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Abstract
The Wasserstein distance and its variations, e.g.,
the sliced-Wasserstein (SW) distance, have re-
cently drawn tremendous amount of attention
from the machine learning community. The SW
distance, specifically, was shown to have similar
flavor to that of the Wasserstein distance, while
being much simpler to compute, and is used in
various applications including generative mod-
eling and supervised learning. In this paper, we
first clarify the mathematical connections between
the SW distance and the Radon transform. We
then utilize the generalized Radon transform to
define a new family of distances for probabil-
ity measures, which we call generalized sliced-
Wasserstein (GSW) distances. We provide the
conditions under which a GSW is a distance. We
then show that, similarly to the SW distance, the
GSW distance can be extended to a max-GSW
distance. Finally, we compare the numerical
performance of the proposed distances between
probability measures on several generative model-
ing tasks, including sliced-Wasserstein flows and
sliced-Wasserstein auto-encoders.

1. Introduction
Emerging from the heart of Optimal Transportation (OT) the-
ory, the Wasserstein distance (Villani, 2008) forms a metric
between two probability measures and has attracted abun-
dant attention in data sciences and machine learning due to
its nice theoretical properties and applications on ubiquitous
domains (Solomon et al., 2014; Frogner et al., 2015; Mon-
tavon et al., 2016; Kolouri et al., 2017; Courty et al., 2017;
Peyré & Cuturi, 2018; Schmitz et al., 2018), especially in
implicit generative modeling such as OT-based generative
adversarial networks (GAN) and variational auto-encoders
(Arjovsky et al., 2017; Bousquet et al., 2017; Gulrajani et al.,
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2017; Tolstikhin et al., 2018).

While OT brings new perspectives and principled ways to
formalize problems, the OT-based methods usually suffer
from high computational complexity. The Wasserstein dis-
tance is often the computational bottleneck as it turns out
that computing it between multi-dimensional measures is
numerically intractable in general. This important computa-
tional burden is a major limiting factor in the application of
OT distances to large-scale data analysis. Recently, several
numerical methods have been proposed to speed-up the eval-
uation of the Wasserstein distance. For instance, entropic
regularization techniques (Cuturi, 2013; Cuturi & Peyré,
2015; Solomon et al., 2015) provide a fast approximation
to the Wasserstein distance by regularizing the original OT
problem with an entropy term. Other notable contributions
towards computational methods for OT include multi-scale
and sparse approximation approaches (Oberman & Ruan,
2015; Schmitzer, 2016), and Newton-based schemes for
semi-discrete OT (Lévy, 2015; Kitagawa et al., 2016).

There are some special favorable cases where solving the
OT problem is easy and reasonably cheap. In particular,
the Wasserstein distance for one-dimensional probability
densities has a closed-form formula and can be efficiently
approximated. This nice property motivates the use of the
sliced-Wasserstein distance (Bonneel et al., 2015), an al-
ternative OT distance which is obtained by computing in-
finitely many linear projections of the high-dimensional
distribution to one-dimensional distributions and then com-
puting the average of the Wasserstein distance between these
one-dimensional representations. While having similar the-
oretical properties (Bonnotte, 2013), the sliced-Wasserstein
distance has significantly lower computational requirements
than the classical Wasserstein distance. Therefore, it has
recently attracted ample attention and successfully been ap-
plied to a variety of practical tasks (Bonneel et al., 2015;
Kolouri et al., 2016; Carriere et al., 2017; Karras et al., 2017;
Şimşekli et al., 2018; Deshpande et al., 2018; Kolouri et al.,
2018; 2019).

As we will detail in the next sections, the linear projection
process used in the sliced-Wasserstein distance is closely
related to the Radon transform, which is widely used in to-
mography (Radon, 1917; Helgason, 2011). In other words,
the sliced-Wasserstein distance is calculated via linear slic-
ing of the probability distributions. The linear nature of
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these projections creates an important computational bottle-
neck. This is due to the fact that, in very high dimensional
settings, the data often lives in a thin manifold and the re-
quired number of randomly chosen linear projections grows
very quickly in order to be able to capture the structure
of the data distribution (Şimşekli et al., 2018). Therefore,
if the number of required projections could be reduced, it
would result in a significant performance improvement in
sliced-Wasserstein computations.

