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Abstract

In a wide variety of situations, anomalies in the behaviour of a complex
system, whose health is monitored through the observation of a random
vector X = (X1, . . . , Xd) valued in Rd, correspond to the simultane-
ous occurrence of extreme values for certain subgroups α ⊂ {1, . . . , d}
of variables Xj . Under the heavy-tail assumption, which is precisely ap-
propriate for modeling these phenomena, statistical methods relying on
multivariate extreme value theory have been developed in the past few
years for identifying such events/subgroups. This paper exploits this ap-
proach much further by means of a novel mixture model that permits to
describe the distribution of extremal observations and where the anomaly
type α is viewed as a latent variable. One may then take advantage of the
model by assigning to any extreme point a posterior probability for each
anomaly type α, defining implicitly a similarity measure between anoma-
lies. It is explained at length how the latter permits to cluster extreme
observations and obtain an informative planar representation of anomalies
using standard graph-mining tools. The relevance and usefulness of the
clustering and 2-d visual display thus designed is illustrated on simulated
datasets and on real observations as well, in the aeronautics application
domain.

Keywords— Anomaly detection, clustering, graph-mining, latent
variable analysis, mixture modelling, multivariate extreme value theory,
visualization

1 Introduction

Motivated by a wide variety of applications ranging from fraud detection to
aviation safety management through the health monitoring of complex net-
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works, data center infrastructure management or food risk analysis, unsuper-
vised anomaly detection is now the subject of much attention in the data science
literature, see e.g. Gorinevsky et al. (2012); T. Fawcett (1997); Viswanathan
et al. (2012). In frequently encountered practical situations and from the view-
point embraced in this paper, anomalies coincide with rare measurements that
are extremes, i.e. located far from central statistics such as the sample mean. In
the 1-d setting, numerous statistical techniques for anomaly detection are based
on a parametric representation of the tail of the observed univariate probabil-
ity distribution, relying on extreme value theory (EVT), see e.g. Clifton et al.
(2011); Lee and Roberts (2008); Roberts (2000); Tressou (2008) among others.
In (even moderately) large dimensional situations, the modelling task becomes
much harder. Many nonparametric heuristics for supervised classification have
been adapted, substituting rarity for labeling, see e.g. Schölkopf et al. (2001),
Steinwart et al. (2005) or Liu et al. (2008). In the unsupervised setting, several
extensions of the basic linear Principal Component Analysis for dimensionality
reduction and visualization techniques have been proposed in the statistics and
data-mining literature, accounting for non linearities or increasing robustness
for instance, cf Gorban et al. (2008) and Kriegel et al. (2008). These approaches
intend to describe parsimoniously the ‘center’ of a massive data distribution, see
e.g. Naik (2017) and the references therein. Similarly, for clustering purposes,
several multivariate heavy-tailed distributions have been proposed that are ro-
bust to the presence of outliers, see e.g. Forbes and Wraith (2014), Punzo and
Tortora (2018). However the issue of clustering extremes or outliers is only
recently receiving attention, at the instigation of industrial applications such
as those mentioned above and because of the increasing availability of extreme
observations in databases: generally out-of-sample in the past, extreme values
are becoming observable in the Big Data era. It is the goal of the present article
to propose a novel mixture model-based approach for clustering extremes in the
multivariate setup, i.e. when the observed random vector X = (X1, . . . , Xd)
takes its values in the positive orthant of the space Rd with d > 1 equipped with
the sum-norm ‖(x1, . . . , xd)‖ =

∑
1≤j≤d |xj |: ’extremes’ coinciding then with

values x such that P (‖X‖ > ‖x‖) is ’extremely small’. Precisely, it relies on a
dimensionality reduction technique of the tail distribution recently introduced
in Goix et al. (2017) and Goix et al. (2016), and referred to as the DAMEX
algorithm. Based on multivariate extreme value theory (MEV theory), the lat-
ter method may provide a hopefully sparse representation of the support of the
angular measure related to the supposedly heavy-tailed distribution of the ran-
dom vector X. As the angular measure asymptotically describes the dependence
structure of the variables Xj in the extremal domain (and, roughly speaking,
permits to assign limit probabilities to directions x/‖x‖ in the unit sphere along
which extreme observations may occur), this statistical procedure identifies the
groups α ⊂ {1, . . . , d} of feature indices such that the collection of variables
{Xj : j ∈ α} may be simultaneously very large, while the others, the Xj ’s for
j /∈ α, remain small. Groups of this type are in 1-to-1 correspondence with the
faces Ωα = {x ∈ Rd : ‖x‖ = 1, xj = 0 if j /∈ α and xj > 0 if j ∈ α} of the unit
sphere composing the support of the angular measure. In practice, a sparse
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representation of the extremal dependence structure is obtained when only a
few such groups of variables can be exhibited (compared to 2d−1) and/or when
these groups involve a small number of variables (with respect to d). Here we
develop this framework further, in order to propose a (soft) clustering technique
in the region of extremes and derive effective 2-d visual displays, sheding light
on the structure of anomalies/extremes in sparse situations. This is achieved by
modelling the distribution of extremes as a specific mixture model, where each
component generates a different type α of extremes. In this respect, the present
paper may be seen as an extension of Boldi and Davison (2007); Sabourin and
Naveau (2014), where a Bayesian inference framework is designed for moderate
dimensions (d ≤ 10 say) and situations where the sole group of variables with
the potential of being simultaneously large is {1, . . . , d} itself. In the context of
mixture modelling (see e.g. Fruhwirth-Schnatter et al. (2018)), the Expectation-
Maximization algorithm (EM in abbreviated form) permits to partition/cluster
the set of extremal data through the statistical recovery of latent observations,
as well as posterior probability distributions (inducing a soft clustering of the
data in a straighforward manner) and, as a by-product, a similarity measure
on the set of extremes: the higher the probability that their latent variables
are equal, the more similar two extreme observations X and X ′ are considered.
The similarity matrix thus obtained naturally defines a weighted graph, whose
vertices are the anomalies/extremes observed, paving the way for the use of
powerful graph-mining techniques for community detection and visualization,
see e.g. Schaeffer (2007), Hu and Shi (2015) and the references therein. Be-
yond its detailed description, the methodology proposed is applied to a real fleet
monitoring dataset in the aeronautics domain and shown to provide useful tools
for analyzing and interpreting abnormal data.

