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Abstract

This paper investigates resource scheduling in a wireless communication system operating with Energy

Harvesting (EH) based devices and perfect Channel State Information (CSI). The aim is to minimize

the packet loss that occurs when the buffer is overflowed or when the queued packet is older than

a certain pre-defined threshold. We so consider a strict delay constraint rather than an average delay

constraint. The associated optimization problem is modeled as Markov Decision Process (MDP) where

the actions are the number of packets sent on the known channel at each slot. The optimal deterministic

offline policy is exhibited through dynamic programming techniques, i.e. Value Iteration (VI) algorithm.

We show that the gain in the number of transmitted packets and the consumed energy is substantial

compared to: i) a naive policy which forces the system to send the maximum number of packets using

the available energy in the battery, ii) two variants of the previous policy that take into account the

buffer state, and iii) a policy optimized with an average delay constraint. Finally, we evaluate our optimal

policy under imperfect CSI scenario where only an estimate of the channel state is available.

I. INTRODUCTION

Energy harvesting (EH) technology has emerged recently as a promising solution to improve

the energy efficiency and self-sustainability of 5G mobile and IoT networks. While relying on

renewable energy sources in their surrounding environments, the mobile devices can harvest

energy to perform their communications and operational tasks. In this way, they can extend
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their battery lifetimes by reducing their dependency on conventional battery and grid power,

decreasing thus their carbon emissions. However, in contrast to conventional power supply

where the available energy is fixed, harvested energy arrives randomly and sporadically due

to environmental influence (weather, geolocation), rendering unpredictable the available energy

behavior. To avoid the waste of energy excess and save it for future use, capacity-limited batteries

is used to store the collected energy. The stochastic energy harvesting process and the energy

storage constraints in addition to the time-varying nature of the wireless channels bring new

design challenges in EH communications making the optimization of the transmission policies

a more difficult task. Therefore, efficient resource scheduling of mobile devices need to adapt

the transmission rate and power to the dynamic levels of the available energy and the channels

in order to ensure the users quality of service (QoS) and the system sustainability.

During the past decade, extensive research efforts have been devoted to investigate resource

scheduling with EH capabilities at the transmitters [2]–[11]. Surveys can be read in [12],

[13]. In these works, several performance criteria have been optimized such as throughput,

completion time, average delay, outage probability, for various models of energy arrival rate,

battery capacity, or fading channel. For instance, in [2], data amount transmitted during a pre-

defined time was optimized and the transmission completion time was minimized by choosing

carefully the transmit power when the channel is time-varying. The authors proposed optimal

offline policies based on directional water-filling in a non-causal energy setting which means

that the energy amount available at any time is known in advance. They also proposed online

policies using continuous time stochastic dynamic programming in a causal energy setting. The

throughput maximization problem was similarly investigated in [3] but for limited energy battery

and limited data buffer, allowing thus buffer overflow. The optimal solutions were proposed by

decoupling energy and data problems using a new variant of directional water-filling with added

energy pumps, or applying recursively the shortest path algorithm. When only causal Energy

State Information (ESI) and Channel State Information (CSI) are available, the same throughput

maximization problem was modeled as Markov Decision Process (MDP) in [4] and related

optimization techniques were used. In [5], an online algorithm maximizing the throughput is

designed by assuming capacity-limited EH system. It relies on a new estimation method of

future energy arrivals without any prior information. Both offline and online algorithms were

also provided in [6] to maximize the throughput in finite-horizon scheduling with EH transmitter.
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The offline solution is expressed in terms of water levels and the online solution minimizes

successively the expected throughput losses with respect to the offline optimal decision. Finite-

horizon optimization problem was also considered in [7] to minimize the outage probability in

a EH system. A low complexity fixed threshold transmission is proposed based on the offline

mixed integer linear programming solution. In [8], an average delay optimal scheduling problem

under energy consumption constraint was studied where the transmitter relies on hybrid energy

supplies. Actually, the data transmission is mainly powered by harvested energy and resorts to

power grid as a backup. The problem was modeled as a two-dimensional Markov chain and an

optimal policy depending on a critical threshold of the queue length is proposed using Linear

programming formulations. In [9], optimal deterministic scheduling in EH-powered network

satisfying an average delay constraint and an average consumed energy constraint was obtained

by minimizing the packet blocking probability, due to non-transmission at the transmitter. The

problem was formulated as an MDP and solved using dynamic programming Value Iteration (VI)

algorithm. In [10], a weighted packet loss rate under an average delay constraint is minimized

leading to a constrained MDP and solved by using a linear value iteration approximation that

locally determines the energy allocation at every EH wireless node by multilevel water-filling.

Near-optimal policy was also derived by applying online learning based on post-decision state

framework. In [11], MDP modeling and online post-decision learning approach were derived to

maximize the data arrival rate at the transmitter queue under delay and energy constraints. Two

delay constraints were considered: average delay constraint or statistical delay constraint. This

latter is a bounded delay with maximum acceptable delay-outage probability constraint.

In this paper, we address a resource scheduling for a point-to-point communication powered by

energy harvesting at the transmitter side. It may correspond to an Uplink (UL) case where the

transmitter is a node with energy harvesting ability and the receiver is a base station plugged on

the grid. Unlike [8]–[10], the main novelty of this work is by considering a strict delay constraint

on each queued packet in the transmitter buffer rather than an average delay constraint. We have

initially introduced this hard constraint on the delay in [14] to find the optimal scheduling policy

minimizing the average power consumption. Now, we incorporate energy harvesting aspects

within the scheduling problem. Working with hard delay constraint is timely even if it involves

a more complicated system description. It has especially led to a new way to think information

theory by using short-length block codes as in [15] and by applying it on some resource allocation
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issues as in [16] via the notion of Ultra Reliable Low Latency Communications (URLLC). In

this paper, we do not consider short-length block codes but we consider that the packets cannot

stay in the buffer beyond a certain pre-defined duration.

