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Randomized Isometric Linear-Dispersion Space-Time

Block Coding for the DF Relay Channel
David Gregoratti, Member, IEEE, Walid Hachem, Member, IEEE, and Xavier Mestre, Senior Member, IEEE

Abstract—This paper presents a randomized linear-dispersion
space-time block code for decode-and-forward synchronous relays.
The coding matrices are obtained as a set of columns (or rows) of
randomly generated Haar-distributed unitary matrices. With re-
spect to independent and identically distributed (i.i.d.)-generated
codes, this particular isometric structure reduces the intersymbol
interference generated within each relay. The gain over i.i.d. codes
in terms of spectral efficiency is analyzed for both the LMMSE and
the ML receivers under the assumption of frequency-flat quasi-
static fading. In this setting, the spectral efficiency is a random
quantity, since it depends on the random coding matrices. How-
ever, it is proven that the spectral efficiency converges in proba-
bility to a deterministic quantity when the dimensions of the ma-
trices tend to infinity while keeping constant their ratio, i.e., the
coding rate �. Consequently, when the random coding matrices
are large enough, the presented system behaves as a deterministic
one. This result is achieved by means of the rectangular R-trans-
form, a powerful tool of free probability theory which allows de-
termining the distribution of the singular values of a sum of rect-
angular matrices.

Index Terms—DF relay channel, free probability, randomized
isometric linear-dispersion space-time block coding (LD-STBC),
random matrix theory, rectangular free additive convolution.

I. INTRODUCTION

R
ELAY communications have raised a lot of interest in the

last years as a potential means of introducing space-di-

versity techniques [2]–[5] in systems where the limited dimen-

sions of portable terminals prevent them from having multiple

co-located antennas (see [6]–[9] among others). The main idea

is that idle terminals overhear other users’ communications and,

thus, can act as relays, forwarding the information they receive.

In other words, a virtual array is built from multiple single-an-

tenna terminals.

To reduce power consumption and signaling among termi-

nals, relays should be low-complexity devices. It is therefore
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reasonable to assume they do not have any channel state infor-

mation, especially in their transmitting phase. In these circum-

stances, previous experience in multiple-input-multiple-output

(MIMO) systems (e.g., [2]) leads us to believe that space-time

coding (STC) is one of the best options to achieve full spatial

diversity. References [10]–[14] are just few examples on that

direction.

Classical STC’s, however, are not very suitable for most relay

networks. On the one hand, the design of a code is strongly re-

lated to the number of transmitters, and its complexity increases

with the latter. On the other hand, modern mobile communica-

tions networks are very dynamic, with users continuously drop-

ping in and out of the system and where the total number of

terminals may possibly be quite large. It would hence be advis-

able to implement a code which is flexible and easy to design,

even for a large and time-varying number of users.

A. Previous Work

This need for flexibility in wireless relay networks has long

been known. In [11], Laneman and Wornell suggest employing

space-time codes from orthogonal designs as a possible so-

lution. These space-time block codes, originally proposed

by Tarokh et al. [4], are designed for a given number of

transmitters but maintain their orthogonality properties when

some of the antennas are shut down. This implies that the

maximum number of relays in the system must be known a

priori. Moreover, for more than four transmitters, the coding

rate is only 1/2, thus limiting the spectral efficiency.

The solution proposed in [13] is based on linear-dispersion

space-time block coding (LD-STBC): each relay is assigned

a specific unitary matrix which produces a linear transforma-

tion of the vector of source symbols. The system is quite flex-

ible, since no particular relation is assumed among the different

coding matrices: when a new terminal joins the network, a new

matrix is generated without modifying the existent ones. In this

paper, however, no direct link between the transmission source

and its destination is considered. Furthermore, the choice of

unitary matrices constrains the coding rate (defined here as the

number of columns divided by the number of rows of these ma-

trices) to one. As shown in [14], this is not always the best choice

for half-duplex relays: it may be enough for the relays to send

a compressed version of the message (i.e., coding rate larger

than one), since they only complement the information received

directly from the source. This is especially true for orthogonal

relaying protocols, that is when the source remains silent during

the relaying phase.

A completely different approach appears in [12]. From the

source message, each relay generates a new vector of symbols
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by doing a random linear combination of the columns of a ma-

trix codeword, which is obtained from a common (within the

relay set) deterministic space-time mapping. It turns out that

the system performance is limited by the minimum between the

number of relays and the number of virtual transmitters of the

underlying deterministic STC.

B. The Proposed Scheme

The coding scheme presented in [14] is an LD-STBC where

the coding matrices are filled with entries that are drawn from

independent and identically distributed (i.i.d.) random vari-

ables. In this paper, we try to improve the spectral efficiency

by introducing codes with more structure, while still randomly

generated. More specifically, the columns (or the rows, re-

spectively) of the matrices are constrained to be orthogonal:

the aim is to cancel (or to reduce, respectively) interference

generated within the relays. For coding rate (ratio between

the number of columns and the number of rows of the

linear-dispersion matrices) equal to one, the linear-dispersion

matrices are unitary and the system is similar to the one in [13].

However, simulation results show that this trivial choice is not

always the best one.

Using a similar approach as in [14], we analyze the asymp-

totic performance of the system assuming coding matrices with

infinitely large dimensions, but constant coding rate

. Indeed, in this asymptotic regime, the spectral ef-

ficiency converges to a deterministic value which is an excel-

lent approximation of the finite reality, even for not-so-large dis-

persion matrices. Contrary to the i.i.d. case, however, classical

random matrix theory results on the convergence of the eigen-

values of infinite-dimensional matrices are not enough to char-

acterize the asymptotic behavior of the system. New tools are

borrowed from free probability in order to deal with the present

problem.

