE and MMEE problems for Type-I HARQ under the

Rician channel. Actually, we manage to transform these problems which have no interesting

properties like convexity into convex problems. Our main technical contribution is to provide
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the analytical optimal solutions of these convex problems using the Karush-Kuhn-Tucker

(KKT) conditions.

• We analyze the results of the proposed criteria through numerical simulations, and point

out that substantial EE gains can be achieved by taking into account the Rician channel

instead of the conventional Rayleigh channel. In other words, we exhibit the importance

of taking into account the existence of a LoS during RA instead of only considering the

channel average power.

• We numerically study RA solutions for Type-II HARQ under the Rician channel. Actually,

from Table I, we see that RA for Type-II HARQ under the Rayleigh channel is done in

[43], while in this paper, we perform RA for Type-I HARQ under the Rician channel. We

compare RA from [43] and the one from this paper when applied on Type-II HARQ under

the Rician channel.

The rest of the paper is organized as follows. In Section II, we present the system model, our

main assumptions and the RA problems. In Section III, we explain the solution methodology used

to solve these problems. In Section IV, we optimally solve the MSEE problem. In Section V, we

optimally solve the MGEE problem. In Section VI, we optimally solve the MMEE problem. In

Section VII, we study the results of the proposed criteria and the solutions to extend our work

to Type-II HARQ through numerical simulations. Finally, in Section VIII, we draw concluding

remarks. For the ease of readability, all the proofs are provided in the Appendices.

II. SYSTEM MODEL, ASSUMPTIONS AND PROBLEM FORMULATION

A. Channel Model and HARQ Mechanism

Let us consider a network with a total bandwidth B divided into Nc subcarriers, which

are shared between L active links using the orthogonal frequency division multiple access

(OFDMA) as the multiple access technology. We assume a parallel channel model, i.e., there is

no multiuser interference. Notice that our derivations extend straightforwardly to any multiple

access multicarrier scheme and to single-carrier frequency division multiplexing as long as there

is no interference between users. We suppose that the RM centralizes the statistical CSI of the

links to perform RA. We consider for each link a multipath channel, which is constant within

one orthogonal frequency division multiplexing (OFDM) symbol and varies independently from

OFDM symbol to OFDM symbol. Notice that although this assumption is ideal, all the solutions

derived in this paper are applicable to channel with longer channel coherence time as long as an
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analytical error probability approximation fulfilling the mild assumptions detailed in Section II-D

is available.

Similarly to [44], the received signal on link ` on the nth subcarrier at OFDMA symbol i can

be written as

Y`(i, n) = H`(i, n)X`(i, n) + Z`(i, n), (1)

with H`(i, n) ∼ CN (a`, ζ
2
` ) where N (a`, ζ

2
` ) stands for the complex Gaussian distribution with

mean a` and variance ζ2
` , X`(i, n) is the transmitted symbol on the nth subcarrier of the ith

OFDMA symbol and Z`(i, n) ∼ CN (0, N0B/Nc), with N0 the noise power spectral density.

We assume that H`(i, n) is known at the receiver of the `th link. We can define the average

gain-to-noise ratio (GNR) G` and Rician K factor K` of the `th link as

G` :=
E[|H`(i, n)|2]

N0

=
Ω`

N0

, (2)

K` :=
|a`|2

ζ2
`

, (3)

with Ω` := |a`|2 + ζ2
` , where := means by definition. Notice that K` = 0 corresponds to the

Rayleigh channel while K` → +∞ corresponds to the AWGN channel. It is assumed that the RM

only knows the average GNR and the Rician K factor of each link to perform RA. Moreover, we

suppose that well-designed time and frequency interleavers are used such that each modulated

symbol experiments experiences an independent channel realization, i.e., the channel can be seen

as fast fading.

We assume that, at the medium access (MAC) layer, each link uses a Type-I HARQ scheme.

The information bits are grouped into packets of L` bits, which are encoded by an FEC with rate

R` to obtain the MAC packets. A MAC packet is sent on the channel at most T times. At the

received side, after decoding the mth received packet, the information bits are checked using a

cyclic redundancy check (CRC) which is assumed to be error free. An acknowledgement (ACK)

is sent if the information bits are correctly decoded, while otherwise a negative ACK (NACK)

is sent. Since Type-I HARQ is considered, the MAC packets received in error are discarded.

B. Energy Consumption Model

We suppose that a quadrature amplitude modulation (QAM) modulation with m` bits per

symbol is used on link `. Let n` and γ` := n`/Nc be the number of subcarriers and the

bandwidth proportion allocated to the `th link, respectively. Because the channel coefficients on
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each subcarrier are identically distributed, the same power is used on all the subcarriers, and we

allocate bandwidth proportion instead of specific subcarriers. We then define P` := E[|X`(j, n)|2]

as the power allocated per subcarrier to the `th link1.

The total energy consumed to transmit and receive one packet is the sum of the transmission

energy and the circuitry consumption of both the transmitter and the receiver. The power used

by the `th link to transmit and receive one OFDMA symbol is

PT,` := Ncγ`P`κ
−1
` + Pctx,` + Pcrx,`, (4)

with κ` ≤ 1 the efficiency of the power amplifier and Pctx,` (resp. Pcrx,k) the circuitry power

consumption of the transmitter (resp. the receiver).

C. Energy Efficiency

The EE E` of link ` is the ratio between its goodput η` and its power consumption:

E` :=
η`
PT,`

[bits/s]
[W]

. (5)

Similarly, the GEE is the ratio of the sum of the users’ goodput and the sum of their power

consumption, which writes:

G :=

∑L
`=1 η`∑L
`=1 PT,`

. (6)

For Type-I HARQ and when the channel has no correlation between the HARQ rounds, the

goodput is given by [11]:

η` = Bα`γ`(1− q`(G`E`)), (7)

where q`(x) is the packet error rate (PER) on the `th link for signal-to-noise ratio (SNR) x,

E` := NcP`/B and α` := m`R`. Notice that because Type-I HARQ is considered and since the

channel is uncorrelated between the HARQ round, (7) is independent of T . By plugging (7) and

(4) into (5) and (6), we obtain the following expressions of the EE and GEE:

E`(E`, γ`) =
α`γ`(1− q`(G`E`))

κ−1
` γ`E` + C`

, ∀`, (8)

G(E,γ) =

∑L
`=1 α`γ`(1− q`(G`E`))∑L
`=1(κ−1

` γ`E` + C`)
, (9)

where C` := (Pctx,` + Pcrx,`)/B, and E := [E1, . . . , EL], γ := [γ1, . . . , γL] are the optimization

variables, i.e., the resource that have to be allocated to the links.