Nevertheless, the aforementioned transmission policies rely on the perfect knowledge of the

channel state information or an accurate estimation of the relevant statistics. In typical wire-

less systems, the receiver performs channel estimation and feeds back CSI on limited-capacity

feedback channel to the transmitter in order to design channel-adapted transmission techniques.

In practice, the acquired CSI have errors due to different factors such as time-varying channel,

inaccurate channel estimation, quantization and feedback errors, which can inevitably cause

performance degradation. Recently, some works have focused on new design strategies to deal

with CSI imperfections in energy harvesting networks. For instance, an optimal transmission

power policy based on only 1-bit feedback was proposed in [17] for EH communications over

Rayleigh fading channels. The receiver sends bit 1 if the channel realization is above a certain

threshold. Then, the transmitter does not transmit if the bit is 0 or transmits with a certain pre-

defined power. The related data rate is chosen according to the threshold and not to the true value

of the channel realization. Consequently, the selected data rate always ensures a safe transmission

but with a pessimistic rate. The paper found out the optimal feedback channel threshold and

the optimal policy that maximizes the throughput based on finite-horizon constrained MDP

formulation. In [18], the problem of data amount maximization within a fixed duration was

studied assuming imperfect CSI at the transmitter (CSIT) in point-to-point communications with

an EH transmitter. The authors proposed first a Markov process to model the energy arrivals and

the channel impulse response with strong correlations and then derived the optimal online power

scheduling policy using finite-horizon dynamic programming techniques. In addition, they studied

the performance limits of EH systems under imperfect CSIT through an asymptotic analysis of

the average throughput at low and high average energy recharge rates. In [19], they determined

the optimal offline policy for a similar problem. In previous paper, they do not consider the cost

to obtain the CSI even imperfectly, such as the energy consumption to send training sequence

and the time spent to estimate and so not available anymore for doing data transmission.

In this paper, we investigate both perfect and imperfect channel state information at the trans-

mitting EH device in our scheduling problem. In a first part, for perfect CSI scenario, we
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ideally assume that the channel is perfectly known at the transmitter without any cost. Taking

into account sporadic energy arrivals, random data arrivals and time-varying channel states, we

minimize the packet loss rate, i.e., the average number of discarded packets induced by strict

delay constraint in addition to buffer overflow constraint. We formulate the problem as an MDP

and solve it using Relative Value Iteration algorithm. We find an optimal offline stationary policy

and compare it with a naive policy that performs immediate scheduling irrespective of energy and

buffer states, and two variants of it taking into account the buffer state in the decision process.

Then, we compare our proposed system with a similar one using average delay constraint. In

this part, we mainly consider i.i.d EH process for sake of simplicity and clarity, but we compare

also the results when time-correlated EH process is considered.

In a second part, for realistic imperfect CSI scenario, we consider that acquiring channel estimates

incurs some time and energy costs on the system performance. We assess the previously obtained

optimal policy under imperfect CSI conditions due to channel estimation errors. We also consider

imperfect CSI assumption with Automatic Repeat ReQuest (ARQ) protocol, allowing thus packet

re-transmission. Therefore, in these cases, the packet loss rate is affected twofold: on one side,

with respect to the imposed strict delay because of a smaller transmission period of data packets,

or because of a longer duration of packets in the buffer for re-transmission (with ARQ protocols);

and on the other side, with respect to the erroneous channel estimation which can lead to an

increase in the number of discarded packets. We analyze the system taking into account these

errors and show through numerical results that an appropriate trade-off is needed between the

channel estimation accuracy and the transmission period in order to reduce the dropped packets

depending on the available energy, energy arrivals and data arrivals.

The remainder of the paper is organized as follows. In Section II, we describe the system model.

In Section III, we formulate the optimization problem as an MDP and solve it using value

iteration algorithm. In Section IV, we present the framework of the imperfect CSI scenario. We

provide and analyze numerical results in Section V. Finally, we give some concluding remarks

and perspectives in Section VI.

II. SYSTEM MODEL

We consider a point-to-point communication over a fading channel with an energy harvesting

transmitter. The transmitter is equipped with two queues: one corresponds to a capacity-limited
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battery to store harvested energy from an external source and the other is a finite buffer to store

data packets arriving from the upper layer. The communication is slotted into consecutive epochs

of equal duration Ts. At the beginning of each time slot, scheduling decisions are made to define

the number of packets to be transmitted during the slot depending on energy arrivals and data

arrivals during previous slot as well as channel states at the current time.

A. Energy model

Due to the random nature of energy harvesting sources, we model the EH process as an

independent identically distributed (i.i.d.) Poisson distribution with an average arrival rate λe.

We assume that the energy arrives in multiple packets of energy units (e.u) of EU Joules (J) 1.

The received energy is stored in a battery of finite capacity Be, and is lost when it exceeds Be.

At the beginning of time slot n, let en denote the harvested incoming energy (counting as a

number of the energy units). Its probability distribution is given by

p(en = e) = e−λe .
(λe)

e

e!
.