The paper is structured as follows. In the next section, the

signal model is introduced and all the assumptions are pre-

sented. Then, general expressions of the spectral efficiency

are derived for both the linear minimum-mean-square-error

(LMMSE) and the maximum-likelihood (ML) receivers, to-

gether with their asymptotic equivalents for large coding

matrices. Next, Section IV analyzes two special cases with

closed-form solution and introduces a low-complexity approx-

imation for the general case. Section V presents the rectangular

R-transform introduced by Benaych-Georges in [15] and shows

how to apply this free-probability tool to compute the asymp-

totic spectral efficiencies of the two receivers considered here.

A numerical assessment of the results is given in Section VI,

while Section VII characterizes the low-power regime. Finally,

Section VIII concludes the paper.

II. SYSTEM DESCRIPTION

This section provides a more thorough description of the

system under consideration. As usual, italic, bold lower-case

and bold upper-case letters denote, respectively, scalars, vectors

and matrices. The superscipts and stand for, respectively,

complex conjugate, transpose and Hermitian transpose.

is the statistical expected value operator. Given any integer

number is the identity matrix.

A. Signal Model

We consider a classical multiple-relay system with half-du-

plex synchronous relays over frequency-flat quasi-static fading

channels [10], [11]. Communications are split into two phases:

the source broadcasts its message in the first phase and remains

silent in the second one, which is used by the relays to for-

ward the information they have just received. In this relaying

phase, space diversity is achieved by means of a spatially dis-

tributed LD-STBC, as in [13], [14]. Here, however, relays adopt

a decode-and-forward (DF) strategy, whereby only the terminals

that can correctly decode the source message in the first phase

participate in the second one. Note that the proposed coding

scheme may also be applied to amplify-and-forward (AF) re-

lays (all terminals forward the whole signal received in the first

phase, including noise). However, the analysis will be much

more complex, due to the forwarded noise.

Let denote the vector containing the mes-

sage from the source. The symbols are as-

sumed i.i.d., with zero mean and variance

. Let denote the set of all relays and

the decoding subset, i.e., the set of relays that are able to de-

code the source message, have a perfect copy of at the end of

the first transmission phase and, thus, participate in the relaying

phase. Let be the cardinality of and, without loss

of generality, . Now, denoting by the direct

source-destination link, the destination receives the vector

during the first phase. Next, in the second phase, the th relay

in transmits , where is the encoding matrix

described below. The complex gain can be set to fulfill some

power constraint. Denoting by the downlink channel coef-

ficient between the th relay and the destination, the received

signal can be written as

(1)

where both transmission phases have been included in the for-

mulation. In the previous equation, rep-

resents additive white Gaussian noise and the block matrices

have been introduced to simplify notation (i.e.,

).

In the following sections, the spectral efficiency (con-

ditioned on the decoding subset ) is computed both for the

LMMSE receiver and the optimum ML receiver assuming that

the channels and the codes are known at the destination (ob-

serve that the quasi-static fading assumption implies that the

channel coefficients are constant over the transmission of the

whole source message ). A direct application of this result is

the outage-probability analysis for a target transmission rate .

Indeed, according to the total probability theorem

(2)

where the sum is over all possible subsets of and proba-

bilities follow from channel distribution. However, this paper
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focuses on the spectral efficiency and its properties, leaving

the nontrivial outage analysis for further contributions (see also

Section VI).

B. The Coding Matrices

The introduced coding scheme is similar to the one presented

in [16] or in [14] for AF relays. As aforementioned in the In-

troduction, however, we propose here a different model for the

coding matrices .

Observe that the vector corresponding to the signal gener-

ated by the th relay is given by where

is the th column of . Thus, a straightforward analogy

with DS/CDMA systems [17] suggests that the intersymbol in-

terference at the receiver will be reduced when the columns of

are orthogonal. Note that interference will not completely

vanish since orthogonality is required only within each indi-

vidual relay. Extending the constraint across all the relays would

imply a very significant loss of flexibility, since all matrices

would have to be jointly designed to be mutually orthogonal.

Here, we are more interested in a dynamic system where the

number of active terminals can vary without significantly jeop-

ardizing the global coding scheme. Furthermore, global orthog-

onality is equivalent to TDMA, which is shown to be outper-

formed by STC in [11].

As a result, we model the matrices

as mutually independent random matrices with

orthogonal columns. More specifically, each coding matrix

is constructed by selecting different columns of a

Haar-distributed unitary matrix, i.e., a random unitary matrix

whose distribution is invariant by left- or right-multiplication

by a constant unitary matrix (we say that it is bi-unitarily

invariant). We will refer to this model as Haar codes or, equiva-

lently, as random isometric codes.

A matrix with orthogonal columns must be such that ,

i.e., . For completeness, the analysis is extended

to the case by considering coding matrices with orthog-

onal rows ( rows of a Haar-distributed unitary matrix).

A scaling factor , such that , must be included

to guarantee that the same power constraint as in the i.i.d. case is

satisfied, which leads to a fair comparison of the results for the

two different choices of the dispersion matrices. Although not

as intuitive as the case , fat linear dispersion matrices still

improve spectral efficiency with respect to i.i.d. codes of, e.g.,

[14], [16]. The reason is that, whatever the value of , isometric

codes result in an equivalent channel matrix that is closer to an

identity matrix (the difference between maximum and minimum

singular values is lower).

To conclude this introduction, let us mention that Haar codes

have been extensively studied in the literature (see, for instance,

[18]–[20]). In particular, [18] explains how to generate Haar-

distributed matrices from a random matrix with i.i.d. Gaussian

entries having zero mean and unitary variance.