1Notice that a signal is typically in Volts and thus expectation of its signal square (P`) might be in (Volts)2. However, a power

in Watt is proportional to (Volts)2 up to an impedance and thus, for simplicity, we assume that P` is in Watt.
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D. Assumptions on the Packet Error Rate

For future derivations, we make now three assumptions on the PER q`(x).

Assumption 1. q`(x) is strictly convex, i.e., for all x in R+∗, q′′` (x) > 0 with q′′` (x) the second

order derivative of q`(x).

Assumption 2. q`(x) is a strictly decreasing function on R+∗, i.e., for all x in R+∗, q′`(x) < 0

with q′`(x) the first order derivative of q`(x).

Assumption 3. limx→∞ q`(x) = 0 and limx→∞ q
′
`(x) = 0.

In Section VII devoted to simulations, we use the PER approximation provided in [44] for

the Rician fast fading channel, which is given by:

q`(x) =

c` 4∑
i=1

Ωi
e
− (a`)

2xθid`
1+2σ2

h,`
xθid`

1 + 2σ2
h,`xθid`


ζ`

eb` , (10)

where θi and Ωi are fitting coefficients related to approximation of Q-function, where ζ` and b`

are fitting parameters depending on the considered MCS and on the Rician K factor which are

provided in [44, Table I] whereas c` and d` are modulation dependent parameters available in

[45, Table 6.1]. One can check that Assumptions 1-3 hold for (10).

E. Considered Constraints

In this paper, we consider a QoS constraint by imposing a target minimum goodput constraint

per link, denoted by η(t)
` , which can be expressed, for link `:

Bα`γ`(1− q`(G`E`)) ≥ η
(t)
` . (11)

In addition, from the definition of the bandwidth parameter, the following inequality has to hold:
L∑
`=1

γ` ≤ 1. (12)

F. Problem Formulation

We address the MSEE, MGEE and MMEE problems, which write respectively as follows:
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P1: max
E,γ

L∑
`=1

α`γ`(1− q`(G`E`))

κ−1
` γ`E` + C`

, s.t. (11), (12),

P2: max
E,γ

∑L
`=1 α`γ`(1− q`(G`E`))∑L
`=1(γ`E`κ

−1
` +D`)

, s.t. (11), (12),

P3: max
E,γ

min
`∈{1,...,L}

α`γ`(1− q`(G`E`))

κ−1
` γ`E` + C`

, s.t. (11), (12).

In the rest of this paper, we address the optimal solution of Problems 1-3.

III. SOLUTION PROCEDURE

Problems P1-P3 have no special properties like convexity and thus they cannot be directly

solved with affordable complexity. To overcome this issue, we propose the following change of

variables, enabling us to apply convex optimization tools to solve them: (γ,E) 7→ (γ,Q), with

Q := [Q1, . . . , QL], and

Q` := γ`E`, ∀`. (13)

Using (13), constraints (11) can be rewritten as

η
(0)
` ≤ α`γ`(1− q`(G`Q`/γ`)), ∀`, (14)

with η(0)
` := η

(t)
` /B. Then, problems P1-P3 can be rewritten equivalently as follows:

P1’: max
Q,γ

L∑
`=1

α`γ`(1− q`(G`Q`/γ`))

κ−1
` Q` + C`

, s.t. (14), (12),

P2’: max
Q,γ

∑L
`=1 α`γ`(1− q`(G`Q`/γ`))∑L

`=1(κ−1
` Q` + C`)

, s.t. (14), (12),

P3’: max
Q,γ

min
`∈{1,...,L}

α`γ`(1− q`(G`Q`/γ`))

κ−1
` Q` + C`

, s.t. (14), (12).

We characterize P1’-P3’ in the following lemma, whose proof is provided in Appendix A.
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Lemma 1. The numerators of the objective functions of Problems P1’ to P3’ are jointly concave

in (γ,Q), their denominators are jointly convex in (γ,Q) and the feasible set defined by (14)

and (12) is jointly convex in (γ,Q).

According to Lemma 1, we know that P1’-P3’ (and thus P1-P3 since they are equivalent) can

be optimally solved iteratively: P1’ can be solved using the Jong’s algorithm [46], P2’ using

the Dinkelbach’s algorithm [47] and P3’ using the generalized Dinkelbach’s algorithm [48].

At each iteration, these three algorithms require solving a convex optimization problem. The

major technical contribution of this paper is to provide the optimal solution of these convex

optimization problems using the so-called KKT conditions [49].

For the three problems, our solution is organized as follows: we first express the optimal

solution as a function of a single parameter, and second we find the optimal value of this

parameter.

IV. MSEE PROBLEM (P1)

We apply the Jong’s algorithm [46], which has been used in the RA context with EE related

metrics for instance in [30], [50], [51]. At iteration i, we have to solve the following problem:

P1.1: max
Q,γ

L∑
`=1

u
(i)
` α`γ`(1− q`(G`Q`/γ`))− u(i)

` β
(i)
` (κ−1

` Q` + C`), s.t. (14), (12),

where, ∀`, u(i)
` > 0 and β(i)

` > 0 depend on the optimal solution at iteration (i− 1).

P1.1 is the maximization of a concave function over a convex set. Hence, the KKT conditions

are necessary and sufficient to find its global optimal solution [49]. Defining δ := [δ1, . . . , δL]

and λ as the Lagrangian multipliers associated with constraints (14) and (12), respectively, the

KKT conditions of P1.1 write:

α`G`q
′
` (G`Q`/γ`) (u

(i)
` + δ`) + u

(i)
` β

(i)
` κ

−1
` = 0, ∀`, (15)

α`h` (G`Q`/γ`) (u
(i)
` + δ`) + λ = 0, ∀`, (16)

with h`(x) := −1+q`(x)−xq′`(x). In addition, the following complementary slackness conditions

hold at the optimum:

δ`

(
η

(0)
` − α`γ` (1− q` (G`Q`/γ`))

)
= 0, ∀`, (17)
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λ

(
L∑
`=1

γ` − 1

)
= 0. (18)

To solve the optimality conditions (15)-(18), in a first time we consider the value of λ as fixed

and we find the optimal solution as a function of this multiplier. In a second time, we search

for the optimal value of this multiplier.

