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ABSTRACT
Prior information about the target source can improve audio

source separation quality but is usually not available with the nec-
essary level of audio alignment. This has limited its usability in
the past. We propose a separation model that can nevertheless ex-
ploit such weak information for the separation task while aligning
it on the mixture as a byproduct using an attention mechanism. We
demonstrate the capabilities of the model on a singing voice separa-
tion task exploiting artificial side information with different levels
of expressiveness. Moreover, we highlight an issue with the com-
mon separation quality assessment procedure regarding parts where
targets or predictions are silent and refine a previous contribution
for a more complete evaluation.

Index Terms— informed source separation, singing voice sep-
aration, weak labels, attention, separation evaluation

1. INTRODUCTION

Recent deep learning based methods for audio source separation are
trained in a supervised fashion on mixture and target source pairs
[1, 2, 3]. Even though they achieve good separation results on test
sets such as MUSDB18 [4] for singing voice separation, they are
not flawless. The best performing algorithms in the Signal Separa-
tion Evaluation Campaign (SiSEC) 2018 [5], i.e. TAK, TAU, UHL,
achieve Source-to-Distortion Ratio (SDR) [6] scores in the range
[−14.7; 17] dB on the 50 test songs [7]. This shows that training
a model that generalizes well to all music styles is a difficult task,
even with large and diverse training data.

As opposed to these purely data-driven methods, the informed
source separation approach exploits prior information about the tar-
get source [8], making systems more adaptive to observed signals.
It has been shown that source separation can benefit from side in-
formation in the form of a musical score [9], the target source pitch
[10], a text transcript [11], or visual clues [12], among others. Re-
cently, data-driven and informed approaches have been combined
[13, 14, 15].

However, the main obstacle for exploiting side information re-
mains: accurately labeled data is expensive to create and thus rare.
For example, aligning a score on the note level or lyrics on the
phoneme level would require manual annotations, as creating such
fine alignment automatically remains an open problem [15, 16]. On
the other hand, weak side information such as non-aligned scores
or lyrics is often easily available but not straightforward to em-
ploy. Consequently, some form of automatic alignment is usu-
ally applied before the actual separation and the usefulness of the
∗This project has received funding from the European Union’s Horizon

2020 research and innovation programme under the Marie Skłodowsa-Curie
grant agreement No. 765068.

side information then depends on the quality of such an alignment
[11, 13, 14, 15].

Seeking to combine the power of data-driven models with the
adaptability of informed approaches we propose a deep learning
based separation method that employs very weak side information
with extremely coarse alignment. It is based on the attention mech-
anism, which was proposed to learn an alignment between two se-
quences while performing another task such as machine translation
[17, 18]. Attention became a widely adopted concept and has, for
example, been used for automatic speech recognition [19] and im-
age generation [20]. In [21] image captions are translated taking
different parts of the image content as additional side information
into account. Inspired by this approach, we propose a source sepa-
ration model with a sequential encoder-decoder architecture where
the decoder is connected to the side information via attention. The
whole side information sequence is thus accessible to the decoder
at all time steps. During training, it learns to evaluate the relevance
of the side information elements with respect to the separation task.
This relevance is reflected in attention weights from which align-
ment information can be retrieved.

Training models with weakly labeled data remains a challeng-
ing problem for a variety of audio related tasks [14, 15, 22, 23].
In this context, Multi-Instance learning (MIL) has been applied to
singing voice detection [22] and acoustic event detection [23] to
gradually refine the labeling during supervised training, but with
limited effectiveness [14, 22]. For informed source separation, it
has been proposed to approach training with weak labels in an un-
supervised fashion [14]. The side information is then used to en-
force structure on the latent representation of the mixture within
an autoencoder model. While the approaches above aim for train-
ing with weakly labeled data only, we intend to complement super-
vised strong label training with additional weaker information. In
[15] a tolerance window allows for misalignment of around 0.2 sec-
onds during score-informed source separation. Instead of explicitly
guiding the network regarding how to use the side information as in
[14, 15], we let our model learn the best use for the separation task
and allow for even weaker side information.

It has been tested in [11] if the alignment of side information
can be improved during text-informed source separation. No im-
provement over the pre-alignment could be reported, while the au-
thors stated that it would have been beneficial for the separation
quality. We show in experiments that our model can indeed improve
the alignment by a considerable extent.

In short, our contributions are the following: adapting the atten-
tion mechanism to informed singing voice separation and thereby
allowing the use of very weak side information, learning an align-
ment as byproduct. Moreover, we highlight an issue with the com-
mon source separation evaluation procedure regarding silent signal
parts and refine the solution previously suggested in [24].
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Figure 1: Schematic model architecture and workflow of the atten-
tion mechanism to compute prediction frame |V̂n| .