Contributions. In this paper, we address the aforemen-
tioned computational issues of the sliced-Wasserstein dis-
tance and for the first time, we extend the linear slicing
to non-linear slicing of probability measures. Our main
contributions are summarized as follows:

• We dive deep in the mathematics of the generalized
Radon transform (Beylkin, 1984) and extend the def-
inition of the sliced-Wasserstein distance to an entire
class of distances, which we call the generalized sliced-
Wasserstein (GSW) distance. We prove that replacing the
linear projections with polynomial projections will still
yield a valid distance metric and we then identify general
conditions under which GSW is a proper metric.

• We then show that, instead of using infinitely many pro-
jections as required by GSW, we can still define a valid
distance metric by using a single projection, as long as
the projection gives the maximal distance in the projected
space. We aptly call this distance the max-GSW distance.
The max-GSW distance vastly reduces the computational
cost induced by the projection operations; however, it
comes with an additional cost since it requires optimiza-
tion over the space of projectors.

• Due to their inherent non-linearity, the GSW and max-
GSW distances are expected to capture the complex struc-
ture of high dimensional distributions by using much less
projections, which will reduce the overall computational
burden in a significant amount. We verify this fact in
our experiments, where we illustrate the superior perfor-
mance of the proposed distances in both synthetic and
real-data settings.

2. Background on Optimal Transport
distances

We review in this section the preliminary concepts and for-
mulations needed to develop our framework, namely the p-
Wasserstein distance, the Radon transform and the sliced p-
Wasserstein distance. In what follows, we denote by Pp(Ω)
the set of Borel probability measures with finite p’th moment
defined on a given metric space (Ω, d) and by µ ∈ Pp(X)
and ν ∈ Pp(Y ) probability measures defined on X,Y ⊆ Ω
with corresponding probability density functions Iµ and Iν ,
i.e. dµ(x) = Iµ(x)dx and dν(y) = Iν(y)dy.

2.1. Wasserstein Distance

The p-Wasserstein distance for p ∈ [1,∞) between µ and ν
is defined as the optimal mass transportation (OMT) prob-
lem (Villani, 2008) with cost function c(x, y) = dp(x, y),
such that:

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×Y

dp(x, y)dγ(x, y)

) 1
p

, (1)

where Γ(µ, ν) is the set of all transportation plans γ ∈
Γ(µ, ν) such that:

γ(A× Y ) = µ(A) for any Borel subset A ⊆ X
γ(X ×B) = ν(B) for any Borel subset B ⊆ Y .

Due to Brenier’s theorem (Brenier, 1991), for absolutely
continuous probability measures µ and ν (with respect to
the Lebesgue measure), the p-Wasserstein distance can be
equivalently obtained from

Wp(µ, ν) =

(
inf

f∈MP (µ,ν)

∫
X

dp(x, f(x))dµ(x)

) 1
p

(2)

where MP (µ, ν) = {f : X → Y | f#µ = ν} and f#µ
represents the pushforward of measure µ, characterized as∫
f−1(A)

dµ(x) =

∫
A

dν(y) for any Borel subset A ⊆ Y.

Note that in most engineering and computer science appli-
cations, Ω is a compact subset of Rd and d(x, y) = |x− y|
is the Euclidean distance. By abuse of notation, we will use
Wp(µ, ν) and Wp(Iµ, Iν) interchangeably.

One-dimensional distributions: The case of one-
dimensional continuous probability measures is specifically
interesting as the p-Wasserstein distance has a closed-form
solution. More precisely, for one-dimensional probability
measures, there exists a unique monotonically increasing
transport map that pushes one measure to another. Let
Fµ(x) = µ((−∞, x]) =

∫ x
−∞ I0(τ)dτ be the cumulative

distribution function (CDF) for Iµ and define Fν to be the
CDF of Iν . The transport map is then uniquely defined as
f(x) = F−1

ν (Fµ(x)) and, consequently, the p-Wasserstein
distance has an analytical form given as follows:

Wp(µ, ν) =

(∫
X

dp(x, F−1
ν (Fµ(x)))dµ(x)

) 1
p

=

(∫ 1

0

dp(F−1
µ (z), F−1

ν (z))dz

) 1
p

(3)

where Eq. (3) results from the change of variable Fµ(x) = z.
It should be noted that for empirical distributions, Eq. (3)
is calculated by simply sorting the samples from the two
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distributions and calculating the average dp(·, ·) between
the sorted samples. This requires only O(M) operations at
best and O(M logM) at worst, where M is the number of
samples drawn from each distribution. See Kolouri et al.
(2019) for more details. The closed-form solution of the p-
Wasserstein distance for one-dimensional distributions is an
attractive property that gives rise to the sliced-Wasserstein
(SW) distance. Next, we review the Radon transform, which
enables the definition of the SW distance.