We assume that the processing energy is negligible compared to the transmission energy, thus

the energy stored in the battery is only used for communication. We also consider the energy

causality constraint where the system can only transmit if a sufficient amount of energy is

available in the battery. Let bn denote the energy level of the battery at the beginning of time

slot n, bn ∈ {0, ..., Be}, and En the energy consumed to send packets during time slot n, then

En 6 bn. In addition, we suppose perfect energy state information at the transmitter (ESIT).

B. Data queue model and strict delay constraint

The transmitter receives also data packets and store them for future transmission in a data buffer

of size Bd packets. We model the data arrival process as an i.i.d. process following a Poisson

distribution with an average arrival rate λd. We assume that all packets are of the same size L

bits. At the beginning of time slot n, let qn denote the queue length in the buffer, qn ∈ {0, ..., Bd},

and an the received packets with probability distribution

p(an = a) = e−λd .
(λd)

a

a!
.

1There is a huge amount of literature assuming i.i.d EH processes. We adopted this approach for sake of clarity. Nevertheless,

this work can be easily extended to time-correlated EH processes. This is done in Section V to plot Fig. 11.
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A packet is discarded from the buffer

• if there is a buffer overflow, i.e., if the sum of packets in the queue and arrival packets

exceeds the buffer size. In that case, we discard the arrival packets in overflow;

• if there is a delay violation, i.e., it stays in the queue more than K0 slots. This can occur if

the system decides not to transmit for a long period due to energy shortage or bad channel

conditions.

In order to describe the delay violation, we need to introduce a new variable ki(n) counting

the time spent in the buffer of the i-th packet at time n. By definition, we have ki(n) ∈

{−1, ..., K0}, ∀i, k and ki(n) = −1 for an empty space in the buffer (i.e., when the i-th packet

does not exist). In Fig. 1, we provide a buffer state at time n. Notice that kj(n) ≤ ki(n), ∀i 6 j.

Buffer of Bd packets (ordered from the oldest to the newest)

k1(n) ... kqn(n) −1 ... −1

qn packets empty area

Fig. 1: Buffer configuration at slot n.

C. Channel model

We consider a single user flat-fading channel with signal bandwidth W (Hz) and additive white

Gaussian noise with zero mean and variance N0. During time slot n, the channel remains constant

with complex-valued amplitude h, and varies in a i.i.d. manner across time slots. We define the

channel gain as gn = |hn|2, where gn is a continuous random variable distributed exponentially

with probability density function p(g) = 1
ξ
e−

g
ξ with mean ξ. For the sake of simplicity, we

assume only quantized channel state xn = Qg(gn), where Qg(.) represents the quantization

process 2. Fixing a sequence of fading power quantization thresholds, the channel gain xn is

then a discrete variable taking values from a finite channel state space X .

In order to define the discrete channel states, let M be the number of quantization levels, {tm}M−1m=0

the set of thresholds and {Lm}M−1m=0 the set of quantization levels for Qg. The quantization regions

of the channels are then given by the intervals Im = [tm, tm+1[ with t0 is fixed such that the

2This assumption is generally justified in practice to account for the capacity-limited feedback and has also been adopted in

the literature [20]–[28].
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transmission of 1 packet using 1 e.u. is guaranteed and tM = +∞. In our model, we consider

a Uniform quantizer. So, let tmax = tM−1 be the maximal threshold such that the transmitter

can send U0 packets using Be e.u., where U0 is the maximal value of scheduled packets. By

applying E(xn, un) = Be in (1) and un = U0 in (2) (equations (1) and (2) are defined in next

section II-D), we obtain the corresponding value for xn which is forced to tmax. The uniform

quantization thresholds are given by tm+1 = tm + δ with m = 0 . . .M − 2 and δ = tmax

M−1 .

We select the quantization levels as the lower bound of the regions, which is the worst case

scenario. Thus, Lm = tm for m = 0 . . .M − 1 and a channel is said to be in state xn = Lm if

gn ∈ Im = [tm, tm+1[.

Note that the defined quantization process and parameters are used by default for the perfect CSI

scenario, thus the values of x correspond to the perfect discrete channel states. However, for the

imperfect CSI, the channel is first estimated before being quantized. Let ĥn and ĝn = |ĥn|2 denote

the estimated channel and the estimated channel gain. Then, the estimated discrete (quantized)

channel states are defined by x̂n accordingly. In this case, a channel is said to be in state x̂n 6= xn

if ĝn ∈ Im′ while gn ∈ Im with m′ 6= m.

D. Consumed energy

We denote un (un 6 qn) the number of packets to be transmitted during time slot n of period

Ts, through the channel of gain xn for perfect CSI and the channel of gain x̂n for imperfect CSI.

In the former case, the consumed energy to transmit these packets is expressed as an integer

multiple of the energy unit. It is given by

E(xn, un) =

⌈
P (xn, un).Ts

EU

⌉
(1)

where

P (xn, un) =
WN0

xn

(
2
unL
WTs − 1

)
. (2)

is the required power for this transmission. In the latter case, similar expressions are obtained

by replacing xn by the estimated channel gain x̂n and Ts by Ts− τ where τ is the time required

to perform channel estimation.
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III. PROBLEM FORMULATION AND RESOLUTION IN PERFECT CSI SCENARIO

In this section, we assume first perfect CSI at the transmitter without any cost. Our main objective

now is to ensure reliable communication by minimizing the number of discarded packets due to

strict delay and buffer overflow constraints. This can be achieved by finding an optimal policy

that specifies the number of packets u to be scheduled at each time slot based on the past

system states and actions. The optimization problem can be formulated as MDP problem [30].