The paper is structured as follows. Basic concepts of MEV theory are briefly
recalled in Section 2, in particular the concept of angular measure, together with
the technique proposed in Goix et al. (2016, 2017) for estimating the (hopefully
sparse) support of the latter, which determines the dependence structure of ex-
tremes arising from a heavy-tailed distribution. Section 3 details the mixture
model we propose to describe the distribution of extreme data, based on the
output of the support estimation procedure, together with the EM algorithm
variant we introduce in order to estimate its parameters. It is next explained
in Section 5 how to exploit the results of this inference method to define a sim-
ilarity matrix of the extremal data, reflecting a weighted graph structure of the
observed anomalies, and apply dedicated community detection and visualiza-
tion techniques so as to extract meaningful information from the set of extreme
observations. The relevance of the approach we promote is finally illustrated by
numerical experiments, on synthetic and real data in Section 6. An implemen-
tation of the proposed method and the code for the experiments carried out in
this paper are available online1. Technical details are deferred to the Appendix
section.

1 https://github.com/mchiapino/mevt_anomaly
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2 Background and Preliminaries

We start with recalling key notions of MEVT, the concept of angular measure
in particular, as well as the inference method investigated in Goix et al. (2016,
2017) to estimate its support. Here and throughout, the Dirac mass at any
point x is denoted by δx, the indicator function of any event A by 1{A}, the
cardinality of any finite set E by |E|. Capital letters generally refer to random
quantities whereas lower case ones denote deterministic values. Finally, boldface
letters denote vectors as opposed to Roman letters denoting real numbers.

2.1 Heavy-Tail Phenomena - Multivariate Regular Varia-
tion

Extreme Value Theory (EVT) describes phenomena that are not governed by an
’averaging effect’ but can be instead significantly impacted by very large values.
By focusing on large quantiles rather than central statistics such as the median
or the sample mean, EVT provides models for the unusual rather than the usual
and permits to assess the probability of occurence of rare (extreme) events. Ap-
plication domains are numerous and diverse, including any field related to risk
management as finance, insurance, environmental sciences or aeronautics. Risk
monitoring is a typical use case of EVT. The reader is referred to Coles (2001)
and the references therein for an introduction to EVT and its applications. In
the univariate setting, typical quantities of interest are high quantiles of a ran-
dom variable X, i.e. 1− p quantiles for p→ 0. When p is of the same order of
magnitude as 1/N or smaller, empirical estimates become meaningless. Another
issue is the estimation of the probability of an excess over a high threshold u,
pu = P(X > u) when few (or none) observations are available above u. In such
contexts, EVT essentially consists in using a parametric model (the generalized
Pareto distributions) for the tail distribution, which is theoretically justified
asymptotically, i.e. when p → 0 or u → ∞. Here and throughout we place
ourselves in the context where the variable of interest is regularly varying; see
Resnick (1987, 2007) for a general introduction to regular variation and its ap-
plications to data analysis. In the univariate case the required assumption is the
existence of a sequence an > 0 such that an →∞ and a function h(x) such that
nP (X/an > x) −−−−→

n→∞
h(x), x > 0. Notice that this assumption is satisfied by

most textbook heavy tailed distributions, e.g. Cauchy, Student. In such a case h
is necessarily of the form h(x) = Cx−α for some C,α > 0, where α is called the
tail index of X and an may be chosen as an = n1/α. In the multivariate setting,
consider a d-dimensional random vector X = (X1, . . . , Xd), the goal is to infer
quantities such as P (X1 > x1, . . . , Xd > xd) for large x1, . . . , xd. A natural first
step is to standardize each marginal distribution so that the Xj ’s are all regu-
larly varying with tail index α = 1 and scaling constant C = 1. One convenient
choice is to use the probability integral transform. For x = (x1, . . . , xd), let
Fj(xj) = P (Xj ≤ xj). Assuming that Fj is continuous, the transformed vari-
able Vj = (1−Fj(Xj))

−1 follows a Pareto distribution, P (Vj > v) = v−1, v ≥ 1.
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In practice Fj is unknown but its empirical version F̂j may be used instead. An-
other option when each Xj is regularly varying with tail index αj is to estimate
(αj , Cj) using e.g. a generalized Pareto model above large thresholds, see Coles
(2001) or Beirlant et al. (2004) and the references therein. Then Vj = Xαj/Cj
is standard regularly varying, meaning that nP (Vj/n > x) → x−1, x > 0 as
n → ∞. The multivariate extension of the latter assumption is that the stan-
dardized vector V = (V1, . . . , Vd) is regularly varying with tail index equal to 1,
i.e. there exists a limit Radon measure µ on Rd+ \ {0} such that

nP
(
n−1V ∈ A

)
→ µ(A) (1)

for all A in the continuity set of µ such that 0 /∈ ∂A. The measure µ is called
the exponent measure. In the standard setting characterized by (1), it is homo-
geneous of order −1, that is µ(tA) = t−1µ(A), where tA = {tv,v ∈ A}, A ⊂ R+

d

and µ{x ∈ Rd+ : xj ≥ 1} = 1. Assumption (1) applies immediately to the
problem of estimating the probability of reaching a set tA which is far form
0 (i.e. t is large): one may write P(V ∈ tA) ≈ 1

tµ(A), so that estimates of
µ automatically provide estimates for such quantities. In a word, µ may be
used to characterize the distributional tail of V. For modeling purposes, the
homogeneity property µ(t·) = t−1µ(·) suggests a preliminary decomposition of
µ within a (pseudo)-polar coordinates system, as detailed next.