2.2. Radon Transform

The standard Radon transform, denoted byR, maps a func-
tion I ∈ L1(Rd), where

L1(Rd) , {I : Rd → R |
∫
Rd
|I(x)|dx <∞},

to the infinite set of its integrals over the hyperplanes of Rd
and is defined as

RI(t, θ) :=

∫
Rd
I(x)δ(t− 〈x, θ〉)dx, (4)

for (t, θ) ∈ R × Sd−1, where Sd−1 ⊂ Rd stands for the
d-dimensional unit sphere, δ(·) the one-dimensional Dirac
delta function, and 〈·, ·〉 the Euclidean inner-product. Note
that R : L1(Rd) → L1(R × Sd−1). Each hyperplane can
be written as:

H(t, θ) = {x ∈ Rd | 〈x, θ〉 = t}, (5)

which alternatively can be interpreted as a level set of the
function g ∈ L1(Rd × Sd−1) defined as g(x, θ) = 〈x, θ〉.
For a fixed θ, the integrals over all hyperplanes orthogonal
to θ define a continuous functionRI(·, θ) : R→ R which
is a projection (or a slice) of I .

The Radon transform is a linear bijection (Natterer, 1986;
Helgason, 2011) and its inverseR−1 is defined as:

I(x) = R−1(RI(t, θ))

=

∫
Sd−1

(RI(〈x, θ〉, θ) ∗ η(〈x, θ〉)dθ (6)

where η(·) is a one-dimensional high-pass filter with cor-
responding Fourier transform Fη(ω) = c|ω|d−1, which
appears due to the Fourier slice theorem (Helgason, 2011),
and ‘∗’ is the convolution operator. The above definition of
the inverse Radon transform is also known as the filtered
back-projection method, which is extensively used in image
reconstruction in the biomedical imaging community. Intu-
itively each one-dimensional projection (or slice)RI(·, θ)
is first filtered via a high-pass filter and then smeared back
into Rd along H(·, θ) to approximate I . The summation of
all smeared approximations then reconstructs I . Note that
in practice, acquiring an infinite number of projections is

not feasible, therefore the integration in the filtered back-
projection formulation is replaced with a finite summation
over projections (i.e., a Monte-Carlo approximation).

[Gustavo] As with the other paper, I think this section does
not clarify anything mathematical, and could probably be
moved towards the end, close to a computational section.
Radon transform of empirical PDFs: The Radon trans-
form of Iµ simply follows Equation (4), whereRIµ(·, θ) is
a one-dimensional marginal distribution of Iµ. However, in
most machine learning applications we do not have access
to the distribution Iµ but to its samples, xn. Kernel density
estimation could be used in such scenarios to approximate
Iµ from its samples,

Iµ(x) ≈ 1

N

N∑
n=1

φ(x− xn)

where φ : Rd → R+ is a density kernel where∫
Rd φ(x)dx = 1 (e.g. Gaussian kernel). The Radon trans-

form of Iµ can then be approximated from its samples:

RIµ(t, θ) ≈ 1

N

N∑
n=1

Rφ(t− xn · θ, θ)

Note that certain density kernels have analytic Radon trans-
formation. For instance when φ(x) = δ(x) the Radon
transformRφ(t, θ) = δ(t). Similarly for Gaussian kernels
and when φ(x) = Nd(0d, σ2Id×d) the Radon transform
is equal to Rφ(t, θ) = N1(0, σ2). Moreover, given the
high-dimensional nature of the problem estimating density
I in Rd requires large number of samples, however, the pro-
jections of I , RI(., θ), are one dimensional and therefore
it may not be critical to have large number of samples to
estimate these one-dimensional densities.