We characterize in this section the appropriate states, actions and reward of this MDP.

A. State Space

The state space S is the set of s = (k, b, x) where

• k = [k1, · · · , kBd ] is the vector indicating the age of each packet in the data buffer,

• b is the battery level, and

• x is the channel gain.

Notice that in the previous works [9], [10], the queue length q describes the data buffer states.

In our work, q is replaced with k due the strict delay constraint. In fact, q is unnecessary when

k is given since

qn = max {i | ki(n) > 0} . (3)

The state space is finite, and the total number of possible states is |S| which is upper-bounded by

(K0 + 2)Bd .|Be + 1|.|X |. The state space can be significantly reduced by assuming that packets

are queued in an increasing order of time spent in the buffer, i.e. k1(n) ≥ k2(n) ≥ · · · ≥ kqn(n).

For instance, if we consider Bd = 6, K0 = 3, Be = 4 and |X | = 5, the upper-bound is 390625

while our system only has 5250 states by removing all the impossible combinations in k.

B. Action Space

The action space U denotes the number of packets u that the transmitter can send during a time

slot. This space is finite and the number of actions is |U| = U0 + 1.

C. Markov Decision Process

On one hand, during time slot n, wn = max(un,mn) packets leave the buffer, either transmitted

and/or discarded where un is the number of transmitted packets and mn is the number of packets
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with delay K0 slots in the buffer 3. The age of the remaining packets in the buffer is incremented

by 1. Moreover, an+1 new packets arrive to the buffer with age 0. Therefore, the vector k can

be updated from slot n to slot n+ 1 according to the following rule.

1: for i = 1 to qn − wn do

ki(n+ 1) = kwn+i(n) + 1

end for

2: for i = qn − wn + 1 to qn − wn + an+1 do

ki(n+ 1) = 0

end for

3: for i = qn − wn + an+1 + 1 to Bd do

ki(n+ 1) = −1

end for

On the other hand, during time slot n, en+1 e.u are harvested and stored in the battery and En e.u

are removed from the battery to schedule un packets. Therefore, at time slot n+ 1, the battery

state is updated according to

bn+1 = min {bn − En + en+1, Be} . (4)

We thus remark that kn+1 (resp. bn+1) only depends on previous state kn (resp. bn), action un

(resp. En) and external perturbation an+1 (resp. en+1). Therefore, we can define p(s′|s, u) as

the transition probability to fall in the future state s′ = (k′, b′, x′) after taking action u in the

current state s = (k, b, x). Assuming that the buffer, battery and channel states are independent

and channel states are not correlated, the transition probability satisfies the following equation.

p(s′|s, u) = p(k′|k, b, u).p(b′|b, x, u).p(x′), (5)

where p(x′) is the distribution of the channel states, p(k′|k, b, u) indicates the probability transi-

tions between buffer states, and p(b′|b, x, u) indicates the probability transitions between battery

states. After tedious but simple derivations, we obtain the transitions between the buffer states

and the battery states according to the following respective rules.

1: if u > q or k′i > ki + 1 or q′ < q − w then

3Indeed, if mn ≥ un, un packets are sent on the channel and only (mn − un) packets will be discarded before time n+ 1

since their delay will be K0 + 1: therefore, mn packets are removed from the buffer. If mn < un, any packet with an age of

K0 will be sent during this slot which implies that the packets removing from the buffer are only the un transmitted packets.
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p(k′i|ki, b, u) = 0

2: else if k′i 6= ki+u + 1 and ki+u 6= −1 then

p(k′i|ki, b, u) = 0

3: else if k′i > 0 and ki+u = −1 then

p(k′i|ki, b, u) = 0

4: else if q = Bd and u 6= 0 and k′i > 0,∀i ∈ {q − w + 1, ..., Bd} then

p(k′i|ki, b, u) = 0

5: else if q′ < Bd then

p(k′i|ki, b, u) = e−λd . (λd)
a

a!

6: else

p(k′i|ki, b, u) = 1−Q(Bd − q + w, λd),

and

1: if E > b then

p(b′|b, x, u) = 0

2: else if b′ < b− E then

p(b′|b, x, u) = 0

3: else if b′ < Be then

p(b′|b, x, u) = e−λe . (λe)
e

e!

4: else

p(b′|b, x, u) = 1−Q(Be − b+ E, λe).

where Q(•, •) is the regularized Gamma function.

D. Markov Decision Problem and its Resolution

In the context of infinite-horizon MDP, we consider time-averaged cost, where at a given time

slot n ∈ {0, · · · , N}, the system state is denoted by sn = (kn, bn, xn) and µ(sn) = un is the

action deciding the number of packets to be transmitted. We aim at finding the optimal policy µ?

that minimizes the average number of dropped packets. The cost function of this infinite-horizon

MDP problem is given by

D(µ) = lim
N→+∞

1

N
Eµ
[

N∑
n=1

(
εd(sn, un) + εo(sn, un)

)]
, (6)

where E is the expectation with respect to the policy µ and where εd(sn, un) is the instantaneous

number of discarded packets due to delay violation and εo(sn, un) is the expected number of
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discarded packets due to buffer overflow. According to [29], we know that finite-state MDP

without additional constraint exhibits an optimal deterministic policy. Thus, the function µ is a

deterministic policy and µ? is the optimal deterministic policy to be found.