A. Solution for Fixed λ

From (15), we obtain the following L relations:

u
(i)
` + δ` =

−u(i)
` β

(i)
` κ

−1
`

α`G`q′`(x
∗
`(λ))

, ∀`, (19)

with, ∀`, x∗`(λ) := G`Q
∗
`(λ)/γ∗` (λ), where Q∗`(λ) (resp. γ∗` (λ)) is the optimal Q` (resp. γ`) for

given λ. Then, by plugging (19) into (16), we get

g`(x
∗
`(λ)) =

λ

u
(i)
` β

(i)
` κ

−1
`

, ∀`, (20)

with g`(x) := h`(x)/(G`q
′
`(x)). By computing the derivative of g`(x), one can prove that it is

strictly increasing, allowing us to obtain x∗`(λ) using (20) as:

x∗`(λ) = g−1
`

(
λ

u
(i)
` β

(i)
` κ

−1
`

)
, ∀`. (21)

We can then plug this optimal value into P1.1, which can be rewritten as:

P1.2: max
γ

L∑
`=1

K`(λ)γ`, s.t. γ` ≥ γ`,min(λ),∀`, and (12),

with, ∀`, K`(λ) := α`u
(i)
` (1 − q`(x∗`(λ))) − u(i)

` β
(i)
` κ

−1
` x∗`(λ)G−1

` and γ`,min(λ) := η
(0)
` /(α`(1 −

q`(x
∗
`(λ)))). P1.2 is a linear program depending only on the optimization variables γ. In addition,

since there is only one coupling constraint (12), its optimal solution is obtained straightforwardly

according to the following two possible cases.

1) If, ∀`, K`(λ) < 0: ∀`, γ∗` (λ), the optimal value of γ`(λ), is given by γ∗` (λ) = γ`,min(λ).

2) If, ∃`, such that K`(λ) ≥ 0: let `M,K be such that, ∀`, K`M,K(λ) ≥ K`(λ). Then, ∀` 6= `M,K,

γ∗` (λ) = γ`,min(λ) and γ∗`M,K(λ) = 1−
∑

` 6=`M,K γ`,min(λ).
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B. Search for the Optimal λ

To find λ∗, the optimal value of λ, we need to identify two possibilities: either there exists `

such that δ` = 0, or ∀`, δ` > 0. In the following, we discuss these two possible cases.

Case 1: ∃` such that δ` = 0. In the following lemma whose proof is provided in Appendix B,

we exhibit λ∗.

Lemma 2. If there is at least one link `1 with δ`1 = 0, then we have

λ∗ = − arg min
`
{α`u`h`(x∗`,δ`=0)}, (22)

with x∗`,δ`=0 := q′−1
` (−β(i)

` κ
−1
` /(α`G`)).

Thanks to Lemma 2, we can optimally solve P1’ solving P1.2 with low complexity. Moreover,

this lemma enables us to check whether ∃` such that δ` = 0 constraint by computing λ∗ and

plugging it into P1.2. It the resulting problem is feasible, then we know that ∃` such that δ` = 0.

Case 2: ∀`, δ` > 0. In this case, γ∗` (λ) can be obtained more easily using (17), which gives

us

γ∗` (λ) =
η

(0)
`

1− q`(x∗`(λ))
, ∀`, (23)

where x∗`(λ) is given by (21). Since g`(x) is strictly increasing, x∗`(λ) is also increasing, implying

that γ∗` (λ) is strictly decreasing due to (23). To find λ∗, we use the complementary slackness

condition (18). To this end, we define the following function representing the sum of the optimal

bandwidth parameters:

Γ(λ) :=
L∑
`=1

γ∗` (λ). (24)

Since γ∗` (λ) is strictly decreasing, there are two possibilities: either Γ(0) ≤ 1 and in this case

λ∗ = 0, or λ∗ is such that Γ(λ∗) = 1. Hence, λ∗ can be found by a one dimensional linesearch

method.

C. Optimal Solution of MSEE (P1)

Gathering all the pieces together, the optimal solution of P1 is depicted in Algorithm 1,

for which we define ψ(β(i),u(i),γ,Q) := [ψ1(β
(i)
1 , u

(i)
1 , γ1, Q1), . . . , ψ2L(β

(i)
L , u

(i)
L , γL, QL)], with

β(i) := [β
(i)
1 , . . . , β

(i)
L ] and u(i) := [u

(i)
1 , . . . , u

(i)
L ] and, for ` = 1, . . . , L:

ψ`

(
β

(i)
` , u

(i)
` , γ`, Q`

)
:= −α`γ`(1− q`(G`Q`/γ`)) + β

(i)
` (κ−1

` Q` + C`), (25)

ψ`+L

(
β

(i)
` , u

(i)
` , γ`, Q`

)
:= −1 + u

(i)
` (κ−1

` Q` + C`). (26)

January 29, 2019 DRAFT



13

Algorithm 1 Optimal solution of P1.
1: Set ε > 0, i = 0, C = ε+ 1.

2: Initialize β(0) and u(0).

3: while C > ε do

4: Set λ∗ = −min` α`u`h`(x
∗
`,δ`=0), where ∀`, x∗`,δ`=0 is computed as indicated in Lemma 2

5: If P1.1 is feasible with λ∗ then

6: Find (Q∗,γ∗) by solving P1.2

7: else

8: Find (Q∗,γ∗) using a linesearch method (case 2 in Section IV-B)

9: end if

10: Set C = ||ψ(β(i),u(i),γ∗,Q∗)||.

11: Update u(i) and β(i) using the modified Newton method detailed in [30, Eqs. (33)-(34)]

12: i = i+ 1.