2.3. SW and Max-SW Distances

The idea behind the sliced p-Wasserstein distance is to first
obtain a family of one-dimensional representations for a
higher-dimensional probability distribution through linear
projections (via Radon transform), and then calculate the
distance between two input distributions as a functional on
the p-Wasserstein distance of their one-dimensional repre-
sentations (i.e., the one-dimensional marginal distributions).
In that sense, the distance is obtained by solving several one-
dimensional optimal transport problems, which have closed-
form solutions. More precisely, the sliced p-Wasserstein
distance between Iµ and Iν is defined as

SWp(Iµ, Iν) = (

∫
Sd−1

W p
p (RIµ(., θ),RIν(., θ))dθ)

1
p

(7)

The sliced p-Wasserstein distance as defined above is pos-
itive, symmetric, and it satisfies coincidence axiom and
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the triangle inequality and hence it is a true metric (Bon-
notte, 2013; Kolouri et al., 2016). Calculation of the sliced-
Wasserstein distance requires an integration over the unit
sphere in Rd, i.e., Sd−1. In practice, this integration is ap-
proximated by using a simple Monte Carlo scheme that
draws uniform samples from Sd−1 and replaces the integral
with a finite-sample average,

SWp(Iµ, Iν) ≈ (
1

|Θ|
∑
θl∈Θ

W p
p (RIµ(·; θl),RIν(·; θl)))

1
p

(8)

The sliced p-Wasserstein distance is especially useful when
one only has access to samples of a high-dimensional PDFs
and kernel density estimation is required to estimate Iµ.
One dimensional kernel density estimation of PDF slices
is a much simpler task compared to direct estimation of I
from its samples. The catch however, is that as the dimen-
sionality grows one requires larger number of projections to
estimate I fromRI(., θ). In short, if a reasonably smooth
two-dimensional distribution can be approximated by its L
projections, then one would require O(Ld−1) number of
projection to approximate a similarly smooth d-dimensional
distribution (for d ≥ 2).

To further clarify this, Let Iµ = N (0, Id) and Iν =
N (x0, Id) be two Gaussian densities with identity co-
variances in the d-dimensional space, where x0 ∈
Rd. The slices of these distributions then become one-
dimensional Gaussians of the form, RIµ(·, θ) = N (0, 1)
and RIµ(·, θ) = N (θ · x0, 1). It is therefore clear to see
that W2(RIµ(·, θ),RIν(·, θ)) achieves its maximum value
when θ = x0

‖x0‖2 , and it is zero for θs that are orthogonal
to x0. On the other hand, we know that randomly drawn
vectors from the unit sphere are more likely to be nearly
orthogonal in high-dimensions. More rigorously, the fol-
lowing inequality holds, Pr(|θ · x0

‖x0‖2 | < ε) > 1− e(−dε2),
which implies that for higher dimensions, d, the majority of
sampled θs would be nearly orthogonal to x0 and therefore
W2(RIµ(·, θ),RIν(·, θ)) ≈ 0 with high probability.

One remedy for the ‘projection complexity’ of the SW dis-
tance is to avoid uniform sampling of the unit sphere, and
pick samples, θs, that contain discriminant information be-
tween Iµ and Iν . This idea was for instance used in (Desh-
pande et al., 2018), where the authors first calculate a linear
discriminant subspace and then measure the empirical SW
distance by setting θs to be the discriminant components
of the subspace. A similarly flavored but less heuristic
approach is to use the max-SW distance, which is an alter-
native distance between Iµ and Iν , and is defined as:

max-SWp(Iµ, Iν) = supθ∈Sd−1 Wp(RIµ(., θ),RIν(., θ))
(9)

Given that Wp is a true distance, it is trivial to show that (9)
is also a distance: it is symmetric, it satisfies the Triangle

! !

"#(!, &')

!

Input	distribution

#())

*(),&')

+(!, &')

"# !, & :	Slices	with	respect	to	different	* !, &
+ !, & = ) * ), & = !	}

Figure 1. Visualizing the slicing process for classic and general-
ized Radon transform for the Half Moon distribution. The slices
GI(t, θ) follow Equation (10).

Inequality, and the Coincidence Axiom holds. Later on,
we will prove these properties for the generalized sliced-
Wasserstein distance, which contains the SW distance as a
special case.