III. MAIN RESULTS

In this section, the spectral efficiency of the presented system

is computed assuming that the destination has access to the code

matrix and the channel coefficient of each active relay. Two clas-

sical receivers are considered, namely the LMMSE receiver and

the ML receiver.

A. Spectral Efficiency

1) The LMMSE Receiver: It is well known that the LMMSE

filter is the best linear receiver in terms of signal-to-interference-

plus-noise ratio (SINR) (see, e.g., [21]). Since each symbol

is estimated independently of the others, let us focus on the first

one, , without loss of generality, and rewrite (1) as

, where

...

are the effective channel seen by the symbol and the equiva-

lent interference-plus-noise vector, respectively. In these defini-

tions, we have introduced the vector and the matrix such

that . Now, the LMMSE filter coefficients and the

corresponding output SINR can be written, respectively, as

where . After some algebra, it is straightfor-

ward to show that the SINR of the considered system can be

expressed as

(3)

for symbol and analogously for the other symbols.

Considering the contribution of all the symbols, the spectral

efficiency can be computed by means of the Shannon’s formula

as

(4)

in nats per degree of freedom. The factor takes into ac-

count the fact that a total of channel accesses are em-

ployed to transmit only information symbols.

2) The ML Receiver: For a system with colored interference

like the one presented in this paper, linear filters are subop-

timal receivers. To extract all the information contained in the

received signal , the ML receiver is needed. Assuming inde-

pendent Gaussian coding at the source, the spectral efficiency

of the ML receiver in our scenario is known to be [5]

(5)

in nats per degree of freedom.

3



B. Asymptotic Results

Observe that both the spectral efficiencies in (4) and (5)

are random quantities, since they intrinsically depend on the

randomly generated coding matrices . In other words,

for each realization of the code, the system performs differ-

ently. However, as proven in Section V, both and

quickly converge to deterministic quantities when the

dimensions and of the linear-dispersion matrices grow

indefinitely while keeping constant their ratio, that is the coding

rate . Before giving more details, we need to introduce some

useful quantities.

The asymptotic behavior of and is dictated by

the asymptotic distribution of the eigenvalues of ,

which is studied next. More specifically, we will now charac-

terize the asymptotic eigenvalue distribution in terms of its mo-

ments. Then, we will show that these moments are sufficient to

compute the asymptotic spectral efficiencies for large and .

Let be the real nonnegative eigen-

values of the interference matrix . We define

the empirical distribution of the eigenvalues as follows1:

(6)

where is the Dirac distribution (mass point) at . Since the

eigenvalues are generally random, their empirical distribution

is also random. However, the following theorem states that the

distribution converges when , i.e., and

grow indefinitely while their ratio tends2 to .

Theorem 3.1: Let and .

Then, the empirical eigenvalue distribution of the interfer-

ence matrix converges weakly in probability to a

probability measure (and we write ), meaning that

(7)

in probability for any continuous and bounded function .

Moreover:

• the support of is compact and included in

;

• naming the moments of

, the moment generating series

of is the unique formal power series that satisfies the

fixed point equation

where is the formal power series with

th coefficient

and where .

1We use the square in � in order to emphasize that it is a law on the eigen-
values, and not on the singular values.

2With some abuse of notation, we denote by � both the finite coding rate
� � ��� for finite � and � and the asymptotic coding rate � �, when
both� and� tend to infinity. For each particular instance, the context clarifies
the meaning.

Proof: See Section V.

Note that the sequence of moments is suf-

ficient to characterize and univocally identify the distribution

since the latter has a compact support. Furthermore, the power

series can be seen as a series expansion

near of the Moment Generating Function3 (MGF) of ,

defined as

(8)

and analytic on .

Note. The interference matrix is full rank only

if . Conversely, when the matrix has

null eigenvalues and positive eigenvalues that are

equal to those of . Then, when , let be the

eigenvalue distribution of the full rank matrix ,

where we have defined (recall that

when ). Denoting by the Dirac delta distribution, the

distribution is related to by the following identity:

or, equivalently

Since it is totally equivalent to characterize the distribution

when or the distribution when , we concentrate

on the case in what follows.

Knowing that the asymptotic eigenvalue distribution exists

and is unique, we have all the necessary tools to study the

asymptotic deterministic spectral efficiencies (see also [1]).

Theorem 3.2: Consider the relay channel described in

Section II-A, with the isometric linear-dispersion matrices

defined in Section II-B. When the matrix dimensions and

grow without bound but with constant coding rate ,

the LMMSE spectral efficiency (4) converges in probability to

the deterministic quantity

(9)

where

(10)

Similarly, the deterministic limit of the ML spectral efficiency

(5) is

(11)

3Note that this is different from the classical moment generating function,
usually defined as �� �.
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Proof: See Section V.

As explained above, the main motivation behind Haar-dis-

tributed random coding is the interference reduction with re-

spect to i.i.d. coding introduced in, e.g., [14]. Thus, for the sake

of comparison, we report here the asymptotic spectral efficien-

cies of the i.i.d. case.

Theorem 3.3: Consider the relay channel described in

Section II-A, and assume that the linear-dispersion matrices

are filled with i.i.d. random variables with zero mean and

variance . The spectral efficiency for the LMMSE receiver

and the ML receiver are given by (4) and (5), respectively.

Then, when while , one has

(12a)

(12b)

where is the positive solution to

which is given by (13) shown at the bottom of the page.

Proof: These results can be proven following the same

guidelines given in [14] for AF relays (see also [16] and [22]).

In summary, large Haar-distributed (and i.i.d.) random linear-

dispersion matrices asymptotically behave as deterministic sys-

tems. Since convergence is fast, the limiting spectral efficiencies

are excellent approximations of the finite reality for practical

values of and , as evidenced from the numerical simula-

tions in Section VI.