2. PROPOSED MODEL

Let x(t) be the observed single-channel mixture signal at discrete-
time t. Our goal is to separate x(t) into a target source v(t) and a
mixture of all remaining sources a(t). Let Y ∈ RD×M be a side
information sequence with feature dimension D and M time steps.

The proposed model takes as inputs the magnitude of the mix-
ture’s Short Time Fourier Transform (STFT) |X| ∈ RF×N with
F frequency bands and N time frames as well as the informa-
tion Y . The output is an estimate of the target’s magnitude STFT
|V̂ | ∈ RF×N . An inverse STFT of |V̂ | combined with the mix-
ture phase is performed to obtain the target estimation v̂(t) in the
time domain. Assuming a linear mixture model, the estimation of
remaining sources â(t) is obtained as â(t) = x(t)− v̂(t) .

2.1. Architecture details

The proposed model comprises four building blocks, namely a mix-
ture encoder, a side information encoder, an attention mechanism,
and a target source decoder as shown in Figure 1.

The mixture encoder is a two-layer deep Bidirectional Recur-
rent Neural Network (BRNN) [25] with Long Short-Term Mem-
ory (LSTM) cells [26]. Given the sequence of mixture STFT time
frames |Xn| with n = 0, ..., N − 1, it computes the sequence
g ∈ RE×N , which we call the mixture encoding. It has feature
dimension E and length N over time. Variables indexed by n and
m refer to the n-th and m-th sequence element, respectively.

The side information encoder has the same architecture as the
mixture encoder. Given the sequence of side information frames
Ym with m = 0, ...,M − 1, it computes the encoding of the side
information h ∈ RJ×M with feature dimension J .

The target source decoder gets as inputs the mixture encoding
g and a representation of the side information encoding denoted c,
which is computed by the attention mechanism as explained below.
Both inputs are concatenated along the feature dimension, which is
denoted by [cn, gn]. The decoder computes one time frame of the
target source estimation |V̂n| through the following layers. W and b
are learnable weights and biases respectively in the equations below.
First, a fully connected layer computes the hidden representation
q
(1)
n :

q(1)n = tanh(W1[cn, gn] + b1). (1)

Then, a two layers deep BRNN with LSTM cells – just as in
the encoders – computes the hidden representation q(2)n . Finally,
another fully connected layer with ReLU activation computes the
estimation:

|V̂n| = max(0,W2q
(2)
n + b2). (2)

Predicting time-frequency masks as in [27] instead of magni-
tude spectrograms directly did not lead to better results in our ex-
periments.

The attention mechanism identifies the relevant elements in the
side information sequence for each time step n of the target source
decoding and summarizes them in a context vector cn. Conse-
quently, the decoder can find at every time step the relevant side
information elements no matter where they are placed in the se-
quence, which makes a pre-alignment redundant. We closely follow
the attention mechanism proposed in [17] and refined in [18].

For time step n of the decoder, the vector cn is computed as
follows. A score sn,m is calculated representing some similarity or
”energy” between the mixture encoding time step gn and each of
the side information encoding steps hm:

sn,m = g>nWshm ∀m ∈ {0, 1, ...M − 1} (3)

where Ws ∈ RE×J is a matrix of learnable weights.
Then, attention weights αn,m are computed from the scores by

a softmax operation:

αn,m =
exp(sn,m)∑M−1

m=0 exp(sn,m)
. (4)

Each element in the side information hm thus has a dedicated
weight αn,m reflecting its importance for the decoder time step n
as a probability. The context vector cn is the weighted sum of all
side information encoding elements:

cn =

M−1∑
m=0

hmαn,m. (5)

The target source estimation is then computed from the con-
text vector and the mixture encoding gn as described above. The
alignment between mixture and side information is reflected in the
attention weights αn,m and is learned without any additional term
in the loss function.

We use BRNNs because they treat data sequentially, which
makes the application of attention more straightforward and eas-
ier to illustrate. However, with some modifications, the attention
mechanism could also be applied to Convolutional Neural Network
(CNN) architectures [20].

3. EVALUATION

The most commonly used metrics for source separation perfor-
mance evaluation are Source-to-Distortion Ratio (SDR), Source-to-
Artifacts Ratio (SAR), and Source-to-Interference Ratio (SIR) [6].
They are typically computed on non-overlapping frames of one sec-
ond length and the median is taken to represent the performance on
the whole signal [5]. However, for frames with a silent true source
or prediction, the metrics are undefined [6]. The MUSDB test set
[4] has 2600 such frames with silent vocals and 103 frames with
silent accompaniment. As a result, at least about 45 out of 210 min-
utes are systematically ignored during evaluation, with potentially
more frames being ignored when the prediction is silent. This issue
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has also been observed in [24], where the authors suggest reporting
the root mean square energy of the prediction for frames with silent
ground truth. Following the suggestion, we report the Predicted En-
ergy at Silence (PES) score for each test song. It is the mean of the
energy in the predictions at those frames with silent ground truth. It
reflects a method’s capability to not get confused by other sources
while the target is not active.