2.2 Angular Measure - Dependence in the Extremes

Consider the sum-norm ‖v‖ := v1 + . . . + vd and Sd := {w ∈ Rd+ : ‖w‖ =
1} the d-dimensional simplex. Introduce the polar transformation T : v 7→
T (v) = (r,w) defined on Rd+ \ {0}, where r = ‖v‖ is the radial component
and w = r−1v is the angular one. Now define the angular measure Φ on Sd
(see e.g. Resnick (2007) or Beirlant et al. (2004) and the references therein):
Φ(A) := µ

{
v : ‖v‖ > 1, ‖v‖−1v ∈ A}

}
, with A ⊂ Sd. Notice that Φ(Sd) < ∞

and, by homogeneity,

µ ◦ T−1(dr, dw) = r−2drΦ(dw). (2)

In other words the exponent measure µ factorizes into a tensor product of a
radial component and an angular component. Setting R = ‖V‖ and W =
R−1V, a consequence is that

P (W ∈ A,R > tr | R > t) −−−→
t→∞

r−1Φ(Sd)−1Φ(A) (3)

for all measurable set A ⊂ Sd such that Φ(∂A) = 0 and r > 1. Hence, given that
the radius R is large, R and the angle W are approximately independent, the
distribution of W is approximately the angular measure – up to a normalizing
constant Φ(Sd) – and R follows approximately a Pareto distribution. As it
describes the distribution of the directions formed by the largest observations,
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the angular measure exhaustively accounts for the dependence structure in the
extremes. Our choice of a standard regular variation framework (1) and that of
the sum-norm yield the following moment constraint on Φ:

∫
Sd
wi Φ(dw) = 1, for i = 1, . . . , d. (4)

In addition, the normalizing constant is explicit:

Φ(Sd) =

∫
Sd

Φ(dw) =

∫
Sd

(w1 + . . .+ wd)Φ(dw) = d. (5)

Remark 1. The choice of the sum-norm here is somewhat arbitrary. Any other
norm on Rd for the pseudo-polar transformation is equally possible, leading to
alternative moment constraints and normalizing constants. The advantage of
the sum-norm is that it allows convenient probabilistic modeling of the angular
component w on the unit simplex.

2.3 Support Estimation - the DAMEX Algorithm

We now expose the connection between Φ’s (or equivalently, µ’s) support and
the subsets of components which may simultaneously take very large values,
while the others remain small.

Sparse support. Fix α ⊂ {1, . . . , d} and consider the associated truncated
cone

Cα =
{
v ≥ 0 : ‖v‖∞ ≥ 1, vi > 0 for i ∈ α, vi = 0 for i /∈ α

}
. (6)

The family {Cα, α ⊂ {1, . . . , d}, α 6= ∅} first introduced in Goix et al. (2016)
defines a partition of Rd+ \ [0, 1]d which is of particular interest for our purpose:
notice first that, by homogeneity of µ, the following equivalence holds: Φ(Sα) >
0⇔ µ(Cα) > 0, where Sα =

{
v ∈ Rd+ : ‖v‖ = 1, vi > 0 for i ∈ α, vi = 0 for i /∈ α

}
,

∅ 6= α ⊂ {1, . . . , d}. Observe next that µ(Cα) > 0 means that the limiting
rescaled probability that ‘all features in α are simultaneously large, while the
others are small’ is non zero. Precisely, consider the ε-thickened rectangle

Rεα =
{
v ≥ 0, ‖v‖∞ ≥ 1, vi > ε for i ∈ α, vi ≤ ε for i /∈ α

}
,

which corresponds to the event that all features in α are large, while the other
are small. The Rεα’s define again a partition of Rd+ \ [0, 1]d for each fixed ε ≥ 0.
In addition, we have that Cα = ∩ε>0,ε∈QRεα, so that by upper continuity of µ,

µ(Cα) = lim
ε→0

µ(Rεα)

with

µ(Rεα) = lim
t→∞

tP(‖V‖∞ > t, ∀j ∈ α : Vj > tε, ∀j /∈ α : Vj < tε).
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In the sequel, set µα = µ(Cα), M =
{
α ⊂ {1, . . . , d}, α 6= ∅, µα > 0

}
. Although

every µα may be positive in theory, a reasonable assumption in many practical
high dimensional situations is that µα = 0 for the vast majority of the 2d − 1
cones Cα. In other words, not all combinations of coordinates of V can be large
together, so that the support of µ (and that of Φ) is sparse.

Support estimation. The task of estimating the support of µ (or Φ) has
recently received increasing attention in the statistics and machine learning
literature. Chautru (2015) first proposed a non parametric clustering approach
involving principal nested spheres, which provides great flexibility at the price of
computational cost. In contrast, Goix et al. (2016)’s methods rely on the above
mentioned partition of the unit sphere into 2d − 1 sub-simplices Ωα and led to
the so-called DAMEX algorithm which computational complexity O(dn log n)
scales well with higher dimensions. Their algorithm produces the list of α’s
such that the empirical counterpart of µα (denoted µ̂α in the sequel) is non
zero. Defining a threshold mmin > 0 below which µ̂α is deemed as negligible,
one thus obtains a list of subsets M̂ = {α ⊂ {1, . . . , d} : µ̂α > µmin}. A uniform
boud on the error |µ̂α−µα| is derived in Goix et al. (2017) which scales roughly
as k−1/2, where k is the order of magnitude of the number of largest observations
used to learn M and the µα’s. In Simpson et al. (2018) the original DAMEX
framework is refined in order to also model extremes in the directions Ωα where
the angular measure does not concentrate. A third algorithm named CLEF has
been proposed by Chiapino and Sabourin (2016) which allows to cluster together
different sub-simplices Ωα’s which are close in terms of symmetric difference of
the subsets α’s. This is particularly useful in situations where the empirical
angular mass is scattered onto a large number of sub-simplices, so that DAMEX
fails to exhibit a list M̂ of reasonable size. Asymptotic guarantees for the latter
approach and variants, leading to statistical tests with controllable asymptotic
type I error are derived in Chiapino et al. (2018).

In the present paper, support estimation is only a preliminary step before
mixture modeling. We decided to use DAMEX in view of its computational
simplicity and the statistical guarantees it offers, considering the fact that its
output was very similar to CLEF’s on the aeronautics dataset considered in our
usecase (see Section 6.2). Using the above mentioned alternatives is certainly
possible but for the sake of brevity we shall only present the results obtained
using DAMEX as a preprocessing step. We now briefly describe how DAMEX
works.