13: end while

V. MGEE PROBLEM (P2)

The MGEE problem is a fractional programming problem, which can be solved using the

Dinkelbach’s algorithm [47]. This iterative algorithm has been used in numerous works dealing

with RA (see [14] and reference therein), and requires to solve the following problem at the ith

iteration:

P2.1: max
Q,γ

L∑
`=1

(
α`γ` (1− q` (G`Q`/γ`))− ν(i)

(
κ−1
` Q` + C`

))
, s.t. (14), (12),

where ν(i) ≥ 0 depends on the optimal solution at iteration (i − 1). Using the same notations

for the Lagrangian multipliers as for the MSEE, the KKT conditions of P2.1 write as follows

α`G`q
′
` (G`Q`/γ`) (1 + δ`) + ν(i)κ−1

` = 0, ∀`, (27)

α`h` (G`Q`/γ`) (1 + δ`) + λ = 0, ∀`, (28)

and the complementary slackness conditions are given by

δ`

(
η

(0)
` − α`γ` (1− q` (G`Q`/γ`))

)
= 0, ∀`, (29)
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λ

(
L∑
`=1

γ` − 1

)
= 0. (30)

We observe that, if ∀` we let u(i)
` = 1 and β

(i)
` = ν(i), then the optimality conditions of the

MSEE problem, i.e., (15)-(18) are the same as the ones of the MGEE problem, i.e., (27)-(30).

Hence, we can apply the same procedure to solve P2.1 as the one of P1.1.

The optimal solution of P2 can be found using Algorithm 2.

Algorithm 2 Optimal solution of P2.
1: Set ε > 0, ν(0) = 0, i = 0, C = ε+ 1

2: while |C| > εD do

3: Set λ∗ = −min` α`h`(x
∗
`,δ`=0), where ∀`, x∗`,δ`=0 is computed as indicated in Lemma 2

4: If P2.1 is feasible with λ∗ then

5: Find (Q∗,γ∗) by solving P1.2, where ∀`, u(i)
` is replaced by 1 and β(i)

` is replaced by ν(i).

6: else

7: Find (Q∗,γ∗) using a linesearch method (case 2 in Section IV-B) where ∀`, u(i)
` is replaced

by 1 and β(i)
` is replaced by ν(i).

8: end if

9: Set C =
∑L

`=1 ψ`(ν
(i), 1, γ∗` , Q

∗
`)

10: Update ν(i+1) = G(Q∗,γ∗)

11: i = i+ 1

12: end while

VI. MMEE PROBLEM (P3)

The MMEE problem falls into the framework of generalized fractional programming, which

can be efficiently handled using the so-called generalized Dinkelbach’s algorithm [48]. This

iterative algorithm has been used in the RA context for instance in [31], and requires to solve

the following convex optimization problem at the ith iteration:

max
Q,γ

min
`

{
α`γ` (1− q` (G`Q`/γ`))− ψ(i)(κ−1

` Q` + C`)
}
, (31)

s.t. (14), (12), (32)
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where ψ(i) ≥ 0 depends on the optimal solution at iteration (i−1). We solve this problem using

its epigraph formulation [49], i.e., we introduce an auxiliary optimization variable t along with

the following L new constraints:

t ≤ α`γ` (1− q` (G`Q`/γ`))− ψ(i)(κ−1
` Q` + C`), ∀`, (33)

allowing us to rewrite it equivalently as follows:

P3.1: max
Q,γ,t

t, s.t. (14), (12), (33)

This problem is the maximization of a concave function over a convex set. Defining ω :=

[ω1, . . . , ωL] as the Lagrangian multipliers associated with constraints (33) and using the same

notations as in Section IV for the multipliers associated with constraints (14) and (12), the KKT

conditions of P3.1 are given by
L∑
`=1

ω` − 1 = 0, (34)

α`G`q
′
` (G`Q`/γ`) (ω` + δ`) + ω`ψ

(i)κ−1
` = 0, ∀`, (35)

α`h` (G`Q`/γ`) (ω` + δ`) + λ = 0, ∀`. (36)

In addition, the following complementary slackness conditions hold at the optimum:

ω`
(
t− α`γ` (1− q` (G`Q`/γ`)) + ψ(i)

(
κ−1
` Q` + C`

))
= 0, ∀`, (37)

δ`

(
η

(0)
` − α`γ` (1− q` (G`Q`/γ`))

)
= 0, ∀`, (38)

λ

(
L∑
`=1

γ` − 1

)
= 0. (39)

We observe an important difference between the KKT conditions related to P3.1 as compared with

the ones of P1.1 and P2.1: ∀`, the optimality condition (36) involves three distinct Lagrangian

multipliers, λ, ω` and δ`, preventing us from expressing the optimal solution of P3.1 as a

function of a single multiplier. Fortunately, in the following lemma whose proof is provided

in Appendix C, we are able to prove that constraints (12) and (33) hold with equality.

Lemma 3. At the optimum of P3.1, λ > 0 and, ∀`, ω` > 0.

Since λ > 0, the conditions (35) and (36) can be rewritten as follows:

α`G`q
′
` (G`Q`/γ`) (ω̃` + δ̃`) + ω̃`ψ

(i)κ−1
` = 0, ∀`, (40)
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α`h` (G`Q`/γ`) (ω̃` + δ̃`) + 1 = 0, ∀`, (41)

with, ∀`, ω̃` := ω`/λ and δ̃` := δ`/λ.

Thanks to Lemma 3, we can use tools from the multilevel waterfilling theory [52] to find the

optimal solution of P3.1. The idea is to express parameters x` := G`Q`/γ` (which is equal to

G`E`) and γ` as a function of the single parameter t using (37). The condition (39) is then used

to obtain the optimal value of t, enabling us to find the optimal values of γ` and x`, and as a

consequence the optimal Q` and then E`.

Let us define ω̃ := [ω̃1, . . . , ω̃L]. We also define It (resp. Īt) as the set of links with δ̃` = 0

(resp. δ̃` > 0). In the following, we first consider ω̃ as fixed, and we find the optimal values of

x` and γ` for the links in It and Īt as a function of t, as well as a characterization of these two

sets.

A. Solution for Fixed ω̃ and t

Case 1: ` ∈ It. From (40), we obtain x∗`,1, the optimal value of x`, as follows:

x∗`,1 = q′−1
`

(
−ψ(i)κ−1

`

α`G`

)
. (42)

Using Lemma 3 and (37), we obtain γ∗`,1(t), the optimal value of γ`, depending only on t as:

γ∗`,1(t) =
t+ ψ(i)C`

α`(1− q`(x∗`,1))− ψ(i)κ−1
` G−1

` x∗`,1
. (43)

The following lemma, whose proof is provided in Appendix D, enables us to check whether

` belongs to It or not.