However, in order to include every single test frame in the eval-
uation, we also need to evaluate frames for which silence is pre-
dicted while the ground truth is not silent. Therefore, we propose to
report also the Energy at Predicted Silence (EPS) score, which is the
mean of the ground truth energy of all frames with silent prediction
and non-silent ground truth. Frames with silent ground truth are al-
ready included in the PES. The EPS reflects a method’s capability
to predict silence at the correct time. It makes the implicit assump-
tion that musically meaningful signal parts have more energy than
background noise.

4. EXPERIMENTS

We perform monaural singing voice separation with the proposed
model using artificial side information about the singing voice with
different levels of expressiveness.

4.1. Data sets

We use the publicly available data set MUSDB18 [4] comprising
a 100 tracks training set and a 50 tracks test set containing vari-
ous genres. We split the training set into 80 tracks for training and
20 tracks for the validation set. All songs are converted to mono,
downsampled to 16 kHz, and cut into fragments of 8.2 seconds.
The STFT is computed on each fragment with Fast Fourier Trans-
form (FFT) length 1024, Hamming window, and hop length of 512
leading to magnitude spectrograms of size (F×N) = (513×256).
Each magnitude spectrogram is divided by its maximum value to
normalize it to the range [0; 1].

As data augmentation we set the energy ratio between vocals
and accompaniment to a value uniformly drawn from the ±2 dB
range around the original energy ratio. We also shift the mixture’s
pitch by w half tone steps, with w being uniformly drawn from
[−2; 2]. These random operations are repeated four times on each
original fragment leading to 8152 fragments for training in total.

We use this limited amount of publicly available data to make
our results easier to reproduce for fellow researchers. However,
it is not straightforward to evaluate whether performance of data-
driven methods is limited by the model’s architecture or the amount
of training data [5]. We therefore repeat all experiments with ad-
ditional training data (65 rock-pop song excerpts with 96 minutes
total length) to test if performance is scalable.

4.2. Training

We train the model on batches of 128 spectrograms randomly drawn
from the training set. The loss function is the L1 loss. The ADAM
optimizer [28] is used with learning rate 0.0001, β1 = 0.9, β2 =
0.999, ε = 10−8, and weight decay rate 0.001. We set both the
size E of the mixture encoding and size J of the side information
encoding to 513. We select the model with the lowest validation
cost after 100 epochs without improvement of the validation cost.

4.3. Side information

The side information Y has length M , which can be equal to or
different from the mixture length N . We use side information with
feature size D = 1.

We use two baseline models. The first one (BL1) only consists
of the mixture encoder and target decoder. It does not use any side
information. As second baseline (BL2) we use the full proposed ar-
chitecture, which is also used in all subsequent experiments, and
provide only meaningless side information: a sequence of ones.
This allows us to investigate to which extent the added learning
capacity of the attention mechanism and side information encoder
improves performance. Next, we investigate whether performance
can be further improved with meaningful side information.

First, we provide the total vocals Magnitude (M) for each time
frame as side information. It is derived from the ground truth spec-
trograms by summing the magnitudes of all frequencies at each time
step n: Y =

∑F−1
f=0 |Vf,n|. It is considered as very strong informa-

tion, since it has the same length as the mixture (M = N = 256)
and is numerically closely related to the ground truth. We call it M1.
We then derive M2 from it by padding both sides of the sequence
so that M = 300. We use 100 as padding value and randomly
choose the padding length on both sides for each batch. As a result,
M2 conveys the same strong information as M1 but is less synchro-
nized to the mixture. The position of relevant information varies
from batch to batch during training and from example to example
during testing.

Binary sequences indicating vocal Activity (A) (1) and non-
activity (0) are derived from M1 by setting all time steps m with
total magnitude values below 0.1 to 0 and all other steps to 1. In
practice, such weak information can be obtained by vocal activity
detection methods [29]. For experiment A1 we pad the binary se-
quence to length M = 300 keeping the padding value 100 follow-
ing the procedure of M2 to de-synchronize it from the mixture.

For experiment A2, we further weaken the information by delet-
ing a random number w of zeros in each sub-sequence of zeros in
the binary sequence. We draw w uniformly from [1;L/2] for each
example, where L is the length of a sub-sequence of zeros. We pad
the remaining binary sequence to length M = 300 as above. The
sequence Y now only contains information about the number of
appearances of silent parts in the vocals and their position relative
to non-silent parts. Information about the silence length is almost
completely lost.