Observe that the limits in (12) hold almost surely and not only

in probability as those derived above for the isometric coding

scheme. It seems only natural to conjecture that these conver-

gence results also hold in the almost-sure sense. However, the

mathematical background used here has only been able to estab-

lish convergence in probability; besides, the difference between

the two convergence modes has no real importance in practical

aspects.

Before delving into the mathematical details of the proofs of

Theorems 3.1 and 3.2 (which are not very insightful from the

engineering point of view), let us get some more understanding

about the asymptotic eigenvalue distribution and the consequent

large spectral efficiencies.

IV. MGF DERIVATION AND SPECIAL CASES

Theorem 3.2 expresses the asymptotic spectral efficiencies in

terms of , the MGF of the asymptotic eigenvalue distri-

bution of the interference matrix . Even though

Theorem 3.1 univocally defines , it does not describe

an operative algorithm to evaluate it as a function of at any

. Indeed, is defined in Theorem 3.1 as a

formal power series, which may not accept a closed-form ana-

lytical representation for all . The following lemma

provides us with a more practical solution.

Lemma 4.1: For any , the MGF satisfies the

system of equations

...

...

(14)

together with the constraints

Proof: See Appendix A.A.

The system in (14) is not linear and, hence, its solution may

not be trivial. In what follows, two special cases that accept

closed-form solutions are presented, namely (i) when there are

only relays in the system and (ii) when all the relay-des-

tination channels are equal.

A. Some Special Cases

We first consider the two-relay case. As shown in Section VI,

it is in this case that isometric codes present the highest gain

over i.i.d. codes.

Proposition 4.1: Consider the relay channel presented in

Section II-A. Assume that Haar-distributed random LD-STBC

is employed and that the number of relays is . Then, the

MGF of the asymptotic eigenvalue distribution of the interfer-

ence matrix is given by (15) at the bottom of the

next page, where we have written

and .

Proof: See Appendix A.B.

As aforementioned in the Introduction, it is clear from (15)

that the asymptotic spectral efficiency of the considered system

(which is expressed in terms of , see (9) and (11)) de-

pends neither on the specific instance of the code nor directly

(13)
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on its size, but only depends on the coding rate and on the

relay-destination channel gains.

A simpler expression can be found when assuming that all the

effective downlink channels are equal. This is clearly a purely

didactic case study, since there exists a null probability that all

relay-receiver channels are equal (see also [1]). However, it al-

lows us to get some insight into the isometric coding scheme

when comparing with the i.i.d. case. Indeed, the comparison

readily extends to the general case, as it will be clear in the fol-

lowing sections.

Proposition 4.2: Consider the relay channel presented in

Section II-A. Assume that Haar-distributed random LD-STBC

is employed and that . Then, the

MGF of the asymptotic eigenvalue distribution of the interfer-

ence matrix is given by

(16)

Proof: See Appendix A.C.

As a remark, it is straightforward to verify that (16) and (15)

represent the same function when setting and

(i.e., and ).

In the general case, the solution of the nonlinear system in

(14) can give rise to equations whose order increases fast with

the number of relays. To avoid having to deal with such compli-

cated equations, we propose next a low-complexity procedure

to approximate .

B. A Moment-Based Approximation

We have already mentioned (see Theorem 3.1) that the distri-

bution of the eigenvalues of has a compact real

support, contained in , and, hence, is uni-

vocally determined by the sequence of its moments

.

The basic idea behind the approximation proposed hereafter

is to replace the measure by a new discrete measure of

the form , such that their first

moments are respectively equal, where will depend

on the allowed complexity (see also [1]). For every , the

points should fall in the support of and, ob-

viously, , with .

The motivation behind this choice is that well-known results

on the moment problem [23]–[25] tell us that the point-wise

convergence is exponential in , where we

denote by

the MGF of . Thus, we propose the following approximations:

Observe that, according to the last equation, the proposed ap-

proximation is equivalent to splitting the transmission over

parallel channels, the th one having channel gain and car-

rying a fraction of the total information.

1) The Gauss-Jacobi Mechanical Quadrature: It remains to

explain how to compute the coefficients and . The

problem of approximating by is known in the

literature as the Gauss-Jacobi mechanical quadrature and makes

use of the theory of orthogonal polynomials [23], [24]. We sum-

marize hereafter its main points.

For the probability measure with moments

, we define the scalar product

on the space4 . Then, the Gram-Schmidt orthogonaliza-

tion procedure can be applied to the sequence of polynomials

, defined as nonnegative powers of . As a

result, we get a sequence such as

• the polynomial has degree and positive leading

coefficient;

• the polynomials are orthonormal, i.e., if and

only if and zero otherwise.

Equivalently, the polynomials can be computed recur-

sively, thanks to the following result.

Proposition 4.3 (The Three Terms Recursion Relation [24]):

The family of polynomials satisfies

4Recall that, given a measure space ����� ��, the space � ��� is, roughly
speaking, the vector space of all functions �� � � such that ������ ����� �
��.

(15)
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where the coefficients and , defined by

and , are positive.

The recurrence formula is initiated by and .

The coefficient and will be functions of the mo-

ments of as, for example

Finally, for a given , the points are simply the

zeros of . The Christoffel-Darboux formula permits to

compute the coefficients

V. PROOFS OF THE MAIN RESULTS

In Section III, the spectral efficiency of the considered system

was said to converge in probability to a deterministic constant

when the dimensions and of the coding matrices grow

indefinitely but with constant ratio . Furthermore,

the limit was expressed in terms of the asymptotic distribution

of the eigenvalues of the interference matrix .

In what follows, we will first discuss the convergence of the

empirical eigenvalue distribution to and show how to

compute the asymptotic distribution . Then, we will prove

the results stated in Theorems 3.1 and 3.2. Readers that are not

interested in mathematical technicalities may skip this section

since it is not prerequisite for the following sections.