Lemma 4. A link ` is in It iff the following inequality holds:

t ≥ tT` , (44)

with tT` := −ψ(i)C` + η
(0)
` (1− (ψ(i)κ−1

` G−1
` x∗`,1)/(α`(1− q`(x∗`,1)))).

Case 2: ` ∈ Īt.

1) Optimal solution as a function of ω̃`: Similarly to the derivations related to P1.1, using

(40) and (41) we obtain x∗`,2(ω̃`), the optimal x`, as follows:

x∗`,2(ω̃`) := g−1
`

(
1

ω̃`ψ(i)κ−1
`

)
. (45)
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Since δ̃` > 0, we obtain from (38) γ∗`,2(ω̃`), the optimal γ`, depending only on ω̃` as:

γ∗`,2(ω̃`) =
η

(0)
`

α`(1− q`(x∗`,2(ω̃`)))
. (46)

We have managed to obtain the optimal values of x` and γ` for fixed ω̃ and t. Now, we turn

our attention to exhibit a relation between ω̃` and t in order to express x∗`,2(ω̃`) and γ∗`,2(ω̃`) as

function of t.

2) Relation between ω̃` and t: Using Lemma 3, we obtain the following L relations by

plugging (45) and (46) into (37):

t =M`(ω̃`), ∀`, (47)

with ω 7→ M`(ω) := η
(0)
` − ψ(i)(κ−1

` α−1
` x∗`,2(ω)/(1 − q`(x

∗
`,2(ω))) + C`). To express ω̃` as a

function of t, we use the following lemma, whose proof is provided in Appendix E.

Lemma 5. ∀`, the function M` is continuous and strictly increasing, and thus M−1
` exists and

is strictly increasing.

Using Lemma 5 in conjunction with (47) yields

ω̃` =M−1
` (t), ∀`, (48)

and then we can obtain γ∗`,2 as a function of t by plugging (48) into (46). As a consequence,

γ∗`,2(M−1
` (t)), shortened to γ∗`,2(t) by abuse of notation, is given by:

γ∗`,2(t) =
η

(0)
`

α`(1− q`(x∗`,2(M−1
` (t))))

. (49)

For a given t, we have succeeded to find a necessary and sufficient condition given in Lemma 4

to check whether a node belongs to It or Īt, and we have found the optimal parameters in both

cases. Now we search for the optimal value of t.

B. Search for the Optimal t

To find t∗, the optimal value of t, we use the complementary slackness condition (39). Let us

define the following function representing the sum of the bandwidth parameters for given value

of t

Γ̃(t) :=
∑
`∈It

γ∗`,1(t) +
∑
`∈Īt

γ∗`,2(t). (50)
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Due to (39), t∗ is such that Γ̃(t∗) = 1. In the following lemma whose proof is provided in

Appendix F, we prove that such a t∗ always exists, and can be found through a linesearch.

Lemma 6. The function Γ̃(t) is continuous, strictly decreasing, and there exists t∗ such that

Γ̃(t∗) = 1.

The optimal solution of P3.1 can be found by solving Γ̃(t∗) = 1, which always has a solution.

Then, the optimal values x∗`,i(t
∗) and γ∗`,i(t

∗), i ∈ {1, 2}, are computed, and we deduce the

optimal Q∗`(t
∗).

C. Optimal Solution of P3

The optimal solution of P3 can be found using Algorithm 3.

Algorithm 3 Optimal solution of P3.
1: Set ε > 0, ψ(0) = 0, i = 0, t∗ = ε+ 1

2: while t∗ > ε do

3: Compute t∗, Q∗ and γ∗ by solving P3.1 with ψ(i).

4: Update ψ(i+1) = min`∈{1,...,L} E`(Q∗`/γ∗` , γ∗` ).

5: i = i+ 1.

6: end while

VII. NUMERICAL EXAMPLES

In this section, the results of the proposed algorithms are numerically studied. First, we

compare the performance of the proposed criteria under both the Rayleigh and the Rician channel.

Second, we investigate the benefits of considering the Rician channel instead of the conventional

Rayleigh channel. Third, we study the impact of the circuitry power consumption on the MSEE

performance. Finally, we study possible extension of the proposed criterion to Type-II HARQ.

We also compare the proposed criteria with a conventional one from the literature: the minimum

power (MPO) from [44] minimizing the total transmit power.

We use a convolutional code with rate 1/2 with generator polynomial [171, 133]8, and we

use the quadrature phase shift keying (QPSK) modulation, i.e., m` = 2. The number of links is

L = 5, and the link distances D` are uniformly drawn in [50 m, 1 km]. We consider that all the

links have an identical K factor value. Unless otherwise stated, we simulate both Rician channel
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with K` = 10 and Rayleigh channel (K` = 0). We set B = 5 MHz, N0 = −170 dBm/Hz and

L` = 128. The carrier frequency is fc = 2400 MHz and we put ζ2
` = (4πfc/c)

−2D−3
` where c is

the speed of light in vacuum. We assume that the per-link minimum goodput η(t)
` is equal for all

links. Except otherwise stated, we put ∀`, Pctx,` = Pcrx,` = 0.05 W and κ` = 0.5. We perform

RA using the PER approximation (10), whose accuracy is validated through simulations in [44,

Figs. 1 and 2].

A. Performance of the Proposed Algorithms

In Figs. 1-3, we plot the SEE, MEE and GEE obtained with the proposed criteria and with the

MPO from [44] versus the per-link minimum goodput constraint η(t)
` . We perform optimal RA

according to the links channel distribution: Rayleigh RA under Rayleigh channel and Rician RA

under Rician channel. As expected, the maximization of a given criterion yields the highest value

for this criterion. The proposed criteria yield higher EE than the conventional MPO, especially

for low goodput constraint. Due to Type-I HARQ EE expression, one can check that EE under

the Rician channel is higher than those under the Rayleigh channel because of better PER for

the Rician channel. We actually observe that the performance under the Rician channel is much

higher than those under the Rayleigh channel.
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Fig. 1. SEE obtained for the considered criteria versus η(t)` , solid lines: Rayleigh channel (∀`, K` = 0), dashed lines: Rician

channel (∀`, K` = 10).
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Fig. 2. GEE obtained for the considered criteria versus η(t)` , solid lines: Rayleigh channel (∀`, K` = 0), dashed lines: Rician

channel (∀`, K` = 10).
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Fig. 3. MEE obtained for the considered criteria versus η(t)` , solid lines: Rayleigh channel (∀`, K` = 0), dashed lines: Rician

channel (∀`, K` = 10).