For experiment A3, we weaken the binary information even fur-
ther by additionally reducing the length of sub-sequences of ones
with the same rule as applied to zeros in A2. We also pad to length
M = 300. Now, Y carries only information about the alternations
between vocal activity and silence. We test the model trained with
this side information in two different inference settings. First, with
the same side-information as seen during training (A3.1), then with
this side information circularly shifted by 100 steps (A3.2).

5. RESULTS AND DISCUSSION

The evaluation results are shown in Figure 2. Due to space
constraints we only show a limited number of results for the
case of additional training data indicated by ’+’. The re-
sults of all experiments with additional data are available on-
line (https://schufo.github.io/publication/2019-WASPAA), as well
as audio examples and a PyTorch implementation of the proposed
model. The relative results do not change substantially when us-
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Figure 2: Source separation evaluation results. For SDR, SAR, SIR higher values are better, while for PES and EPS lower values are better.
BL: baseline, M: vocal magnitude side information, A: vocal activity side information. The ’+’ indicates use of additional training data.
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Figure 3: Attention weights α containing alignment information.
The side information is shown vertically on the left of α and the true
vocals spectrogram below. Lighter color indicates higher values.

ing more training data. Each data point represents the median over
all evaluation frames of one test song following the procedure de-
scribed in Section 3. The box extends from lower to upper quartile
with the line inside representing the median. The whiskers extend
over the whole data range. Note that for the proposed PES and EPS
metric lower values are better, while for the standard metrics higher
values are better.

The baselines BL1 and BL2 achieve a median SDR of 3.0 dB
and 3.33 dB respectively, which, given the amount of training data
and simplicity of the model, can be considered an appropriate base-
line. The improvement of BL2 over BL1 shows that the proposed
model can leverage the additional capacity even with meaningless
side information. Adding only 96 minutes of training data (BL2+)
improves performance on all metrics so that the baseline would have
only been outperformed by models trained on much more data in the
SiSEC 2018 [5].

The use of all types of meaningful side information consider-
ably improves a) performance on silent vocal frames resulting in a
much lower PES and b) predicting silence at the right time resulting
in a lower EPS. In case of M1 and M2, the SDR and SIR are also
improved, while with the binary vocal activity side information the
standard metrics do not change much compared to the baselines.
These observations are in line with [24]. For frames with high vo-
cal energy, a lot of information about the vocals is already contained
in the mixture. Consequently, the binary side information does not
add information for these frames, while the vocal magnitude infor-
mation does. For frames with silent or near-silent vocals, any other

source can potentially be mistaken as vocals leading to wrong pre-
dictions. In this case the binary information is useful to understand
the alternations between vocal activity and non-activity. The fact
that M2 performs slightly better than M1 can be explained by the
data augmentation effect of the random padding in M2.

In general, it is not surprising that additional information leads
to better separation results. Our contribution lies rather in the fact
that the proposed model can exploit such information despite its
weakness. Note that the binary side information types carry less
information than a musical score.

In addition to improving source separation performance by ex-
ploiting weak side information, the proposed model also provides
an alignment estimation between the side information and the mix-
ture through the attention weights. In Figure 3 the attention weights
α are shown for experiments M2 and A3.1 for one fragment of the
MUSDB18 test track Schoolboy Fascination, which is also available
as audio example. On the left of each matrix α the corresponding
side information is depicted vertically with time step m. Dark blue
indicates a zero value, while padding is shown in yellow. Below α
the true vocals spectrogram is shown with frequency bands f and
time frames n. The lighter the color at point (n,m) the more the
side information element at m is taken into account for producing
the prediction at time step n. For M2 a very exact alignment to the
mixture is learned, it becomes a bit blurry at the silent vocal part,
where the side information contains low and therefore similar val-
ues. For A3.1 the model learned to look at ones and zeros at the
right time, although the sub-sequences are much shorter than the
corresponding parts in the true vocals. The model learned to never
look at the padding values. The attention weights α show that the
model has indeed learned to find the relevant side information at
each time step without any pre-alignment.

6. CONCLUSION

In this paper, we proposed a model that includes weak side informa-
tion via attention during audio source separation. We demonstrated
its capability not only to exploit weak side information but also to
align it on the mixture as a byproduct on a singing voice separa-
tion task with artificial side information. This can increase the us-
ability of side information such as scores or lyrics transcripts, that
previously suffered from inaccurate pre-alignments. Moreover, we
refined a previous solution regarding separation quality evaluation
for signal frames with a silent target or prediction in order to enable
assessment of the entire signal. In the future, we plan to extend our
work to scores and lyrics as side information and to evaluate the
alignment estimation more thoroughly.
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