The DAMEX algorithm. Given a dataset (Xi)i≤n of independent data
distributed as X, DAMEX proceeds as follows. First, replace the unknown
marginal distributions Fj with their empirical counterpart F̂j(x) = 1

n

∑
1{Xi,j <

x} and define next V̂i,j = (1−F̂j(Xi,j))
−1 and V̂i = (V̂i,1, . . . , V̂i,d). Then choose

some k � n large enough (typically k = O(
√
n)) and define µ̂α as the empirical

counterpart of µ(Rεα) with t replaced by n/k, that is µ̂α = (1/k)
∑n
i=1 1{V̂i ∈

n
kR

ε
α}. Notice that the above description is a variant of the original algorithm

in Goix et al. (2016) which uses thickened cones Cεα instead of Rεα. However fi-
nite sample guarantees in Goix et al. (2017) are obtained using the latter rather
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than the original Cεα’s, that is why using the Rεα’s is preferred.

3 A Mixture Model For Multivariate Extreme
Values

The purpose of this section is to develop a novel mixture model for the angular
distribution Φ of the largest instances of the dataset, indexed by α ∈M, where
M is Φ’s support. Each component α ∈ M of the mixture generates instances
V such that Vj is likely to be large for j ∈ α and the latent variables of the
model take their values in M. In practice, we adopt a plug-in approach and
identify M with M̂, the output of DAMEX. As the distribution of extremes
may be entirely characterized by the distribution of their angular component
W ∈ Sd (see the polar decompositions (2) and (3)), a natural model choice is
that of Dirichlet mixtures. We next show how to design a ’noisy’ version of the
model for subasymptotic observations and how to infer it by means of an EM
procedure based on a truncated version of the original dataset, surmounting
difficulties related to the geometry of Φ’s support.

3.1 Angular Mixture Model for the Directions along which
Anomalies Occur

Recall from Section 2.3 that Sd is naturally partitioned into 2d−1 sub-simplices
Sα. Our key assumption is that the support of µ (or Φ) is sparse in the sense
that |M| � 2d, where M = {α : µ(Cα) > 0} = {α : Φ(Sα) > 0}. Let K
denote the number of subsets α ∈ M of cardinality at least 2 and let d1 ∈
{0, . . . , d} be the number of singletons {j} ∈ M. Without loss of generality
we assume that these singletons correspond to the first d1 coordinates, so that
M = {α1, . . . , αK , {1}, . . . , {d1}}. For simplicity, we also suppose that the sets
α ∈ M are not nested, an hypothesis which can be relaxed at the price of
additional notational complexity. In view of (5), the angular measure then
admits the decomposition

d−1Φ( · ) =

K∑
k=1

πkΦαk( · ) +
∑
j≤d1

πK+jδej ( · ),

where Φαk is a probability measure on Sαk , the weights πk satisfy
∑
k≤K+j πk =

1 and ej = (0, . . . , 1, . . . , 0) is the jth canonical basis vector of Rd. The singletons
weights derive immediately from the moment constraint (4): for i ≤ d1,

d−1 =

K∑
k=1

∫
Sαk

wiπkΦαk(dw) +
∑
j≤d1

∫
S{j}

wi πK+jδej (dw) = πK+i.
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We obtain

Φ( · ) = d

K∑
k=1

πkΦαk( · ) +
∑
j≤d1

δej ( · ), (7)

where the vector π ∈ [0, 1]K+d1 must satisfy

K∑
k=1

πk = 1− d1/d. (8)

Equation (7) determines the structure of the angular distribution of the largest
observations. For likelihood-based inference, a parametric model for each com-
ponent Φαk of the angular measure must be specified. One natural model for
probability distributions on a simplex is the Dirichlet family, which provides a
widely used prior in Bayesian statistics for data clustering purposes in particu-
lar. We recall that the Dirichlet distribution on a simplex Sα admits a density
ϕα with respect to the (|α|−1)-dimensional Lebesgue measure which is denoted
by dw for simplicity. It can be parameterized by a mean vector mα ∈ Sα and
a concentration parameter να > 0, so that for w ∈ Sα,

ϕα(w|mα, να) =
Γ(να)∏

i∈α Γ(ναmα,i)

∏
i∈α

w
ναmα,i−1
i .

Refer to e.g. Müller and Quintana (2004) for an account of Dirichlet processes
and mixtures of Dirichlet Processes applied to Bayesian nonparametrics. We
emphasize that our context is quite different: a Dirichlet Mixture is used here
as a model for the angular component of the largest observations, not as a prior
on parameters. This modeling strategy for extreme values was first proposed
in Boldi and Davison (2007) and revisited in Sabourin and Naveau (2014) to
handle the moment constraint (4) via a model re-parametrization. In both
cases, the focus was on moderate dimensions. In particular, both cited ref-
erences worked under the assumption that the angular measure concentrates
on the central simplex Ω{1,...,d} only. In this low dimensional context, the main
purpose of the cited authors was to derive the posterior predictive angular distri-
bution in a Bayesian framework, using a variable number of mixture components
concentrating on Ω{1,...,d}. Since the set of Dirichlet mixture distributions with
an arbitrary number of components is dense among all probability densities on
the simplex, this model permits in theory to approach any angular measure for
extremes. The scope of the present paper is different. Indeed we are concerned
with high dimensional data (say d ' 100) and consequently we do not attempt
to model the finest details of the angular measure. Instead we intend to de-
sign a model accounting only for information which is relevant for clustering.
Since an intuitive summary of an extreme event in a high dimensional context
is the subset α of features it involves, we assign one mixture component per
sub-simplex Ωα such that α ∈M. Thus we model each Φα by a single Dirichlet
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distribution with unknown parameters mα, να. Using the standard fact that for
such a distribution,

∫
Sα wϕα(w|mα, να)dw = mα, the moment constraint (4)

becomes:

1

d
=

K∑
k=1

πkmk,j , j ∈ {d1 + 1, . . . , d}, (9)

where mk = mαk for k ≤ K.