The results below are based on free-probability theory [26],

[27], which describes the behavior of random variables defined

on noncommutative algebras. In this context, free random vari-

ables are the equivalent of independent random variables in clas-

sical commutative probability, meaning that the distribution of

sums and products of free noncommutative random variables

can be expressed in terms of the singular distributions of the

original variables.

It is a well-known result of random-matrix theory and free

probability that large independent Hermitian unitarily

invariant random matrices can be seen as asymptotic almost

sure models for free noncommutative random variables [28].

Now, assume that and are two such matrices and that

the distributions of their eigenvalues (which are real, due to

Hermiticity) tend to the measures and , respectively, as

. Then, the eigenvalue distribution of

tends to , the free additive convolution of and

[27], [28]. As a consequence of [29, Proposition 3.5], a similar

result can be stated for bi-unitarily invariant matrices and the

distributions of their singular values (singular law or singular

distribution). Let and be the asymptotic singular laws5

of two independent bi-unitarily invariant random ma-

trices and . Denote by and their symmetrization,

5The empirical distribution of the singular values of a��� matrix is defined
as in (6), replacing eigenvalues with singular values. Analogously, its limit for
� � �� is intended as in (7).

i.e., for any Borel set . Then,

the symmetrization of the singular law of tends to

.

Now, consider the interference matrix . Denote

by the asymptotic distribution of the singular values of ,

which is related to the asymptotic eigenvalue distribution of

by the identity

for any measurable function . Since ,

intuition suggests that the distribution may be computed from

the singular value distributions of the matrices .

Unfortunately, the traditional free additive convolution is not

helpful in the general case where , since the matrices

are not square and, thus, not covered by classical free proba-

bility results. An analogous theory for rectangular matrices has

been developed by Benaych-Georges in [15] (see also [30]).

Since these concepts are very recent and probably not wide-

spread through the technical community, we summarize here the

main points and refer the interested readers to the cited papers

for a more detailed analysis of the topic. Since the matrices

and have the same nonzero singular values, we will only

consider the case , the extension to the case being

straightforward.

A. Preliminaries

Let us focus on a symmetric distribution (recall that

a generic distribution can be symmetrized by taking

for any Borel set )

and define the probability measure on to satisfy

for any positive measurable

function . The moment generating series of is defined

as the formal power series , where

is the th moment of .

For a given , we denote by the rectangular

Cauchy transform with ratio of the distribution , defined as

(17)

where denotes composition in the ring of the formal power

series, and where we introduced the function

. Let us denote by the formal inverse of the

power series , that is

, which exists since and (the first

derivative of computed at ).

Similarly we define as the formal inverse of

(observe that and , so that always

exists) and write the rectangular R-transform with ratio of

as

(18)

which is well-defined since is invertible with re-

spect to multiplication . The formal

7



Fig. 1. Algorithm for computing � � � � � � � .

power series identifies unambiguously the underlying

probability measure .

To recover from , we may proceed as follows.

Noting that is the formal inverse of ,

from (18) one can write: . Since

, the last equation implies

(19)

By comparing this with (17), we readily see that we can compute

as the formal power series satisfying

(20)

It is shown in Appendix A.A that there exists a unique formal

power series that is a solution to this equation. Hence

(20) completely characterizes from . Recall that

univocally identifies the underlying distribution by

means of its moments, which can always be computed from

(20). Further details are given in Section V-B.

We are now ready to restate ([15, Theorems 3.12 and 3.13]),

which are at the basis of the technical results below. First, let us

recall that the singular law of a matrix is

, where are the singular values of . Also,

a random matrix is called bi-unitarily invariant if its probability

measure is invariant by left- and right-multiplication by constant

unitary matrices.

Theorem 5.1 ([15, Theorem 3.13]): Let be a sequence

of integers such that . Let and

be two sequences of independent random matrices,

one of them being bi-unitarily invariant. Assume that the sym-

metrizations of their singular laws converge in probability to-

wards the probability measures and , respectively. Then,

the symmetrization of the singular law of converges

in probability to a new distribution that we denote by ,

the rectangular-free additive convolution with ratio of the

measures and .

Using the rectangular R-transform introduced in Section V-A,

the resulting distribution can be computed by means of the fol-

lowing theorem.

Theorem 5.2 ([15, Theorem 3.12]): Given and the

two symmetric probability measures and on the real line,

the function is the rectangular R-transform

with ratio of the symmetric probability measure .

Equivalently

This implies that the binary operator is commutative and

associative.

By associativity, Theorem 5.1 can be readily extended to

(sequences of) bi-unitarily invariant matrices

with asymptotic singular laws : the symmetrization

of the singular law of is

and can be evaluated following the algorithm summarized in

Fig. 1. Now we are ready to prove Theorems 3.1 and 3.2.

B. Proof of Theorem 3.1

Let us denote by the empirical eigenvalue distribution of

, namely where

are the positive eigenvalues of the matrix.

Note that are the singular values

of . According to the isometric coding

scheme described in Section II-B, each matrix is built by ex-

tracting columns of a Haar-distributed

unitary random matrix. Then, each matrix is bi-uni-

tarily invariant and the symmetrization of its singular law is

, independently of . Theorem 5.1

implies that the singular law of converges weakly in prob-

ability to and, equivalently, that

when .

Besides, according to the theory presented in Section V-A,

the MGF of satisfies the identity

(21)

where as stated by Theorem 5.2.

Appendix B shows that the rectangular R-transform of can

be expressed as the series expansion of the function

analytic on . This implies that the rect-

angular R-transform of the distribution accepts the analytic

representation

(22)

8



when . The coefficients in

Theorem 3.1 are those resulting from the Maclaurin expansion

of (22).