At a given slot n, when the system state is sn and the performed action is un, the number of

discarded packets due to delay violation is given by

εd(sn, un) =

 0 if mn = 0 or mn 6 un

mn − un otherwise.
(7)

The buffer overflow occurs when qn − wn + an+1 > Bd, thus the number of discarded packets

due to buffer overflow is obtained as follows

εo(sn, un)=
+∞∑

a=Bd−qn+wn+1

(qn − wn + a−Bd).e
−λd .

(λd)
a

a!

= λd.(1−Q(Bd − qn + wn, λd))

+ (qn − wn −Bd)× (1−Q(Bd − qn + wn + 1, λd)). (8)

We need to consider an expected reward for the buffer overflow since at the beginning of the

slot (when the decision is made), the number of incoming packets is only known statistically.

Finally, our MDP optimization problem can be stated as

Problem 1:

µ? = argmin
µ
D(µ) (9)

We know that µ? exists [29] and can be found via an offline dynamic programming approach

using, for instance, the so-called VI algorithm [30]. Exploring statistical a priori knowledge of

energy arrival and data arrival dynamics and channel states at the EH transmitter, the offline

approach can accurately model the state transition probabilities of the MDP and provide an

optimal solution. The optimal offline deterministic policy µ? for Problem 1 can be computed

through Algorithm 1.

IV. IMPERFECT CSI SCENARIO

In wireless communication systems, channel state information is not perfectly known at the

transmitter and can include errors due to the channel estimation process. Indeed, in a Time
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Algorithm 1 VI algorithm
1: Initialization

Set v0(s) = 0 ∀s ∈ S

Fix a tolerance parameter ε > 0

Set n = 1

2: For each s ∈ S compute

vn(s) = min
u∈U

[
c(s, u) +

∑
s′∈S

P (s′|s, u).V n−1(s′)

]
(10)

V n(s) = vn(s)− vn(s0) (11)

where c(s, u) is the instantaneous cost and s0 is a fixed state chosen arbitrarily.

3: If sp(V n − V n−1) < ε, where sp(V ) = maxs∈S V (s)−mins∈S V (s), let πε be the resulting

policy that solves equation (10) and stop; else set n = n+ 1 and go to step 2.

Division Duplex (TDD) UL transmission between an EH device and a base station, the CSI

can be obtained at the EH device by first estimating the channel at the base station via an UL

training process and then feeding back a quantized version of the estimate to the transmitter.

We assume that the feedback channel is error-free and instantaneous as soon as the receiver

has estimated the channel. Therefore, accounting for the channel estimation phase, the time slot

structure is divided into two parts: a duration of τ ms to acquire CSI at the mobile device and

the remaining (Ts − τ) ms to schedule data packets. In particular, the EH device exploits the

acquired CSI to send data whenever scheduling decisions are made. In this section, we aim at

evaluating the optimal policy µ? obtained with Algorithm 1 when the CSI are imperfect which

means that the current states used for computing the output of µ? are not necessary correct.

A. Channel estimation

At τ ms after the beginning of time slot n, we consider that the EH mobile device has an

estimated discrete channel state x̂n as described in Section II-C. This estimated channel can be

obtained through a training sequence of η pilot symbols using a total training power Ptr during

the period τ of the time slot. Then, the required energy to perform this channel estimation is
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Ece(x̂n) =

⌈
Ptr.τ

EU

⌉
(12)

Due to the imperfect channel estimation, we have

ĥn = hn + ehn (13)

where ehn is the estimation error independent of hn and it is a zero-mean i.i.d. complex-valued

Gaussian process with variance σ2
e per complex dimension. According to [31], this error variance

can be expressed in terms of energy per pilot symbol Es, the number of pilot symbols used for

estimation η and the Gaussian noise variance per complex dimension σ2
w as

σ2
e = E[|ĥ− h|2] = σ2

w

ηEs
=

N0

τPtr

. (14)

Given the channel gain gn, the estimated channel gain ĝn = |hn + ehn|2 is a non central χ2

random variable with 2 degrees of freedom in which the Gaussian variables are independent

with common variance σ2
e/2 and mean gn = |hn|2. It has a probability density function (PDF)

of the form

PĜ|G(ĝ|g) =
1

σ2
e

e
− g+ĝ

σ2e I0

(
2

σ2
e

√
gĝ

)
(15)

where I0 is the zero-order modified Bessel function of the first kind [32].

B. Error probability and packet loss rate

In this section, we analyze the impact of channel estimation on the system performance, in

particular on the packet loss rate. In fact, channel estimation can affect the number of discarded

packets in three ways. Firs of all, the transmission period is reduced which offers less time to

transmit the same amount of data. On one hand, if the channel estimate is smaller than the actual

channel, less packets can be scheduled at decision instants. Thus, more packets can be queued

in the data buffer with higher delays, and may lead to more delay violation and buffer overflow

occurrences. On the other hand, if the channel estimate is higher than the actual channel, the

scheduled packets are all dropped. This latter condition incurs additional loss rate besides the

delay violation and buffer overflow losses given in equations (7) and (8). Therefore, we need to

take into account such errors in the total error probability. This extra error probability (called,

channel mismatch probability in the rest of the paper) can be expressed as

Pe,CSI = Prob (x̂ > x) =
∑

m′|m′>m
Prob (ĝ ∈ Im′ , g ∈ Im) (16)
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where Im = [tm, tm+1[ and Im′ = [tm′ , tm′+1[, m = 0, . . . ,M − 1, m′ > m are the quantization

regions of the perfect channel state and the estimated channel state, respectively.