2.4. Generalized Radon transform

The Generalized Radon transform (GRT) extends the origi-
nal idea of the classic Radon transform introduced by Radon
(1917) from integration over hyperplanes of Rd to integra-
tion over hypersurfaces, i.e. (d− 1)-dimensional manifolds
(Beylkin, 1984; Denisyuk, 1994; Ehrenpreis, 2003; Gel’fand
et al., 1969; Kuchment, 2006; Homan & Zhou, 2017). GRT
has various applications, including Thermoacoustic Tomog-
raphy, where the hypersurfaces are spheres, and Electrical
Impedance Tomography (EIT), where integration over hy-
perbolic surfaces appear.

We introduce a function g(x, θ) defined on X × (Rn\{0})
where X is a domain in Rd. We say that g is a defining
function when it satisfies the following conditions:

H1. g(x, θ) is a real-valued C∞ function on X ×(Rn\{0})

H2. g(x, θ) is homogeneous of degree one in θ, i.e.

∀λ ∈ R, g(x, λθ) = λg(x, θ)

H3. g is non-degenerate in the sense that dxg(x, θ) 6= 0 in
X × Rn\{0}
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H4. The mixed Hessian of g is strictly positive, i.e.

det
(

∂2g

∂xi∂θj

)
> 0

Then, the generalized Radon transform of I ∈ L1(Rd) is
the integration of I over hypersurfaces characterized by the
level sets of g, which are denoted by

Ht,θ = {x ∈ X | g(x, θ) = t}.

In other words, the GRT of I is defined as:

GI(t, θ) =

∫
Rd
I(x)δ(t− g(x, θ))dx (10)

where g is a defining function.

Note that the standard Radon transform is a special case of
the GRT with g(x, θ) = x · θ. Figure 1 visualizes the slicing
process for classic and generalized Radon transform for the
Half Moon distribution as input.

3. GSW and Max-GSW Distances
Following the definition of the SW distance in Equation
(7), we define the generalized sliced p-Wasserstein distance
(GSW) using the generalized Radon transform as

GSWp(Iµ, Iν) =

(∫
Ωθ

W p
p (GIµ(·, θ),GIν(·, θ))dθ

) 1
p

(11)

and subsequently,

max-GSWp(Iµ, Iν) = max
θ∈Ωθ

Wp(GIµ(·, θ),GIν(·, θ)) (12)

Proposition 1. The generalized sliced p-Wasserstein dis-
tance and the maximum generalized sliced p-Wasserstein
distance are, indeed, distances over Pp(Ω) if and only if the
generalized Radon transform is injective.

Proof. The non-negativity and symmetry are direct conse-
quences from the fact that the Wasserstein distance is a
metric (Villani, 2008): see supplementary material.

We prove the triangle inequality forGSWp and max-GSWp.
Let µ1, µ2 and µ3 in Pp(Ω). Since the Wasserstein distance
satisfies the triangle inequality, we have, for all θ ∈ Ωθ,

Wp(GIµ1(·, θ),GIµ3(·, θ)) ≤Wp(GIµ1(·, θ),GIµ2(·, θ))
+Wp(GIµ2(·, θ),GIµ3(·, θ))

Therefore, we can write:

GSWp(Iµ1
, Iµ3

)

=

(∫
Ωθ

W p
p (GIµ1

(·, θ),GIµ3
(·, θ))dθ

)1/p

≤
(∫

Ωθ

(
Wp(GIµ1(·, θ),GIµ2(·, θ))

+ Wp(GIµ2
(·, θ),GIµ3

(·, θ))
)p
dθ

)1/p

≤
(∫

Ωθ

W p
p (GIµ1

(·, θ),GIµ2
(·, θ))dθ

)1/p

+

(∫
Ωθ

W p
p (GIµ2

(·, θ),GIµ3
(·, θ))dθ

)1/p

(13)

≤ GSWp(Iµ1
, Iµ2

) +GSWp(Iµ2
, Iµ3

)

where inequality (13) follows from the application of the
Minkowski inequality in Lp(Ωθ). We conclude that GSWp

satisfies the triangle inequality.

Let θ∗ = arg maxθ∈Ωθ
Wp(GIµ1

(·, θ),GIµ3
(·, θ)); then,

we can write:

max-GSWp(Iµ1
, Iµ3

)

= max
θ∈Ωθ

Wp(GIµ1
(·, θ),GIµ3

(·, θ))

= Wp(GIµ1(·, θ∗),GIµ3(·, θ∗))
≤Wp(GIµ1(·, θ∗),GIµ2(·, θ∗))

+Wp(GIµ2(·, θ∗),GIµ3(·, θ∗))
≤ max
θ∈Ωθ

Wp(GIµ1(·, θ),GIµ2(·, θ))

+ max
θ∈Ωθ

Wp(GIµ2
(·, θ),GIµ3

(·, θ))

≤ max-GSWp(Iµ1
, Iµ2

) + max-GSWp(Iµ2
, Iµ3

)

So max-GSWp satisfies the triangle inequality.