3.2 A Statistical Model for Large but Sub-asymptotic
Observations.

Recall from (3) that Φ is the limiting distribution of V for large R’s. In practice,
we dispose of no realization of this limit probability measure and the observed
angles corresponding to radii R > r0 follow a sub-asymptotic version of Φ. In
particular, if the margins Vj have a continuous distribution, we have P(Vj 6= 0) =
1 so that all the Vi = (Vi,1, . . . , Vi,d), 1 ≤ i ≤ n, lie in the central cone C{1,...,d}
(this is also true using the empirical versions V̂i defined in subsection 2.3). In
the approach we propose, the deviation of V from its asymptotic support, which
is
⋃
α∈M Cα, is accounted for by a noise ε with light tailed distribution, namely

an exponential distribution. That is, we assume that V = RW+ε, see Model 1
below. As is usual for mixture modeling purposes, we introduce a multinomial
latent variable Z = (Z1, . . . , ZK+d1) such that

∑
k Zk = 1 and Zk = 1 if

W has been generated by the kth component of the angular mixture (7). In a
nutshell, the type of anomaly/extreme is encoded by the latent vector Z. Then,
for k ≤ K, P (Zk = 1) = πk, while, for K < k ≤ K + d1, P (Zk = 1) = d−1.
The unknown parameters of the model are θ = (π,m,ν), where νk > 0 and
π = (π1, . . . , πK), m = (m1, . . . ,mK) must satisfy the constraints (8) and (9),
as well as the exponential rates λ = (λ1, . . . , λK+d1), where λk > 0. Figure 1
illustrates Model 1 in dimension d = 3.
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Model 1 (Sub-asymptotic mixture model).

• Consider a standard regularly varying random vector V satisfying (1) (typ-
ically Vj = (1 − F̂j(Xj)) for F̂j an estimate of the marginal distribution
Fj of Xj, see subsection 2.1).

• Let R = ‖V‖. Fix some high radial threshold r0, typically a large quantile
of the observed radii. Let Z be a hidden variable indicating the mixture
component in (7). Conditionally to {R > r0, Zk = 1}, V decomposes as

V = Vk + εk = RkWk + εk, (10)

where Vk ∈ Cαk , εk ∈ C⊥αk , Rk = ‖Vk‖, Wk = R−1
k Vk ∈ Sαk . The com-

ponents Rk,Wk, εk are independent from each other. The noise’s compo-
nents are i.i.d. according to a translated exponential distribution with rate
λk, Rk is Pareto distributed above r0 and Wk is distributed as Φk, that is

P (Rk > r) = r0r
−1, r > r0 ,

Wk ∼ Φk ,

εj ∼ 1 + Exp(λk), j ∈ {1, . . . , d} \ αk ,

with Φk = ϕk( · |mk, νk) if k ≤ K, and Φk = δek−K if K < k ≤ K + d1.

Figure 1: Trivariate illustration of the sub-asymptotic model 1:
the observed point V has been generated by component αk = {1, 2}. The grey
triangle is the unit simplex, the shaded red area stands for the Dirichlet density
ϕk.

4 Statistical Inference via EM Algorithm.

In the mixture model setting described above with hidden variables Zi, likeli-
hood optimization is classically performed using an EM algorithm (Dempster
et al., 1977). This method consists in performing in turn the so-called E-step
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and M-step at each iteration t. Denoting by θt the value at iteration t of the
set of unknown model parameters, the posterior probabilities

γ
(t+1)
i,k = P(Zi,k = 1|Vi,θt)

are computed during the E-step and define the objective function

Q(θ, γ(t)) =
∑
i

∑
k

γ
(t+1)
i,k log p(Vi|Zi,k = 1,θ).

The latter serves as a proxy for the log-likelihood and can be maximized with
respect to θ with standard optimization routines during the M-step, which yields
θt+1 = arg maxθ Q(θ, γ(t)). The procedure stops when the value Q(θt, γ

(t))
reaches a stationary point and the latest pair (θt, γ

(t)) is returned.
The likelihood for Model 1, p(v|θ = (m,ν, π,λ)), for one observation v ∈

(1,∞)d, ‖v‖ ≥ r0, follows directly from the model specification,

p(v|θ) = r0

K∑
k=1

πk r
−|αk|−1
k ϕk(wk|mk, νk)

∏
j∈αck

fε(vj |λk)

+
r0

d

K+d1∑
k=K+1

r−2
k

∏
j∈{1,...,d}\k

fε(vj |λk) (11)

where fε( · |λk) denotes the marginal density of the noise εk given the noise pa-
rameter λk. As specified in Model 1, in this paper we set fε(x|λk) = λke

−λk(x−1),
x > 1 (a translated exponential density), but any other light tailed distribution

could be used instead. Notice that the term r
−|αk|−1
k = r−2

k r
−|αk|+1
k is the

product of the radial Pareto density and the Jacobian term for the change of
variables Tk : Vk 7→ (Rk,Wk). Recall that the constraints are

νk > 0 (1 ≤ k ≤ K) , λk > 0 (1 ≤ k ≤ K + d1), (12)

and that π = (π1, . . . , πK) and m = (m1, . . . ,mK) satisfy (8) and (9). The
latter linear constraint on (π,m) implies that m and π cannot be optimized in-
dependently, which complicates the M-step of an EM-algorithm. Thus we begin
with a re-parametrization of the model ensuring that the moment constraint (4)
is automatically satisfied.

Re-parametrization. In a lower dimensional Bayesian framework, earlier
works (Sabourin and Naveau (2014)) have proposed a re-parametrization of the
pair (π,m) ensuring that the moment constraint (4) is automatically satisfied.
This consists in a sequential definition of the mixture centers mk together with
the involving partial barycenters of the remaining components (mk+1, . . . ,mk).
The advantage if this construction is that the resulting parameter has a intu-
itive interpretation which facilitates the definition of a prior, while allowing for
efficient MCMC with reversible jumps sampling (Green (1995)) of the posterior
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distribution. However, how to adapt this re-parameterization to our context
where several sub-simplices are involved remains an open question and we did
not pursue this idea further. The re-parametrization that we propose here con-
sists in working with the product parameter ρk,j = πkmk,j instead of the pair
(πk,mk,j). Namely, consider a K × (d− d1) matrix ρ = (ρ1

>, . . . ,ρK
>) where

ρk,j > 0 for j ∈ αk and ρk,j = 0 otherwise. Then, for all k ∈ {1 . . . ,K}, set

πk :=
∑
j∈αk

ρk,j and mk,j :=
ρk,j
πk

,∀j ∈ αk. (13)

Then (8) and (9) together are equivalent to∑
{k:j∈αk}

ρk,j =
1

d
, ∀j ∈ {d1 + 1, . . . , d}. (14)

In the sequel we denote respectively by p(v|ρ,ν,λ) := p(v|π,m,ν,λ) and
ϕk(w|ρk, νk) := ϕk(w|mk, νk) the likelihood and the Dirichlet densities in
the re-parameterized model, where (m,π) are obtained from ρ via (13). By
abuse of notations, let θ denote in the sequel the set of parameters of the
re-parameterized version of Model 1, that is θ = (ρ,ν,λ), and let Θ be the
parameter space, that is the set of θ’s such that constraints (12) and (14) hold.