Then, using Bayes rule and some derivations, we can compute

Prob (ĝ ∈ Im′ , g ∈ Im)=
∫
ĝ∈Im′

∫
g∈Im

P (ĝ, g) dĝ dg (17)

=

∫
ĝ∈Im′

∫
g∈Im

PĜ|G(ĝ|g)PG(g) dĝ dg (18)

=

∫
g∈Im

(∫
ĝ∈Im′

PĜ|G(ĝ|g) dĝ

)
PG(g) dg (19)

=

tm+1∫
tm

(
Q1

(√
2g

σe
,

√
2tm′

σe

)
−Q1

(√
2g

σe
,

√
2tm′+1

σe

))
PG(g) dg (20)

where PĜ|G(ĝ|g) is given in (15), Q1 is the Marcum function, and PG(g) =
1
σ2
h
e
− g

σ2
h for g ≥ 0

and 0 otherwise is the probability density function PDF of the channel gain.

At a given time slot n, when the action un is done by applying the optimal policy µ? (obtained

for the perfect channel knowledge case) on the estimated channel state x̂n > xn, the number of

discarded packets due to CSI errors is computed as

εe(un, Pe,CSI) = un × 1(Pe,CSI 6= 0), (21)

and the cost function of our MDP problem under policy µ? and imperfect CSI is given by

D′(µ?) = lim
N→+∞

1

N
Eµ?
[

N∑
n=1

(
εd(sn, un) + εo(sn, un) + εe(un, Pe,CSI)

)]
. (22)

V. NUMERICAL RESULTS

We evaluate numerically the optimal policy obtained by resolving Problem 1. We consider a

system as described in Section II with the following characteristics: the slot duration is Ts = 1

ms and the maximum delay is K0 = 3 (i.e., in absolute time K0Ts = 3 ms). Energy arrivals follow

a Poisson distribution with mean λe e.u per slot, where EU = 100 nJ. Energy units are stored in a

battery of size Be = 4 e.u. The maximum available power at the transmitter is Pmax = 0.4 mW.

Data arrivals follow a Poisson distribution with mean λd packets, where packets are of equal size

L = 5000 bits. Data packets are stored in a buffer of size Bd = 6 packets. Limited by the queue
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size, we fix U0 = 6 packets per slot. The mean channel is ξ = 1 and the channel states x takes

5 possible values (expressed in dB) from the finite set X = {−10,−3.98,−0.97, 0.792, 2.04}.

These channel values are obtained according to Section II-C. The noise power spectral density

is N0 = −87 dBm/Hz and the allocated bandwidth is W = 5 MHz.

A. Perfect CSI

In this section, we consider that the transmitter has a perfect knowledge of the channel state

without any cost.

In Fig. 2, we plot the average number of discarded packets versus the number of iterations for

evaluating the optimal policy obtained by the VI algorithm for various energy arrival rates λe

where the data arrival rate λd is fixed to 1.5. We show that the VI algorithm converges rapidly

within a few hundreds iterations for most cases. We can also notice that as λe increases, the

average number of discarded packets considerably decreases. Indeed, when the available energy

from the surrounding environment is larger, the system is able to send more packets, reducing

thus the number of discarded packets.

Fig. 2: Convergence analysis for the average number of discarded packets with different energy

arrival rates.
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In Fig. 3, we display the percentage of discarded packets versus the data arrival rate λd for

different energy arrival rates for two policies. The first policy is the (deterministic offline) optimal

one introduced in this paper and obtained after convergence of the VI algorithm. The second

policy is a naive one in which we force the transmitter to send the maximum number of packets

using the available energy in the battery. As we can observe, the proposed optimal policy provides

significantly better performance than the naive one in terms of percentage of discarded packets.

In fact, this policy enables us to adapt the transmission rate according to the buffer, battery

and channel conditions. In addition, we remark that the number of discarded packets increases

when the data arrival rate λd increases because the buffer overflow could happen more often.

On the one hand, when the energy available to scavenge is low (small λe), an efficient energy

management becomes crucial to ensure the sustainability of the system, and the gap between

both policies increases. On the other hand, when a large amount of energy is available (large

λe), the system can survive even without controlling relevantly the energy consumption which

leads to similar performance between the optimal and naive policies.

Fig. 3: Percentage of the discarded packets versus data arrival rate with different energy arrival

rates.

Similar to Fig. 3, Fig. 4 compares the percentage of discarded packets of the optimal policy with

two other variants of the naive policy. Unlike the naive policy that sends the maximum number
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of packets using the available energy in the battery, the introduced p-Naive policy restricts the

number of packets sent by the naive one by taking the buffer state into account through an

additional parameter p in that way:

• fixed p: The policy sends only the packet i from the buffer if ki ≥ p

• variable p: The policy performs a first step similar to the previous case (fixed p). If no

packet satisfies the condition, p is decreased by 1, and the first step is repeated, until p = 0.

The naive policy corresponds to a 0-Naive policy. Here, we choose p = 2 for the p-naive policy.

As we can see, taking only the age of the packets into the buffer without adapting carefully the

number of packets by the energy battery level and buffer state leads to decrease the number of

sent packets, and therefore the naive policy remains much better.

Fig. 4: Percentage of the discarded packets versus data arrival rate with different energy arrival

rates and different naive policies.

In Fig. 5, we show the percentage of discarded packets due to delay violation among all the

discarded packets for the optimal policy with different data arrival rates λd and energy arrival rates

λe. As explained before, a packet can be discarded due to either delay violation or buffer overflow.