What remains to be proved is GSWp(Iµ, Iν) = 0
(or max-GSWp(Iµ, Iν) = 0) if and only if µ = ν.
GSWp(Iµ, Iµ) = 0 and max-GSWp(Iµ, Iµ) = 0 follow di-
rectly from Wp(µ, µ) = 0 for any µ, and GSWp(Iµ, Iν) =
0 (or max-GSWp(Iµ, Iν) = 0) is equivalent to GIµ(·, θ) =
GIν(·, θ) for almost all θ ∈ Ωθ. We conclude that GSW and
max-GSW are distances if and only if GIµ(·, θ) = GIν(·, θ)
implies µ = ν, i.e. the generalized Radon transform is
injective.

Remark 1. If the chosen generalized Radon transform is
not injective, then we can only say that the GSW and max-
GSW dissimilarity measures are pseudo-metrics: they still
satisfy non-negativity, symmetry, the triangle inequality, and
GSWp(Iµ, Iµ) = 0 and max-GSWp(Iµ, Iµ) = 0.
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Algorithm 1 GSW Distance
input {xi ∼ Iµ}Ni=1, {yi ∼ Iν}Ni=1

Defining function g(x, θ), number of slices L, and p
Initialize d = 0
for l = 1 to L do

Sample θl from Ωθ uniformly
Calculate {x̂i = g(xi, θl)}Ni=1 and {ŷi = g(yi, θl)}Ni=1

Sort x̂i and ŷi in ascending order such that x̂i[n] ≤ x̂i[n+1]

d = d+ 1
L

∑N
n=1 |x̂i[n] − ŷi[n]|p

end for
output d

1
p ≈ GSWp(Iµ, Iν)

3.1. Conditions for the injectivity of GRT

In the previous section, we have shown that the injectivity
of GRT is crucial for GSW and max-GSW distances to be
valid distances for probability measures. In this section, we
will identify the conditions for the GRT to be injective.

The investigation of the sufficient and necessary conditions
for showing GRT to be injective is a long-standing topic
(Beylkin, 1984; Homan & Zhou, 2017; Uhlmann, 2003;
Ehrenpreis, 2003)

More interestingly, one can also show that any homogeneous
polynomial with an odd degree yields an injective GRT
(Rouviere, 2015), i.e.

g(x, θ) =
∑
|α|=m

θαx
α, (14)

where we use the multi-index notation, α , (α1, . . . , αd) ∈
Nd, |α| ,

∑d
i=1 αi, and xα ,

∏d
i=1 x

αi
i . Here, the sum-

mation iterates over all possible multi-indices α, such that
|α| = m, where m denotes the degree of the polynomial
and θα ∈ R. We can observe that choosing m = 1 reduces
to the linear case x ·θ, since the set of the multi-indices with
|α| = 1 becomes {(α1, . . . , αd);αi = 1, for a single i ∈
J1, dK, and αj = 0, ∀j 6= i} and contains d elements.

4. Numerical implementation
Here we briefly review the numerical method used in calcu-
lating GSW and max-GSW.

4.1. Numerical implementation of GSWp

Let {xi ∼ Iµ}Ni=1 and {yj ∼ Iν}Nj=1 be samples from dis-
tributions Iµ, and Iν , and let g(·, θ) be the defining function.
Following the work of Kolouri et al. (2019), the Wasserstein
distance between one-dimensional distributions GIµ(·, θ)
and GIν(·, θ) can be calculated from sorting their samples
and calculating the `p distance between the sorted samples.
In other words, the GSW distance between Iµ and Iν can

Algorithm 2 Max-GSW Distance
input {xi ∼ Iµ}Ni=1, {yi ∼ Iν}Ni=1

Defining function g(x, θ), and p
Randomly initialize θ ∈ Ωθ
while θ is not converged do

Calculate {x̂i = g(xi, θ)}Ni=1 and {ŷi = g(yi, θl)}Ni=1

Sort x̂i and ŷi in ascending order such that x̂i[n] ≤ x̂i[n+1]