We would like now to analyze a mismatch between the value of K` used for calculating RA

and its actual value for the same GNR. More precisely, we consider the Rician channel with

various values of K` as the actual channel statistics. We calculate RA either i) by assuming

a Rayleigh channel, i.e., K` = 0 (channel model mismatch case) or ii) by assuming a Rician
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channel with the true value of K` (no channel model mismatch case). We thus define E∗R and

γ∗R as the optimal values of E and γ when the Rician channel model is considered. We also

define E∗C and γ∗C as the optimal values of E and γ when the Rayleigh channel is considered.

We can thus define the EE gains between the Rician and the Rayleigh allocations under the

Rician channel as 100× (ZR(E∗R,γ
∗
R)−ZR(E∗C ,γ

∗
C))/ZR(E∗C ,γ

∗
C), where ZR stands for either

the SEE, the MEE or the GEE calculated under the Rician channel with the actual value of K`.

In Fig. 4, we assume that the actual channel statistic is K` = 10, and we plot the EE gains

versus the minimum goodput constraint. We observe that substantial gains can be achieved for

all the criteria, especially for the MMEE.

In Fig. 5, we set the minimum goodput constraint η(t)
` = 4.5 × 105 bits/s, and we plot the

EE gains versus the actual value of K`. Once again, we observe that substantial gains can be

achieved for all the criteria. We also observe that this gain is strictly increasing with the value

of K`.

The achieved gains are due to the following key point which have been checked through

simulation but is not included due to space limitation: the EE maximizer is different under the

Rayleigh and the Rician channel. It is thus highly beneficial to incorporate the knowledge of the

Rician K-factor in RA.
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Fig. 5. Gains between the Rician (∀`,K` = 10) and the Rayleigh (∀`,K` = 0) allocations under the Rician channel, versus

the Rician K factor, with η(t)` = 4.5× 105 bits/s.

B. Influence of Pctx and Pcrx

In this section, we investigate the performance of the circuitry power consumptions Pctx,`

and Pcrx,`. For sake of simplicity, we assume Pctx,` = Pcrx,`,∀` and we denote Pc := Pctx,`.

We only study the MSEE criterion since the trends are the same for all the criteria, and thus

they do not provide further insights. In Fig. 6, we set the per-link minimum goodput constraint

η
(t)
` = 1.25× 105 bits/s, and we plot the SEE versus the circuitry power consumption for Rician

channel (Algorithm 1) and for Rayleigh channel [43]. We see that the SEE performance decreases

as Pc increases, which is in agreement with the intuition. We also observe that the gap between

Rician channel and Rayleigh channel vanishes when the circuitry consumption goes to infinity

since the impact of the channel type decreases when the circuitry consumption is dominant.

C. Application to Type-II HARQ

From Table I, we see that there is no work addressing EE-based RA for Type-II HARQ under

the Rician channel and thus we look for solutions to these problems. We did not succeed to

optimally solve these problems for the following technical reasons. Let us assume a Type-II

HARQ mechanism for link ` using the same packet length. According to [43], the EE for link
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Fig. 6. Optimal SEE under both the Rayleigh (∀`,K` = 0) and the Rician channel (∀`,K` = 10) versus Pc, with η
(t)
` =

1.25× 105 bits/s.

` can be written as

Ẽ`(E`, γ`) =
α`γ`(1− q`,T (E`G`))

(1 +
∑T −1

k=1 q`,k(E`G`))(κ
−1
` γ`E` + Ec,`)

, (51)

where q`,k is the probability that the first k transmissions are all received in error which occurs in

Type-II HARQ since we keep the packets received in error to help the decoding. By comparing

(8) and (51), we see that the difference between Type-I and Type-II HARQ EE lies in the

presence of q`,k, k > 1 at the denominator of (51). By applying the change of variables given

by (13) into (51), we obtain

Ẽ`(Q`, γ`) =
α`γ`(1− q`,T (G`Q`/γ`))

(1 +
∑T −1

k=1 q`,k(G`Q`/γ`))(κ
−1
` Q` + Ec,`)

. (52)

Unless T = 1, we cannot identify a property ensuring that the denominator of (52) is a concave

function and thus the tools from fractional programming theory cannot be applied with affordable

complexity to solve EE based RA problems. In [43] (where only Rayleigh channel is considered

with an approximation different to (10) but not suitable for Rician channel), the authors overcome

this issue as the denominator was posynomial and so geometric programming tools have been

employed to optimally solve the MSEE problem. In (52), the denominator is not posynomial

preventing us from applying the approach proposed in [43].

Therefore, we look for suboptimal solutions by extending the results from [43] and from

the results related to Type-I HARQ of this paper. As [43] provides the MSEE optimal solution
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for Type-II HARQ under the Rayleigh channel, we only focus on this criterion. When Type-II

HARQ is simulated, the SEE is given by

S(E,γ) :=
L∑
`=1

Ẽ`(E`, γ`).

To that end, we consider the following two manners as illustrated in Fig. 7.

• Channel model mismatch: using the resources from Type-II HARQ Rayleigh RA (i.e., the

solution from [43]) on Type-II HARQ system under the Rician channel. These resources

are denoted by E∗II and γ∗II.

• HARQ type mismatch: using the resources from Type-I HARQ Rician RA (i.e., the solution

from Algorithm 1) on Type-II HARQ system under the Rician channel. These resources

are denoted by E∗I and γ∗I .
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Fig. 7. The two considered solutions to extend either the work from [43] or from this paper to Type-II HARQ under the Rician

channel.

In Fig. 8, we simulate a chase combining (CC) HARQ mechanism with maximum number

of transmissions T = 3 under a Rician channel with ∀`, K` = 10 and we plot S(E∗I , γ
∗
I ) and

S(E∗II, γ
∗
II) versus the per-link minimum goodput constraint η(t)

` . We observe that S(E∗I , γ
∗
I ) is

much higher than S(E∗II, γ
∗
II) whatever the goodput constraint, yielding us to advocate that the

algorithm is less sensitive to HARQ type mismatch rather than to channel model mismatch.