When the data arrival rate increases, the probability to discard a packet due to buffer overflow

increases which decreases the contribution of the delay violation in the discarded packets. When

the energy arrival rate decreases, the percentage of discarded packets due to the delay violation
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slightly increases because, in average, a packet remains more often in the buffer since there is

no energy enough to transmit it. Hence, it is flushed from the buffer for latency’s purpose.

Fig. 5: Percentage of the discarded packets due to delay violation versus data arrival rate and

energy arrival rate with the optimal policy.

In Fig. 6, we plot the average consumed energy versus the data arrival rate λd with different

energy arrival rates λe. We observe that the optimal policy consumes less energy than the naive

one while sending more packets because it adapts the number of transmitted packets per slot to

the channel conditions and the battery state and thus, the transmission is done according to the

energy it consumed.

In Fig. 7, we show the average battery state versus the packet arrival rate λd with different energy

arrival rates λe. As the optimal policy offers a lower energy consumption (see Fig. 6), the battery

is less used and its energy level is thus higher. This ensures a better sustainable communication

with less number of discarded packets.

In Fig. 8, 9 and 10, we compare the performance of our optimal policy to the optimal policy

obtained by forcing the average (instead of the strict) delay to be less than a pre-defined threshold.

Both policies are applied assuming buffer overflow and delay violation as the way to drop the

April 17, 2019 DRAFT



20

Fig. 6: Average consumed energy versus data arrival rate with different energy arrival rates.

Fig. 7: Average battery state versus data arrival rate with different energy arrival rates.

packets, but the second policy is optimized just in order to minimize the buffer overflow and

keep an average delay small enough. Therefore, this policy is obtained as follows: according to

the Little’s law, we propose to convert the average delay constraint Dct into an average queue

length constraint Qct since Qct = λd.Dct where λd is the data arrival rate. The policy ensuring

a bounded average delay can be found by solving the following Constrained Markov Decision
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Problem (CMDP):

µ̃Qct = argmin
µ

lim
N→+∞

1

N
Eµ
[

N∑
n=1

εo(sn, un)

]
(23)

s.t. lim
N→+∞

1

N
Eµ
[

N∑
n=1

qn

]
6 Qct (24)

where qn is the queue length. Notice that we do not consider the delay violation for this

optimization since the strict delay is not taken into account in this policy as we just force

the average delay to be less than a threshold. So the policy µ̃Qct is done to handle properly the

average delay and not the strict delay.

Our optimal policy adapted to strict delay has been computed with K0 = 3. In order to compare

both policies in the strict delay constraint set up (it means that the packet is dropped if the delay

is strictly larger than K0 even if we apply the policy µ̃Qct), we need to choose properly Dct. It

makes sense to force Dct ≤ 3 in order to have a small amount of dropped packets due to delay

violation. As Dct = 2 or Dct = 3 have led to similar performance, we have fixed Dct = 3.

As we can see, our policy outperforms the policy considering only the average delay in terms of

percentage of discarded packets, consumed energy (in most cases), and battery levels (in most

cases). So, it was worth to do the effort to optimize the policy by taking into account the strict

delay into the state model rather than just using the optimal policy adapted to the average delay

with a well-tuned threshold.

We now consider that the EH process is time-correlated. In order to cast this assumption into an

MDP framework, we need to add EH process e to the state of the system, i.e., s = (k, b, e, x)

instead of (k, b, x) as done previously. Then, a new optimal policy taking into account the EH

correlation is re-computed by using the same tool, i.e., the VI algorithm. Here, we assume that

the transition probability of the Markov Chain satisfies the following equation

p(s′|s, u) = p(k′|k, b, u).p(b′, e′|b, e, x, u).p(x′), (25)

where p(b′, e′|b, e, x, u) is obtained according to the following rules:

1: if E > b then

p(b′, e′|b, e, x, u) = 0

2: else if b′ < b− E then

p(b′, e′|b, e, x, u) = 0
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Fig. 8: Percentage of the discarded packets versus data arrival rate with different energy arrival

rates between strict and average delay policies(µ? and µ̃3, respectively).

Fig. 9: Average consumed energy versus data arrival rate with different energy arrival rates

between strict and average delay policies (µ? and µ̃3 respectively).

3: else if b′ = min(Be, b− E + e) then

p(b′, e′|b, e, x, u) = p(e′|e)

4: else
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Fig. 10: Average battery state versus data arrival rate with different energy arrival rates between

strict and average delay policies (µ? and µ̃3 respectively).

p(b′, e′|b, e, x, u) = 0.

In addition, the transition probability from a energy arrival state j at time slot n to another

energy arrival state i at time slot n+ 1 is given by

p(en+1 = i|en = j) =
(1− ρe)|i−j|

|He|−1∑
k=0

(1− ρe)|k−j|
(26)

where ρe is the so-called correlation factor and He is the set of potential energy units harvested

during one slot.

In Fig. 11, we compare the performance of the optimal policy (adapted to time-correlated EH

process) with the naive policy. We set He = {0, 1, 2} e.u. per slot. The proposed optimal policy

is still better than the naive policy. The performance of the system decreases when ρe increases

because the system will be trapped in the state e = 0 for a longer period of time, leading to

more discarded packets.

B. Imperfect CSI

In this section, our goal is to evaluate the proposed optimal policy when the transmitter relies

on an estimated version of the channel state. The estimation phase duration is equal to τ = 10
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Fig. 11: Percentage of the discarded packets versus data arrival rate with different correlated

energy arrival rates between strict and naive policies.

µs (1% of Ts), and a power of Ptr = 4 mW is used. The corresponding energy consumption for

the estimation phase is thus E = 40 nJ which can be neglected to the energy unit, and therefore

we assume Ece = 0 e.u..