EM algorithm. We summarize below the EM algorithm in our framework.
Let n0 ≤ n be the number of observations Vi such that ‖Vi‖ > r0. To alleviate
notations, we may relabel the indices i so that these observations are V1:n0 =
(V1, . . . ,Vn0

). Let Zi = (Zi,1, . . . , Zi,K+d1), i ≤ n0 be the hidden variables
associated with V1:n0

. Also let p(v|θ, zk = 1) denote the conditional density of
V given (Zk = 1,θ). In view of the likelihood (11), it is given by

p(v|zk = 1,θ) =

{
r
−|αk|−1
k ϕk(wk|ρk, νk)

∏
j∈αck

fε(vj |λk), (k ≤ K)

v−2
k

∏
j∈{1,...,d}\k fε(vj |λk), (K < k ≤ K + d1).

(15)
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EM algorithm for Model 1

Input Extreme standardized data V1:n0
.

• Initialization Choose a starting value for θ (See Remark 2).

• Repeat until convergence:

E-step: compute for 1 ≤ i ≤ n0 and k ≤ K+d1, γi,k = P (Zi,k = 1 | Vi,θ)
according to (17). Set γ = (γi,k)i≤n0,k≤K+d1 .

M-step: Solve the optimization problem maxθ∈ΘQ(θ,γ)where Q(θ,γ) =∑n0

i=1

∑K+d1
k=1 γi,k

(
log πk + log p(Vi|θ, zi,k = 1)

)
is a lower bound for the

likelihood and πk = P(Zi,k = 1|θ), i.e.

πk =

{∑
`∈αk ρk,l for 1 ≤ k ≤ K ,

d−1 for K < k ≤ K + d1 ,
(16)

where p(Vi|θ, zi,k = 1) is given by (15).Denote by θ? the solution, set
θ = θ?.

Remark 2. In this work the starting values for the concentration parametrers
νk are set to 20, those for the exponential rates are set to λk = 0.01. Finally,
one may easily construct a matrix ρ satisfying the constraint (14) starting with
any matrix ρ̃ such that ρ̃k,j = 0 for j /∈ αk and ρ̃k,j > 0 otherwise, and then

defining ρ via ρk,j = (
∑K
l=1 ρ̃l,j)

−1ρ̃k,j.

We now describe at length the E-step and the M-step of the algorithm.

E-step. The γi,k’s are obtained using the Bayes formula, for 1 ≤ k ≤ K + d1,

γi,k = p(Zi,k = 1|Vi,θ) =
πk p(Vi|zi,k = 1,θ)∑

1≤`≤K+d1
6̀=k

π` p(Vi|zi,` = 1,θ)
, (17)

where πk is defined in (16) and p(Vi|Zi,k = 1,θ) is given by (15).

M-step. Here optimization of Q(θ, γ) with respect ot θ = (ρ,ν,λ) is performed
under constraints (12), (14). Since Q decomposes into a function of (ρ,ν)
and a function of λ, and since the constraints on ρ,ν and λ are independent,
maximization can be performed independently over the two blocks. Indeed,
gathering terms not depending on θ into a constant C,
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Q(θ,γ) =

n∑
i=1

[ K∑
k=1

γi,k
[

log πk + logϕk(Wi,k|ρk, νk) +
∑
l∈αck

log fε(Vi,l|λk)
]

+

K+d1∑
k=K+1

γi,k
[∑
` 6=k

log fε(Vi,l|λk)
]]

+ C = Q1(ρ,ν) +Q2(λ) + C,

where

Q1(ρ,ν) =

n∑
i=1

K∑
k=1

γi,k
[

log
∑
l∈αk

ρkl + logϕk(Wi,k|ρk, νk)
]

Q2(λ) =

n∑
i=1

K+d1∑
k=1

γi,k
∑
l∈αck

log fε(Vi,l|λk) .

Here we set αk = {k−K} for K < k ≤ K+d1, in accordance with the notations
from Section 3.1. Notice that the dependence of Q1 and Q2 on γ is omitted for
the sake of concision. With these notations

max
θ s.t.

(12), (14)

Q(θ,γ) = max
ρ,ν s.t.

(14),νk>0, k≤K

Q1(ρ,ν) + max
λ s.t.

λk>0, 1≤k≤K+d1

Q2(λ)

The function Q1 being non-concave we use the python package mystic (McK-
erns et al. (2012)) to maximize it. For our choice of translated exponential noise,
fε(v|λk) = λke

−λk(v−1), v ≥ 1, the maximizer of Q2 has an explicit expression,

λ∗k =
|αck|

∑n
i=1 γi,k∑n

i=1 γi,k
∑
l∈αck

(Vi,` − 1)
, k ≤ K + d1.

Remark 3. Let γt and θt be the results of the t-th iteration of the algorithm
then we conclude the iterative process if Q(θt,γt) < Q(θt−1,γt−1) + ε, with ε a
small threshold.

5 Graph-based Clustering and Visualization Tools

Beyond the hard clustering that may be straightforwardly deduced from the
computation of the likeliest values z1, . . . , zn0

for the hidden variables given the
Vi’s and the parameter estimates produced by the EM algorithm, the statistical
model previously introduced defines a natural structure of undirected weighted
graph on the set of observed extremes, which interpretable layouts (graph draw-
ing) can be directly derived using classical solutions. Indeed, a partition (hard
clustering) of the set of (standardized) anomalies/extremes V1, . . . , Vn0

is
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obtained by assigning membership of each Vi in a cluster (or cone/sub-simplex
) determined by the component of the estimated mixture model from which it
arises with highest probability: precisely, one then considers that the abnormal
observation Vi is in the cluster indexed by

ki = arg max
k∈{1, ..., K+d1}

γi,k

and is of type αki . However, our model-based approach brings much more infor-
mation and the vector of posterior probabilities (γi,1, . . . , γi,K+d1) output by
the algorithm actually defines soft membership and represent the uncertainty in
whether anomaly Vi is in a certain cluster. It additionally induces a similarity
measure between the anomalies: the higher the probability that two extreme
values arise from the same component of the mixture model, the more similar
they are considered. Hence, consider the undirected graph whose vertices, in-
dexed by i = 1, . . . , n0, correspond to the extremal observations V1, . . . , Vn0

and whose edgeweights are wθ(Vi,Vj), 1 ≤ i 6= j ≤ n0, where

wθ(Vi,Vj) = P (Zi = Zj | Vi = Vi, Vj = Vj , θ) =

K+d1∑
k=1

γi,kγj,k.