By rewriting (21) as

and inserting , the moments of

can be computed by comparing corresponding coefficients of

equal powers of . The first two moments are

(23a)

(23b)

Any symbolic computation software can help in writing the ex-

pressions of higher order moments.

C. Proof of Theorem 3.2

The asymptotic spectral efficiencies follow directly from the

results above. Let denote the relay contribution to the SINR

(3), namely

Recalling that , the matrix inversion lemma implies

that

where

Let . Then, the fol-

lowing result holds true.

Proposition 5.1: Consider and as defined above. As-

sume that converges to as tends to infinity. Then

almost surely.

Proof: Since

the previous result is a direct consequence of the symmetric

distribution of the columns of . The formal proof follows

the same guidelines as that of ([18, Proposition 3]) and is thus

omitted.

Now, the quantity can be written in terms of the

empirical eigenvalue distribution (6) of as

Theorem 3.1 tells us that when .

Since is a bounded function of , we can state that

in probability. The last identity follows from direct comparison

with (8). Finally, Proposition 5.1 implies

Note that is independent of the actual symbol

. Then, for as in

(10) and as in (9) due to continuity of

and of the logarithmic function.

The asymptotic ML spectral efficiency can be easily derived

by recalling that

for any square matrix . Then, the spectral efficiency can be

written as

since . The asymptotic spectral efficiency (11) can

be obtained6 by noting that

and that the last expression tends in probability to the moment

generating function (8) when , as seen before.

VI. NUMERICAL ILLUSTRATIONS AND SIMULATIONS

This section gives a numerical assessment of the results

above. Summarizing, the presented system behaves (converges

in probability to) a deterministic system when the size of

the randomly-generated coding matrices grows large keeping

constant the coding rate . The asymptotic spectral efficiency

is given by (9) or (11), according to the chosen receiver.

6Formally, one should show that the argument of the integral is
upper-bounded by a positive integrable function before taking the limit.
However, this step is a straightforward consequence of, e.g., Montel’s theorem
[31] and is therefore omitted.
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Fig. 2. Simulation results: average spectral efficiency and relative standard de-
viations. System assumptions: � �� � �� � � �� � � �� ��� � � � �

������ � � ��� and 	 � �
� � � �
 . The ordinates are normalized with
respect to the asymptotic spectral efficiency at � � ���, see Fig. 3(a) and (b).

Observe that both expressions depend on only and not on

or directly. It turns out that these limiting values are

excellent approximations of the finite-dimensional codes, even

for not-so-large linear-dispersion matrices. To illustrate this, in

Fig. 2, we represent the average spectral efficiency over one

thousand different realizations of the codes, together with the

corresponding standard deviation. All the values are normal-

ized with respect to the asymptotic spectral efficiency. The

coding rate is fixed to 3/4, but the dimensions of the code

increase with , namely and . Note that

for , which corresponds to and , the

error is lower than 2%.

Fig. 2 also depicts the performance of a coding scheme based

on Walsh-Hadamard matrices, i.e., each linear-dispersion ma-

trix is built as where the entries of the diag-

onal matrix are i.i.d. 4-PSK symbols and is made of

randomly-selected columns of an Walsh-Hadamard ma-

trix. It is evident that the two coding schemes have similar per-

formances, thus suggesting that the analysis presented in this

paper can also be used to model the Walsh-Hadamard-based so-

lution. This aspect can be particularly interesting in practical ap-

plications, since randomly scrambled Walsh-Hadamard codes

are already used in, e.g., UMTS cellular networks. Note how-

ever that the proposed solution based on Haar-distributed uni-

tary matrices is more flexible since we can drop the constraint

Fig. 3(a) depicts the asymptotic LMMSE spectral efficiency

(9) as a function of for different values of the number of

relays. The antiderivative of , which is needed to de-

pict the asymptotic spectral efficiency of the ML receiver

(11) in Fig. 3(b), can be straightforwardly computed by means

of, e.g., ([32, Formulas 2.261, 2.264-2, and 2.266]). To focus on

the effect of the codes, all the curves refer to the case .

For both the receivers, the figures also show the asymptotic

spectral efficiencies corresponding to the use of i.i.d. codes as

obtained from (12). By direct comparison of the two coding

schemes, one notices that isometric codes introduce some

Fig. 3. Spectral efficiency as a function of � for isometric (solid line) and i.i.d.
(dashed line) codes. �� � � �� � �� � � and different numbers of relays,
all with unitary channel gains. (a) LMMSE receiver. (b) ML receiver.

benefits, as we had anticipated. However, the gain over the

i.i.d. scheme—which is around 17% in spectral efficiency

(comparing maxima) when considering two relays and the

LMMSE filter—decays fast as the number of relays increases.

Indeed, Haar codes only cancel the interference generated

within each relay; interference among different relays, which

becomes predominant when the number of relays increases,

is not attenuated by the use of Haar coding matrices. Besides,

note that the benefits are less important with the ML receiver

(only around 6% with two relays), which is less sensible to

colored interference.

The curves in the two graphs also highlight the fact that

the coding rate should be tuned to maximize the spectral

efficiency. Unfortunately, analytically locating the maximum is

unfeasible, due to the complexity of the expressions involved.

The considered situations offer, nevertheless, a clear coun-

terexample that the trivial choice is not always the best

one: maxima can be located both at lower than 1 (LMMSE

example) and at larger than 1 (ML example). Fig. 4(a) and

(b) compare the spectral efficiency achieved by the two coding

schemes at their respective optimum coding rate (numerically

10



Fig. 4. Spectral efficiency as a function of the SNR � �� for isometric (solid
line) and i.i.d. (dashed line) codes. �� � � �, best � and different numbers of
relays, all with unitary channel gains. (a) LMMSE receiver. (b) ML receiver.

computed). Once again, one may notice that the maximum gain

(around 2 dB) of isometric codes over i.i.d. codes is obtained

with two relays and LMMSE receiver.