θ = ProjΩθ (ADAM(∇θ( 1
N

∑N
n=1 |x̂i[n] − ŷj[n]|p), θ))

end while
Sort x̂i and ŷi in ascending order
d = 1

N

∑N
n=1 |x̂i[n] − ŷi[n]|p

output d
1
p ≈ max-GSWp(Iµ, Iν)

be approximated from their samples as follows:

GSWp(Iµ, Iν) ≈

 1

|Θ|
∑
θl∈Θ

N∑
n=1

|g(xi[n], θ)− g(yj[n], θ)|p
 1
p

where i[m] and j[n] are the indices of sorted {g(xi, θ)}Ni=1

and {g(yj , θ)}Nj=1. The algorithm to calculate the GSW
distance is shown in Algorithm 1.

4.2. Numerical implementation of max-GSWp

To calculate max-GSWp we perform an EM like optimiza-
tion scheme, where: a) for a fixed θ, g(xi, θ) and g(yi, θ)
are first sorted to calculate the Wp distance, and b) update θ
using:

θ = ProjΩθ (ADAM(∇θ(
1

N

N∑
n=1

|g(xi[n], θ)−g(yj[n], θ)|p), θ))

where we use ADAM optimizer to update θ, and ProjΩθ (·)
projects θ onto Ωθ. For instance, when θ ∈ Sn−1,
ProjΩθ (θ) = θ

‖θ‖ . Algorithm 2 shows the algorithm to
calculate max-GSWp. Here we note that the described op-
timization to find the optimal θ optimizes the actual Wp,
as opposed to the heuristic approaches proposed in (Desh-
pande et al., 2018; Kolouri et al., 2019), which calculate
the pseudo-optimal slice via perceptrons or via penalized
linear discriminant analysis (Wang et al., 2011). Finally,
after convergence is achieved the max-GSWpdistance is
approximated as:

max-GSWp(Iµ, Iν) ≈

(
1

N

N∑
n=1

|g(xi[n], θ
∗)− g(yj[n], θ

∗)|p
) 1
p

.

5. Experiments
5.1. Generalized Sliced-Wasserstein Flows

For our first experiment, in order to demonstrate the effect
of the choice of the GSW distance in its purest form, we
consider the following problem,

minµGSW (µ, ν) (15)
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Figure 2. Log 2-Wasserstein distance measured between the source
and target distributions as a function of number of iterations for
five classic target distributions.

where ν is a target distribution, and µ is the source distribu-
tion, which is initialized to be the normal distribution. The
optimization is then solved iteratively via,

∂tµt = −∇GSW (µt, ν), µ0 = N (0, 1)

Here, we used 5 well-known distributions as the target distri-
bution, namely the 25-Gaussians, 8-Gaussians, Swiss Roll,
Half Moons, and the Circle distributions. For the GSW we
used linear (i.e., SW distance), circular, homogeneous poly-
nomial of degree 3, and homogeneous polynomial of degree
5. We used the exact same optimization scheme for all
methods, used L = 10 random projections in each iteration,

Figure 3. Schematic of the SWAE architecture. The distribution of
the embedded data in the latent space is enforced to follow a prior
samplable distribution pZ .

and measured the 2-Wasserstein distance between µt and
ν, at each iteration of the optimization (via solving a linear
programming at each step). We repeated each experiment
100 times and report the mean and standard deviation of the
2-Wasserstein distance for all five target datasets in Figure
2. While the choice of the defining function g(·, θ) is data
dependent, it can be seen that the homogeneous polynomial
of degree 3 is among the top two performers for all datasets.

Furthermore, we note that we avoided reporting the
max-GSWp results in Figure 2 to avoid clutter and confu-
sion. The results for max-GSWp for the same experiment
is included in the supplementary material.