Based on this original graph description of the set of extremes, it is now possible
to rank all anomalies (i.e. extreme points) by degree of similarity to a given
anomaly Vi

wθ(Vi,V(i,1)) ≥ wθ(Vi,V(i,2)) ≥ . . . ≥ wθ(Vi,V(i,n0))

and extract neighborhoods {V(i,1), . . . , V(i,l)}, l ≤ n0.

Graph-theoretic clustering. We point out that many alternative methods to
that consisting in assigning to each any anomaly/extreme its likeliest component
(i.e. model-based clustering) can be implemented in order to partition the
similarity graph thus defined into subgraphs whose vertices correspond to similar
anomalies, ranging from tree-based clustering procedures to techniques based
on local connectivity properties through spectral clustering. One may refer to
e.g. Schaeffer (2007) for an account of graph-theoretic clustering methods.

Graph visualization. In possible combination with clustering, graph visual-
ization techniques (see e.g. Hu and Shi (2015)), when the number n0 of anoma-
lies to be analyzed is large, can also be used to produce informative layouts. Dis-
cussing the merits and limitations of the wide variety of approaches documented
in the literature in this purpose is beyond the scope of this paper. The usefulness
of the weighted graph representation proposed above combined with state-of-
the-art graph-mining tools is simply illustrated in Section 6.2 and 6.3. We point
out however that alternatives to the (force-based) graph drawing method used
therein can be naturally considered, re-using for instance the eigenvectors of the
graph Laplacian computed through a preliminary spectral clustering procedure
(see e.g. Athreya et al. (2017) and the references therein for more details on
spectral layout methods).
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6 Illustrative Experiments

The aim of our experiments is double. First, investigate the goodness of fit
of the Dirichlet mixture model fitted via the EM algorithm on simulated data
from the model. Second, provide empirical evidence of the relevance of the
approach we promote for anomaly clustering/visualization with real world data.
Comparisons with state-of-the-art methods standing as natural competitors are
presented for this purpose.

6.1 Experiments on Simulated Data

To assess the performance of the proposed estimator of the dependence structure
and of the EM algorithm, we generate synthetic data according to Model 1. The
dimension is fixed to d = 100 and the mixture components, that is the elements
of M = {α1, . . . , αK}, are randomly chosen in the power set of {1, . . . , d} with
K = 50. The coefficients of the matrix ρ which determines the weights and
centers through Eq. (14) in the Supplementary Material is also randomly chosen,
then its columns are normalized so that the moment constraint is satisfied.
Finally. we fix νk = 20 for 1 ≤ k ≤ K and λk, 1 ≤ k ≤ K + d1, are successively
set to 1, 0.75, 0.5, 0.25 and 0.1 to vary the noise level in the experiments.
Then each point Vi = RiWi + εi, i ≤ n, is generated with probability πk, k ∈
{1, . . . ,K} according to the mixture component k ≤ K, that is

Ri ∼ Pareto(1)|{Ri > r0}, Wi ∼ Φk, εi,j ∼ 1 + Exp(λk), j ∈ {1, . . . , d} \ αk,

and with probability 1
d according to component k ∈ {K, . . . ,K + d1} in such a

way that

Ri ∼ Pareto(1)|{Ri > r0}, Wi = 1, εi,j ∼ 1 + Exp(λk), j ∈ {1, . . . , d} \ {k}.

The threshold r0 above which points are considered as extreme is fixed to 100.
On this toy example, the pre-processing step that consists in applying DAMEX
for recovering M produces an exact estimate, so that M̂ = M. Then the pro-
cedure described in Algorithm 4 is applied. Tables 1 and 2 show the average
absolute errors for the estimates ρ̂, ν̂ and λ̂ on 50 datasets of the n0 generated
extreme points, for n0 = 1e+ 3, 2e+ 3, namely

err(ρ̂) =
1

50 ·K · d

50∑
l=1

K∑
k=1

d∑
j=1

|ρ̂k,j − ρk,j |

err(ν̂) =
1

50 ·K

50∑
l=1

K∑
k=1

|ν̂k − νk|

err(λ̂) =
1

50 · (K + d1)

50∑
l=1

K+d1∑
k=1

|λ̂k − λk|
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On this toy example, estimates of the means and weights, as well as those of
the noise parameters, are almost exact. In contrast, the estimates of the νk’s
are not that accurate, but, as shown next, this drawback does not jeopardize
cluster identification.

Table 1: Average error on the model parameters, n0 = 1e3 extreme points

λk = 1. λk = 0.75 λk = 0.5 λk = 0.25 λk = 0.1
err(ρ̂) 1.39e-5 1.37e-5 1.57e-5 1.22e-5 2.11e-5
err(ν̂) 5.53 5.81 6.28 6.41 9.06

err(λ̂) 2.65e-2 2.04e-2 1.19e-2 5.97e-3 3.66e-3

Table 2: Average error on the model parameters, n0 = 2e3 extreme points

λk = 1. λk = 0.75 λk = 0.5 λk = 0.25 λk = 0.1
err(ρ̂) 9.98e-6 1.12e-5 1.06e-5 1.62e-5 1.64e-5
err(ν̂) 3.23 4.13 4.08 4.29 5.05

err(λ̂) 1.62e-2 1.2e-2 8.11e-3 4.28e-3 3.11e-3

The performance in terms of cluster identification is measured as follows:
for each point vi, the true label yi ∈ {1, . . . ,K + d1} is compared with the
label obtained via assignment to the highest probable component, that is ŷi =
arg maxk∈{1, ..., K+d1} γi,k. Table 3 shows the average number of labeling er-
rors for different values of n0 and λk. Figure 2 illustrates the relevance of the