VIII. CONCLUSION

In this paper, we addressed the problem of joint bandwidth and power allocation for Type-

I HARQ with practical MCS and statistical CSI under the Rician channel by providing the

analytical optimal solutions of three RA problems: the MSEE, the MMEE and the GEE. Through
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Fig. 8. SEE obtained using MSEE algorithm for Type-I and Type-II HARQ under the Rician channel (∀`,K` = 10) versus

η
(t)
` .

simulations, we exhibited that substantial gains can be achieved by taking into account the

existence of a LoS between the transmitter and the receiver instead of only considering the

channel average power. We also studied the behavior of our proposed algorithms when applied

on Type-II HARQ. Numerical results indicated that, when the channel is Rician, it is more

beneficial to apply RA corresponding to Type-I HARQ for the Rician channel instead of the

Type-II RA for the Rayleigh channel.

APPENDIX A

PROOF OF LEMMA 1

First, let us prove that the feasible set defined by constraints (12) and (14) is convex. Constraint

(12) is linear and as a consequence it is convex. Moreover, γ`(1− q`(G`Q`/γ`)) is the so called

perspective [49] of the concave function 1 − q`(G`E`) and thus it is concave, meaning that

constraint (14) is convex.

Second, let us focus on the objective functions of P1’-P3’. We remark that there denominators

are linear and thus they are convex. The numerators of the objective functions of P1’ and P2’

are given by α`γ`(1 − q`(G`Q`/γ`)) and hence they are concave as the perspective of concave

functions. For P3’, the numerator is given by
∑L

`=1 α`(γ`(1−q`(G`Q`/γ`))) and then it is concave

as a sum of concave functions.
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APPENDIX B

PROOF OF LEMMA 2

First due to (16), we are only interested in solutions yielding non positive values for h`. If

there exists at least one link `1 with δ`1 = 0, we obtain the optimal value of x`1 using (19) as:

x∗`1 = x∗`1,δ`1=0 = q′−1
`1

(
−β(i)

`1
κ−1
`1

α`1G`1

)
. (53)

By plugging (53) into (16), we obtain the optimal value of λ as:

λ∗ = −α`1u
(i)
`1
h`1(x

∗
`1,δ`1=0) ≥ 0. (54)

Hence, we prove that `1 ∈ arg min`{α`u(i)
` h`(x`,δ`=0)}. To do so, we proceed by contradiction:

we assume that ∃`2 such that α`2u
(i)
`2
h`2(x

∗
`2,δ`2=0) < α`1u

(i)
`1
h`1(x

∗
`1,δ`1=0), and we prove that the

KKT condition (16) cannot hold for `2. This condition writes as follows:

α`2u
(i)
`2
h`2(x

∗
`2

)(u
(i)
`2

+ δ`2)− α`1u
(i)
`1
h`1(x

∗
`1,δ`1=0) = 0. (55)

To prove that (55) cannot hold, we upper bound it by a term strictly lower than 0. To this end,

we use the following proposition.

Proposition 1. ∀`, the following inequality holds:

h`(x
∗
`) ≤ h`(x

∗
`,δ`=0

). (56)

Proof. First, let us study the monotonicity of h`(x) by computing its first order derivative:

h′`(x) = −xq′′` (x). (57)

Due to the strict convexity of q`, it results from (57) that h` is strictly decreasing.

Second, let us compare x∗` with x∗`,δ`=0
. From (19), we have

x∗` = q′−1
`

(
−u(i)

` β
(i)
` κ

−1
`

α`G`(u
(i)
` + δ`)

)
. (58)

Since q′−1
` is increasing, the following inequality holds: x∗` ≥ x∗`,δ`=0. Finally, the proof is

completed using (57).

Using Proposition 1 we can upper bound (55) as follows

α`2u
(i)
`2
h`2(x

∗
`2

)(u
(i)
`2

+ δ`2)− α`1u
(i)
`1
h`1(x

∗
`1,δ`1=0) ≤

α`2u
(i)
`2
h`2(x

∗
`2,δ`2=0)(u

(i)
`2

+ δ`2)− α`1u
(i)
`1
h`1(x

∗
`1,δ`1=0).

(59)
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Since by hypothesis, α`2u`2h`2(x
∗
`2,δ`2=0) < α`1u`1h`1(x

∗
`1,δ`1=0), α`1u`1h`1(x

∗
`1,δ`1=0) = −λ∗ ≤ 0

and δ`2 ≥ 0, we obtain from (59)

α`2u
(i)
`2
h`2(x

∗
`2

)(u
(i)
`2

+ δ`2)− α`1u
(i)
`1
h`1(x

∗
`1,δ`1=0) < 0. (60)

Due to (60), the KKT condition (16) cannot hold for link `2 yielding a contradiction.

APPENDIX C

PROOF OF LEMMA 3

First, let us prove that λ > 0. We need the following intermediate result.

Proposition 2. At any iteration i, the optimal t is such that t ≥ 0.

Proof. The proof is similar to the one of [48, Proposition 2] and is thus omitted.

The rest of the proof is by contradiction: we assume that λ = 0, and we prove that it yields

a strictly negative value for t, which contradicts Proposition 2. To do so, we remark from (34)

that
∑L

`=1 ω` = 1, meaning that ∃` such that ω` > 0. Let us focus on this link. We consider the

following two possible cases: either δ` = 0 or δ` > 0.

Case 1: δ` = 0. Using (35) and (36), we obtain:

α`(q`(x`)− 1) +
x`κ

−1
` ψ(i)

G`

= 0, (61)

with x` := G`Q`/γ`. In addition, since ω` > 0, plugging (61) into (37) yields

t = γ`

(
α` (1− q`(x`))−

x`ψ
(i)κ−1

`

G`

)
− ψ(i)C` = −ψ(i)C` < 0. (62)

Case 2: δ` > 0. The condition (35) gives us:

α`(−1 + q`(x`)− x`q′`(x`)) = 0. (63)

Since δ` > 0, we obtain:

γ` =
η

(0)
`

α`(1− q`(x`))
. (64)

By plugging (63) and (64) into (37), we obtain

t = η
(0)
`

(
1 +

ψ(i)κ−1
`

α`G`q′`(x`)

)
− ψ(i)C`. (65)

To upper bound (65), we use (36) which gives us

ψ(i)κ−1
`

α`G`q′`(x`)
< −1. (66)
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Using (66) into (65) yields t < 0.