5.2. Generative Modeling via Auto-Encoders

Here we demonstrate the application of the GSW and max-
GSW distances in generative modeling. We specifically
use the recently proposed Sliced-Wasserstein Auto-Encoder
(SWAE) (Kolouri et al., 2019) framework, which penalizes
the distribution of the encoded data in the latent space of
the auto-encoder to follow a prior samplable distribution,
pZ . More precisely, let {xn ∼ pX}Nn=1 be i.i.d. samples
from pX , φ(x, γφ) : X → Z and ψ(z, γψ) : Z → X
be the parametric encoder and decoder (e.g., CNNs) with
parameters γφ and γψ , respectively. Then SWAE’s objective
function (Kolouri et al., 2019) is defined as:

min
γφ,γψ

Ex[c(x, ψ(φ(x, γφ), γψ))] + λSW (pφ(x,γφ), pZ)

(16)
where λ is the regularizer coefficient for matching the en-
coded distribution to pZ . Here, we substitute the SW dis-
tance in Equation 16 with GSW and max-GSW distances.
Specifically, we encode the MNIST dataset (LeCun et al.,
1998) into the encoder’s latent space and enforce the distri-
bution of the embedded data to follow a prior distribution,
e.g., the Swiss Roll distribution as shown in Figure 3, while
we simultaneously enforce the encoded features to be de-
codable to the original input images.

Similar to the previous section, we ran the optimization in
Equation (16) with the GSW distances, with linear, circular,
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Figure 4. The 2−Wasserstein distance between pZ and pφ(x,γφ)

and between pX and pψ(φ(x,γφ),γψ) at different batch iterations
for SWAE and GSWAE with circular and polynomial of degree 3
defining functions.

and homogeneous polynomial of degree 3. In each iteration,
we measured the 2-Wasserstein distance between the embed-
ded distribution and the prior distribution,W2(pφ(x,γφ), pZ),
and also between the data distribution and the distribution of
the reconstructed samples, W2(pψ(φ(x,γφ),γψ), pX). Each
experiment was repeated 50 times and the average Wasser-
stein distances are reported in Figure 4. Figure 4, middle
row, shows samples from pZ and φ(x, γφ) for x ∼ pX , and
the last row shows decoded random samples, ψ(z, γψ) for
z ∼ pZ .

6. Conclusion
In this paper, we generalized the definition of the cele-
brated sliced-Wasserstein distances to the generalized sliced
Wasserstein distance.

Kimia: As future work: mention the estimation of g with a
neural network.
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Gabriel, and Starck, Jean-Luc. Wasserstein dictionary
learning: Optimal transport-based unsupervised nonlinear
dictionary learning. SIAM Journal on Imaging Sciences,
11(1):643–678, 2018.

Schmitzer, Bernhard. A sparse multiscale algorithm for
dense optimal transport. Journal of Mathematical Imag-
ing and Vision, 56(2):238–259, Oct 2016. ISSN 1573-
7683. doi: 10.1007/s10851-016-0653-9. URL https:
//doi.org/10.1007/s10851-016-0653-9.
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7. Supplementary material
7.1. Non-negativity and Symmetry for GSW

In this section, we show that the GSW and max-GSW dis-
similarity measures satisfy non-negativity and symmetry.
Let µ, ν in Pp(Ω).

7.1.1. NON-NEGATIVITY

We use the non-negativity of the p-Wasserstein distance, i.e.
Wp(µ, ν) ≥ 0 for any µ, ν in Pp(Ω), to show that GSW
and max-GSW are non-negative as well:

GSWp(Iµ, Iν) =

(∫
Ωθ

W p
p (GIµ(., θ),GIν(., θ))dθ

) 1
p

≥
(∫

Ωθ

(0)pdθ

) 1
p

= 0

max-GSWp(Iµ, Iν) = max
θ∈Ωθ

Wp(GIµ(·, θ),GIν(·, θ))

= Wp(GIµ(·, θ∗),GIν(·, θ∗))
≥ 0

where θ∗ = arg maxθ∈Ωθ
Wp(GIµ(·, θ),GIν(·, θ)).

7.1.2. SYMMETRY

Since the p-Wasserstein distance is symmetric, we have, for
any µ, ν in Pp(Ω), Wp(µ, ν) = Wp(ν, µ). In particular, we
can write

∀θ ∈ Ωθ, Wp(GIµ(·, θ),GIν(·, θ)) = Wp(GIν(·, θ),GIµ(·, θ))
(17)

and

max
θ∈Ωθ

Wp(GIµ(·, θ),GIν(·, θ)) = max
θ∈Ωθ

Wp(GIν(·, θ),GIµ(·, θ))
(18)

The symmetry of the GSW and max-GSW dissimilarity
measures are direct consequences of Equations (17) and
(18) respectively.