Table 3: Average number of labeling errors

λk = 1. λk = 0.75 λk = 0.5 λk = 0.25 λk = 0.1
n0 = 1e3 0. 0. 0. 0.6 264.4
n0 = 2e3 0. 0. 0.4 1.8 537.8

proposed approach regarding anomaly visualization. A test set of size 100 con-
sisting of extreme data is simulated as above, and the corresponding matrix γ̂
is computed according to (17) with θ taken as the output of the training step
(i.e. Algorithm 4 run with the training dataset of n0 = 2e3 points). Finally
an adjacency matrix wθ̂(vi,vj) is obtained as detailed in Section 5, on which
we apply spectral clustering in order to group the points according to the sim-
ilarities measured by w. Graph visualization of w is next performed using the
python package ’Networkx’ Hagber et al. (2008), that provides a spring layout of
the graph according to the Früchtermen-Reingold algorithm, see Früchterman
and Reingold (1991). A hard thresholding is applied to the edges in w in or-
der to improve readability: edges (i, j) such that wθ̂(vi,vj) < ε with ε a small
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threshold are removed. Each cluster output by the spectral clustering method
is identified with a specific color.
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Figure 2: Spectral clustering visualization of a synthetic anomaly test data of
size 100 with d = 20 and |M| = 12.
Each point is represented as a numbered node. The numbers indicate the true
labels, while the colors correspond to the clusters produced by the spectral
clustering method. The spatial arrangement of the nodes is obtained by the
Früchtermen-Reingold algorithm.

6.2 Flights Clustering and Visualization

The methodology proposed is currently tested by Airbus to assist in building
health indicators for condition based maintenance. Health indicators are used
for assessing the current state of some system and also for forecasting its future
states and possible degradation (e.g. bleed, power systems, engine, APU, . . . ).
Airlines can be then informed that some systems should be maintained, so as
to avoid any operational procedure at a given time horizon susceptible to cause
e.g. delays, operational interruptions, etc . . . . The construction of a health
indicator can be basically summarized as follows:

1. Collect health and usage data from various aircrafts (generally one has to
consider similar ones).

2. Collect some operational events happening on these aircrafts due to some
aircraft system errors (e.g. operational interruption, delays)

3. Identify anomalies in the health and usage data.

4. Identify some dependencies between health and usage data anomalies and
operational events (by means of statistical hypothesis testing but also
thanks to human expertise).

5. As soon as some dependencies are well identified, a health indicator is
built.
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The main barrier is the identification and the understanding of the anomalies.
Different operational events are often recorded, corresponding to the degrada-
tion of different systems. Usually, a first stage of anomaly detection is per-
formed, followed by a clustering of the anomalies listed for interpretation pur-
pose. The major advantage of the approach proposed in this paper is that it
directly provides a similarity measure between the anomalies. This strategy is
illustrated by Fig. 3. The proposed method was applied on a dataset of 18553
flights, each of which is characterized by 82 parameters. In order to differenti-
ate between anomalies corresponding to unusually large and small values, each
feature is duplicated and each copy of a given feature is defined as the positive
(resp. negative) value of the parameter above (resp. below) its mean value.
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Figure 3: Spectral clustering visualization of flights anomalies with agglomer-
ated nodes.
The agglomerated visualization is obtained via spectral clustering: each node
represents a cluster. Levels of blue show the intern connectivity between the
original nodes so that darker clusters have strongly connected elements. The
size of each node is proportional to the number of points forming the cluster.

Fig. 3 and Fig. 4 display the clustering of 300 ’extremal’ flights into 18
groups, showing on the one hand the output of the spectral clustering applied
to the similarity graph wθ̂ and on the other hand the underlying graph obtained
with the same procedure as in Fig. 2.

6.3 A Real World Data Experiment with the Ground Truth

The shuttle dataset is available in the UCI repository, see Dheeru and Karra Taniski-
dou (2017) (training and test datasets are merged here), 9 numerical attributes
and 7 classes are observed. Class 1 representing more than 80% of the dataset,
since our goal is to cluster rare and extreme events, instances from all classes
but 1 are analyzed, leading to a sample size equal to 12414. The number of
extreme points considered is denoted by n0 here. We compare our approach to
the K-means algorithm and the spectral clustering algorithm as implemented
in Pedregosa et al. (2011). The number of clusters that we fix in advance to
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Figure 4: Spectral clustering visualization of flights anomalies.
The number of each node is the (anonymized) flight identification number. The
nodes colors and the spatial arrangement are obtained similarly to Fig. 2.

run each of these algorithms is denoted by ncluster. The performance of each
approach is evaluated by computing the purity score:

purity =
1

n0

ncluster∑
i=1

max
c∈C

ni,c,

where ni,c is the number of elements of class c in the cluster i. As shown by Table
4, the purity score produced by the anomaly clustering technique promoted in
this paper is always equal to or higher than those obtained by means of the
other algorithms.

Table 4: Purity score - Comparisons with standard approaches for different
extreme sample sizes.

n0 = 500 n0 = 400 n0 = 300 n0 = 200 n0 = 100
Dirichlet mixture 0.8 0.82 0.82 0.84 0.85
Kmeans 0.72 0.73 0.75 0.78 0.8
Spectral clustering 0.78 0.77 0.82 0.81 0.8

7 Conclusion

Because extreme values (viewed as anomalies here) cannot be summarized by
simple meaningful summary statistics such as local means or modes/centroids,
clustering and dimensionality reduction techniques for such abnormal observa-
tions must be of very different nature than those developed for analyzing data
lying in high probability regions. This paper is a first attempt to design a
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methodology fully dedicated to the clustering and visualization of anomalies,
by means of a statistical mixture model for multivariate extremes that can be
interpreted as a noisy version of the angular measure, which distribution on
the unit sphere exhaustively describes the limit dependence structure of the
extremes. Mixture component are identified here with specific sub-simplices
forming the support of the angular measure. Considering synthetic and real
datasets, we also provide empirical evidence of the usefulness of (graph-based)
techniques that can be straightforwardly implemented from the framework we
developed.
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Goix, N., Sabourin, A., and Clémençon, S. (2017). Sparse representation of mul-
tivariate extremes with applications to anomaly detection. J. Mult. Analysis,
161:12–31.
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