In Fig. 12, we compare the percentage of discarded packets between perfect and imperfect CSI

scenarios. For low data arrival rate λd, the gap between both scenarios is large. Indeed, in our

set up, the smallest channel mismatch probability is between 10−3 and 10−2 which implies that

the percentage of discarded packets is necessary worse since as soon as the channel is over-

estimated, the packets are dropped. However, when the data arrival rate increases, the buffer

overflow can happen more often and the channel mismatch probability has less impact, which

lead both scenarios to behave similarly.

In Fig. 13, we compare the optimal and naive policies under perfect and imperfect CSI scenarios.

For small energy arrival rate λe, the optimal policy under imperfect CSI is better than the naive

policy with perfect CSI, because the latter sends packets without any adaptation to the energy

and data arrivals, so energy shortage can happen more often and the number of discarded packets
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Fig. 12: Percentage of the discarded packets versus data arrival rate with different energy arrival

rates between perfect and imperfect CSI scenarios.

increases. For high energy arrival rate, imperfect CSI has stronger impact since the energy has

to be controlled in a smarter way and knowing the channel accurately is more required.

Fig. 13: Percentage of the discarded packets versus data arrival rate with different energy arrival

rates for different policies and between perfect and imperfect CSI scenarios.
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In Fig. 14, we compare the percentage of discarded packets for different estimation times τ

(expressed in % of Ts). For low data arrival rate λd, increasing the estimation time leads to

a better channel estimation, which slightly reduces the number of discarded packets since the

impact of estimation error is high in this configuration (see Fig. 12). Nevertheless, after a certain

threshold, for instance τ ≈ 5%, the number of discarded packets will increase because the

remaining communication time of the slot is smaller. This leads to decrease the number of sent

packets and so to increase the number of packets into the buffer, exhibiting thus more delay

violation and buffer overflow. For high data arrival rate, we know that the estimation accuracy

is not required (see Fig. 12). Therefore, increasing the estimation time directly decreases the

performance since the system has less time for data packets transmission.

Fig. 14: Percentage of the discarded packets versus the estimation time τ (expressed in % of

Ts) with different data and energy arrival rates.

In Fig. 15, we display the nature of discarded packets in percentage due to delay violation,

buffer overflow and channel mismatch with different data and energy arrival rates. The number

of discarded packets due to channel mismatch is significant for low data arrival rate because the

delay violation or the buffer overflow can happen less often. However, for high data arrival rate,

the number of packets discarded due to channel mismatch is negligible and the policy behaves

approximately in the same way for perfect and imperfect CSI. Nevertheless, the imperfect CSI

degrades the whole system (on the delay violation and buffer overflow) since a part of the time
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slot is now devoted to perform the estimation rather than the transmission.

Delay
85%

Estim.
12%

Overflow
3%

(a) λd = 0.5 - λe = 0.5

Delay
26%

Estim.
1%Overflow

73%

(b) λd = 3.0 - λe = 0.5

Delay
8%

Estim.
90%

Overflow
2%

(c) λd = 0.5 - λe = 2.0

Delay
8%

Estim.
2%Overflow

90%

(d) λd = 3.0 - λe = 2.0

Fig. 15: Percentage of the discarded packets due to delay violation, buffer overflow, and channel

mismatch with different data and energy arrival rates.

Under imperfect CSI assumption, it is usual to allow packet re-transmission through an Hybrid

Automatic Repeat ReQuest (HARQ) protocol instead of trashing the packet once sent [33]. But

adapting our work to HARQ requires a huge modification of the MDP framework. Here, we

just run our policy (the optimal one described in Section III) when ARQ and Chase Combining

HARQ (CC-HARQ) protocols are carried out. The only modification is to keep the packet into

the buffer by the end of the ARQ process instead of wasting it. So there is a trade-off between

the higher probability for each packet to be correctly decoded at the receiver, the higher duration

for the packet to stay in the buffer while waiting for the feedback, the higher energy consumed
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for re-transmitting the packet. In Fig. 16, ARQ and CC-HARQ are implemented with at most

two transmissions (one re-transmission is allowed only). When λe is low, using ARQ and CC-

HARQ is not efficient because re-transmitting the same packet twice consumes energy while it

is not available in large quantities. However, when λe is large, these two protocols significantly

improve the performance by reducing the number of discarded packets due to imperfect CSI.

Fig. 16: Percentage of the discarded packets versus data arrival rate with different energy arrival

rates between perfect and imperfect CSI scenarios.

VI. CONCLUSION

We have addressed resource scheduling problem under energy harvesting capabilities with strict

delay constraint and perfect CSI. More precisely, we have solved the packet loss optimization

problem using MDP framework and dynamic programming techniques. The optimal policy

adapted the number of transmitted packets according to the channel conditions, the available en-

ergy in the battery, and the battery level such that the number of discarded packets is minimized.

We have compared our proposed strict delay based policy with different variants of a naive policy

and the state-of-the-art policy relying only on the average delay, showing significant savings in

packet loss and energy consumption. Finally, we have evaluated the impact of imperfect CSI

without and with ARQ protocols on the optimal policy in terms of additional packet loss due to
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the channel estimation time and errors. As perspectives, we aim i) to use Deep Reinforcement

Learning (DRL) techniques to deal with the curse of dimensionality, ii) to include offloading

capabilities, where the system can choose to execute packets locally, offload it to nearby servers

or base stations having more resources according to the buffer, available energy, and channel

conditions under unknown CSI.
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