Gathering case 1 and case 2 together, we obtain that λ = 0 yields t < 0, contradicting

Proposition 2. Hence, we deduce that λ > 0.

Now, let us prove that, ∀`, ω` > 0. Assume that there exists ` such that ω` = 0. We can see

from (35) that δ` = 0. However, plugging ω` = 0 and δ` = 0 into (36) implies λ = 0, which

contradicts λ > 0. Hence, ∀`, ω` > 0 which concludes the proof.

APPENDIX D

PROOF OF LEMMA 4

First, assume that a link ` belongs to It. Its optimal values for x` and γ` are given by (42)

and (43), respectively. Moreover, link ` has to satisfy its goodput constraint (14). By plugging

(42) and (43) into (14), the direct part of Lemma 4 is proved.

Second, we prove the converse part of Lemma 4 by contradiction: assuming that there exists

a link ` such that inequality (44) holds and which is not in It, we prove that the optimality

condition (38) cannot hold. Let us define x∗`,2(δ`) (resp. γ∗`,2(δ`, t)) the optimal value of x` (resp.

γ`) for fixed ω` and t. Notice that x∗`,2(0) (resp. γ`,2(0, t)) coincides with x∗`,1 (resp. γ∗`,1(t)). With

these notations, (44) can be rewritten as follows:

η
(0)
` ≤ α`γ

∗
`,2(0, t)(1− q`(x∗`,2(0))). (67)

Since δ` > 0, (38) yields:

η
(0)
` = α`γ

∗
`,2(δ`, t)(1− q`(x∗`,2(δ`))). (68)

To show the contradiction, we prove that (68) cannot hold using the following proposition.

Proposition 3. For all δ` > 0 and ∀`, the following inequalities hold:

x∗`,2(δ`) > x∗`,2(0) (69)

γ∗`,2(δ`, t) > γ∗`,2(0, t) (70)

Proof. We start by proving (69). Using (41), we obtain

x∗`,2(δ`) = q′−1
`

(
−ω`ψ(i)κ−1

`

α`G`(ω` + δ`)

)
. (71)

Since q′−1
` is continuous, differentiable with non zero derivative and strictly increasing, x∗`,2(δ`)

is a continuous, differentiable and strictly increasing function of δ`, which proves (69).
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Now, let us focus on γ∗`,2(δ`, t). Using Lemma 3, we can obtain:

γ∗`,2(δ`, t) =
t+ ψ(i)C`
f`(δ`)

, (72)

with f`(δ`) := α`(1 − q`(x∗`,2(δ`)) − ψ(i)κ−1
` G−1

` x∗`,2(δ`). To prove (70), let us prove that f`(δ`)

is strictly decreasing by computing its derivative:

f ′`(δ`) = −x∗′`,2(δ`)g`(δ`), (73)

with x∗
′

`,2(δ`) > 0 the derivative of x∗`,2(δ`) with respect to δ`, and g`(δ`) := (α`q
′
`(x
∗
`,2(δ`)) +

ψ(i)κ−1
` G−1

` ). Using (71), we can see that g`(0) = 0, meaning that f ′`(0) = 0. In addition, we can

prove that g`(δ`) is strictly increasing by computing its derivative, meaning that, for all δ` > 0,

g`(δ`) > 0 which, together with (73) concludes the proof.

Using Proposition 3, we hence have, for all δ` > 0:

α`γ
∗
`,2(δ`, t)(1− q`(x∗`,2(δ`))) > α`γ

∗
`,2(0, t)(1− q`(x∗`,2(0))) ≥ η

(0)
` , (74)

which contradicts (68) and concludes the proof.

APPENDIX E

PROOF OF LEMMA 5

It is sufficient to prove that F`(ω`) := x∗`,2(ω`)/(1− q`(x∗`,2(ω`))) is strictly decreasing. Let us

compute the derivative of F`(ω`):

F ′`(ω`) = −
x∗

′

`,2(ω`)h`(x
∗
`,2(ω`))

(1− q`(x∗`,2(ω`)))2
(75)

where x∗′`,2(ω`) = −1/(ω2
`ψ

(i)κ−1
` )(g−1

` )′(ω−1
` κ`/ψ

(i)) < 0. Moreover, due to (41), we are only

interested in the values of x∗′`,2(ω`) such that h`(ω`) < 0. As a consequence, F`(ω`) is strictly

decreasing and hence M`(ω`) is strictly increasing, which concludes the proof.

APPENDIX F

PROOF OF LEMMA 6

Let us define k′m a one-to-one mapping from {1, . . . , L} in itself such that tTk′1 ≤ · · · ≤ tTk′L
where tTk′i

is defined in (44). To prove Theorem 6, we first observe that the first term in the

right hand side (RHS) of Γ̃(t) is continuous and strictly increasing on every open set (tTk′i
, tTk′i+1

).
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Second, let us prove that the second term is also strictly increasing. To this end, we remind that

γ∗`,2(t) is expressed as

γ∗`,2(t) =
η

(0)
`

α`(1− q`(x∗`,2(M−1
` (t))))

. (76)

SinceM−1
` (t) is strictly increasing and x∗`,2(ω̃`) is strictly decreasing, we infer that 1−q`(x∗`,2(M−1

` (t)))

is decreasing and as a consequence γ∗`,2(t) is strictly increasing. Third, it can be checked that Γ̃(t)

is continuous in every tTk′i by checking that limt↗tT
k′
i

Γ̃(t) = limt↘tT
k′
i

Γ̃(t). Finally, by letting t̃ be

sufficiently small, one can show that that γ∗`,2(t) goes to η(0)
` /α`, and we have

∑L
`=1 η

(0)
` /α` ≤ 1

(otherwise the problem would be infeasible). Moreover, when t is sufficiently large, it is clear

that Γ̃(t) > 1. Hence, there exists t∗ such that Γ̃(t∗) = 1, which concludes the proof.
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