The moment-based approximation introduced in Section IV.B

is validated by comparison with simulation results in Fig. 5, for

and for different values of . Observe that matching

three moments (i.e., ) of the asymptotic eigenvalue distri-

bution of the interference matrix suffices to obtain

a good deterministic approximation of a randomly generated

code of length , which is realistic in practical appli-

cations.

As a final remark, we resume the considerations about the re-

lationship between instantaneous spectral efficiency and outage

probability that we started in Section II-A. As mentioned there,

further investigation outside the scope of this work is needed for

a thorough understanding of the outage behavior of isometric

LD-STBC. Indeed, the instantaneous spectral efficiency either

is expressed by a very involved formula (case , see (15))

or does not admit a closed form expression (case ). How-

ever, a rough comparison with the i.i.d. LD-STBC scheme can

Fig. 5. Comparison between simulation curve and approximations for
� � �� � � � � �. Systems assumptions: � �� � �� �� � � � and
� � ���. Blue curves represent the LMMSE-receiver case, while red
curves represent the ML-receiver case. (a) 	 � �� ��
 � � � � ����� ����.
(b) 	 � 	� ��
 � � � � ���	���������.

already be made. Let us consider the outage probability equa-

tion in (2) and note, first, the decoding set does not de-

pend on the coding scheme implemented at the relays. Now,

according to the results of this paper, the spectral efficiency ob-

tained by a given decoding set is higher for isometric LD-STBC

than for i.i.d. LD-STBC. This implies that isometric coding

achieves lower outage probability under equal conditions, as

it can be observed in Fig. 6, where we reported some simu-

lation results. Equivalently, Fig. 7 depicts the simulated

outage capacity (more significant in the low-power regime)

. Unfortunately, at least for these

two examples, the gain is not impressive and takes values around

0.5 dB for the LMMSE receiver (and even lower for the ML

receiver).

VII. THE LOW-POWER REGIME

As mentioned in Section I, probably the main motivation be-

hind the introduction of relays is the desire of achieving high
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Fig. 6. Outage probability for � � � relays, unitary channel variances and
target transmission rate � � ��� nat/s/Hz. The coding rate � is fixed to 2.3 for
the ML case and to 0.84 for the LMMSE case.

Fig. 7. Outage capacity � � ������� ��	 � �� with � � ��
. System
parameters are set as in Fig. 6.

data rates by means of distributed space-diversity techniques.

However, relays may also be helpful in systems where the re-

ceived signal-to-noise ratio (SNR) is very low, because of strict

energy requirements (e.g., sensor networks) or large source-

destination distances (e.g., satellite communications). By im-

proving the quality of the link, relays may reduce power con-

sumption at the source or increase the communications range.

For this reason, in this section we describe the low-power

(or wide-band) regime of the considered relay channel. More

specifically, we compute the minimum normalized energy per

bit that allows reliable transmission, namely [33]

(24)

where is the first derivative of the spectral efficiency in the

limit for the SNR tending to zero, expressed in nats per degree of

freedom. denotes the noise power spectral density. Besides,

as the energy increases from , the spectral efficiency

presents a slope given by [33]

(25)

(in bits per degree of freedom per 3 dB), with being the

limit for the SNR tending to zero of the second derivative of the

spectral efficiency.

In other words, for the reference SNR tending

to zero, we need to compute the limit of the first- and second-

order derivatives of the spectral efficiency. Let and be

the first two moments of the eigenvalue distribution of the

interference matrix , which are given by (23) in

Section V-B. Then, the following results hold true (see also [1]):

Proposition 7.1: Consider the asymptotic spectral efficien-

cies derived by Theorem 3.2 for isometric LD-STBC. Than, the

first two derivatives computed in are

(26a)

(26b)

for the LMMSE filter and

(27a)

(27b)

for the ML receiver.

Similarly, the first and second derivatives at of the spec-

tral efficiencies obtained with i.i.d. LD-STBC (see Theorem 3.3)

are given by

in both cases, and
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Inserting these results into (24) and (25), one readily ob-

tains and the slopes

.

Proof: See Appendix C.

A. Slope Comparison

Since the four schemes (two possible receivers and two

possible codes) present the same minimum energy-per-bit, it

is interesting to compare the slopes of the spectral efficiency

as approaches from above. From the ex-

pressions of the second-order derivatives, it is straightforward

to verify that Haar codes outperform i.i.d. ones for both the

receivers. Indeed

(28)

(29)

More meaningful is the comparison between the two re-

ceivers when employing isometric codes. By replacing the

expressions of the second derivatives, one obtains

(30)

It is straightforward to show that

Observe that the case arises

only when the variance of the distribution vanishes, i.e.,

when . This condition implies that the matrix

is, up to a constant factor, an identity matrix. This

is another evidence of the optimality of the LMMSE receiver

in the white-interference signal model. Nevertheless, since

the interference can never be whitened, except for the trivial case

.

Note that the three ratios (28), (29), and (30) tend to one as

increases, meaning that all the coding/receiver schemes

are equivalent in that situation. The reason is that the relay con-

tribution becomes less important when the quality of the direct

link is high.

Fig. 8 compares simulation curves with the approximations

derived above, both for the LMMSE receiver [see Fig. 8(a)] and

for the ML receiver [see Fig. 8(b)]. The gain of Haar coding over

i.i.d. coding is evident. Besides, as commented in Section VI, we

can notice once again that Haar signatures are especially useful

with the LMMSE receiver, due to higher sensitivity of the linear

receiver to colored interference.

Fig. 8. Spectral efficiency versus� �� : comparison between real curves and
low-power (LP) approximations for the LMMSE (a) and the ML (b) receivers.

VIII. CONCLUSION

This paper has presented a randomized distributed linear-dis-

persion space-time block code for the relay channel which is

based on isometric matrices. These codes show some gain with

respect to similar i.i.d.-based ones [16], [22]. This advantage is

due to the orthogonal structure of the coding matrices, which

removes intrarelay interference. Intuition and simulation results

suggest that isometric codes are more suitable in systems with a

low number of relays. Indeed, as we add more terminals, the in-

terference generated within each relay becomes negligible with

respect to the one due to the superposition of all relay trans-

missions. Furthermore, the difference between the two coding

schemes is more significant when employing a LMMSE re-

ceiver, which is more sensible to colored interference than the

ML receiver.

The analysis has been carried out in the asymptotic domain,

i.e., when both dimensions of the coding matrices grow indefi-

nitely but keeping constant the coding rate . Indeed, as in the

i.i.d. case, large enough random isometric codes show a deter-

ministic behavior, independent of the specific realization of the
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matrices. Results have been derived by resorting to the rectan-

gular R-transform, a recent result of probability theory that al-

lows to estimate the distribution of the singular values of a sum

of rectangular matrices.

APPENDIX A

PROOFS OF SECTION IV

In this first Appendix we report the proofs of the results in

Section IV.

A. Proof of Lemma 4.1

First of all, let us prove formally the following result of

Section V-A, namely the uniqueness of the solution of (20).

Lemma A.1: Let be the rectangular R-transform with

ratio of . Then, there exists a unique formal power series

that satisfies

with .

Proof: Recalling (17) of the rectangular Cauchy transform

with ratio of , the fixed point equation can be rewritten as

(31)

or, as in (19), . Since

and , the last equation satisfies the assumptions of

the Lagrange inversion formula [34], which implies that

is unique. From (31), and using the fact that is invertible

by composition, we see that is also unique.

By definition, we know that the rectangular R-transform

of is the sum of the rectangular R-transforms of the orig-

inal distributions , namely . We

assume now that there exist functions such that

,

where the second equality yields from (20). Furthermore, they

are solutions to the following system of equations:

...

...

It is simple to prove that this system has a unique solution. It is

enough to notice that and then each of

the previous equations can be written as

Similarly to the proof of Lemma A.1,

satisfies the hypotheses of the Lagrange inversion for-

mula, which implies once again that and, thus,

exist and are unique.

We can now apply the transformation to both

sides of the system and obtain the equivalent identity

...

... (32)

where the right-hand side (RHS) has been simplified knowing

that (see (36) in Appendix B).

Note that this transformation can introduce solutions. However,

only one set will generate a valid MGF as stated by

Lemma A.1.

Now, consider as a function of on the negative real

axis . From its analytic form (8), it is straightforward to prove

that is monotonically increasing and bounded between

the values and zero. This fact implies that each function

is negative and lower-bounded by . Indeed, for each

individual equation of (32), i.e.

one realizes that the RHS is always negative (recall that we

consider ). Then, it must be . Now,

since , the equality implies

that . Thus, within the solutions of (32),

there must exist a set of functions

such that and .

Then, is the desired moment gener-

ating function.

B. Proof of Proposition 4.1

For relays, the system in (14) can be solved as fol-

lows. To simplify the notation, we make the dependence on

implicit and write , and

. Furthermore, we denote

and . Then, the system of equations

can be written as

(33)

By subtracting the two equations and recalling that we must

have , we get

(34)

14



On the other hand, adding the two equations of (33) leads to the

new identity

By inserting (34), we get the following second-order equation

in :

which has the two solutions given by

(35), shown at the bottom of the page. Basic algebra shows that

the discriminant is positive, meaning that the two solutions exist

and are different to one another. However, since

for , one has (the second factor of the RHS

of (35) is also larger than one when the plus sign is chosen) and

has to be discarded. On the contrary, it is trivial to show that

, meaning that the moment generating function

is (15).

C. Proof of Proposition 4.2

When all the equivalent channel gains are equal, i.e.,

, all the linear-dispersion ma-

trices have the same (symmetrized) singular value distribution

. Then, (14) reduces to

since, for any

(see also the previous Appendix).

After some algebra, we can write the second-order equation

Then, as in (16) is the unique solution that satisfies all

the constraints.

Note that in this case one can also solve directly (20) in the

real analytic domain, with

defined for (Appendix B shows how to compute the

rectangular R-transform of ). How-

ever, it is important to remark that this approach is not always

feasible in the general case. Indeed, due the constraint

on the general as in (22), iden-

tity (20) may not be satisfied at all .

APPENDIX B

THE RECTANGULAR R-TRANSFORM OF

According to the algorithm depicted in Fig. 1, we compute

here the rectangular R-transform with ratio corresponding to

the symmetrized distribution , that is is

the distribution of the deterministic constant .

First, the moment generating series

may be written as , which implies

, according to (17). Recalling that

and that , from (18)

we know that is a solution to

or, equivalently, to

The last identity can be rewritten as

and, after some algebra, as

Since it must be , the first term can be discarded and

is a solution to , and, thus, to

(36)

When and is given by

(35)
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APPENDIX C

PROOF OF PROPOSITION 7.1

The results of Proposition 7.1 can be proven as fol-

lows. Recall that the moment generating series of

is . Now, since implies

, one has

and, after some algebra

all for small enough. The results in (26) and (27) follow from

inspection once recalling the general Maclaurin expansion

Similar reasoning holds for the i.i.d. case.
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