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Abstract—With the massive deployment of distributed energy
resources, there has been an increase in the number of end
consumers that own photovoltaic panels and storage systems. The
optimal use of such storage when facing Time of Use (ToU) prices is
directly related to the quality of the load and generation forecasts
as well as the algorithm that controls the battery. The sensitivity
of such control to different forecast techniques is studied in this
paper. It is shown that good and bad forecasts can result in losses in,
particularly bad days. Nevertheless, it is observed that performing
Model Predictive Control (MPC) with a simple forecast that is
representative of the pasts can be profitable under different price
and battery scenarios. We observe that performing MPC at a
faster sampling time with a receding optimization horizon makes
arbitrage less sensitive to uncertainties in forecasting. We use real
data from Pecan Street and ToU price levels with different buying
and selling price for the numerical experiments.

Index Terms—Sensitivity, Arbitrage, Smart Grids, Battery, Load
Forecast, Model Predictive Control

I. INTRODUCTION

With new technological advances and an increase in Dis-
tributed Energy Resources (DER), exploiting end customer’s
flexibility becomes a feasible and important task. A major policy
change in this direction was allowing end customers to sell their
energy surplus and inject it to the grid.

In the face of such changes, a model that has grown in
popularity is that of a household with a photovoltaic panel,
a battery (that can be shared between neighbours [1]) and
possibly an electric vehicle (EV) [2], [3]. The model requires
an algorithm to operate the battery in the most efficient way
possible. This usually means maximizing self-consumption.

The above model is similar to a pure arbitrage problem (where
the profits depend on the fluctuations of the market’s price)
with two differences. First, the household has an inflexible
load that has to be satisfied at all moments. Second, residential
households are rarely faced with real time prices. Moreover, the
types of tariffs faced by these customers consist, most of the
time, of a selling price that is lower than the buying price at
all moments (that is the case for the Parisian tariff for buying
electricity, heures creuses, which is always greater than the
selling price).

This setting, in which an end customer owns a battery and
faces a Time of Use (ToU) tariff has been studied in [4],
were they use Model Predictive Control (MPC) paired with a
persistence forecast to control the battery. The same setting was
used in [5], but the Reinforcement Learning technique used by
the authors requires only a forecast for the next time slot, which
they model as the true value plus a Gaussian noise. Variations
of the problem when price changes are dynamic have already
been studied [6]–[9].

If the household is subject to a Time of Use, the objective
of arbitrage is to shift the consumption from the expensive
period into the low price one [10]. As in the arbitrage model,
stochasticity might prevent from optimally utilizing the battery.
While in the pure arbitrage case the uncertainties are in the
prices, for households they originate from renewable generation
and consumption. This is an important point because unlike
market price prediction which has received a lot of attention
from many disciplines or forecasting the aggregation of several
loads [11]–[15]; forecasting the load of a single household
is a difficult problem [16], [17]. Not only it is hard, but
also expensive: unlike a market forecast that can be used by
many, the forecast of a residential household has to be done
independently for each house. Nevertheless, the literature in
forecast of residential household is vast, see for example [18]–
[20].

Sensitivity analysis for storage systems when the variability
comes from the price (real time market prices) but ignore the
load have been studied thoroughly: [21]–[24]. Authors in [25],
include a forecast of the load in addition to prices, but do not
consider its accuracy in the overall cost during their analysis,
they mostly focus on the length of the forecast horizon and
the price forecasts. Furthermore, it has already been shown that
if the price of buying and selling are the same, then the load
variation does not affect at all the operation of a battery [26].
For cases where selling price is not equal to buying price, the
storage decisions are governed by price and load variations.

Studies regarding sensitivity in the operation of a battery with
respect to its different characteristics have been carried in the
past. In [27], the authors perform a sensitivity analysis on the
profitability of PV-storage systems for households but do not
consider the impact of forecasts, which is the main goal in978-1-5386-8099-5/19/$31.00 ©2019 IEEE



this work. A sensitivity analysis in the battery characteristics
together with the evaluation of different optimization techniques
to solve the problem has also been studied in [28]. In this
work we consider energy storage arbitrage under ToU price
and Feed in Tariff for excess production. Under such a case,
storage operation is affected by load variations. This work aims
to answer how important is the forecast of the load when the
tariff is a Time of Use. We use data from Pecan Street, real
ToU prices and forecast of varying degree of precision in order
to obtain an estimate of the importance of such forecasts. We
provide important insight on the relationship of the predictions
and battery usage that will help future practitioners decide the
accuracy of the model they are willing to work with.

The rest of the paper is organized as follows: in Section II the
mathematical model of the problem is formulated. Section III
describes the experiment setup which includes the forecasting
techniques, the evaluation metrics and the price structure used.
Numerical results with the appropriate discussion are presented
in Section IV. Finally, Section V includes closing remarks.

II. MODEL DESCRIPTION

This study focuses on households that own a battery. Such
battery will be modeled by the difference equation (1) in discrete
time:

bt+1 = bt + xt, (1)

where bi is the State of Charge (SoC) of the battery at time i
and b0, the initial SoC, is given. In Equation (1), xt ∈ X (b)
denotes the energy charging (positive) or discharging (negative)
the battery. The set X (b) of feasible actions depends on the SoC
and is defined in Equation (2) where δmax > 0 and δmin < 0
denote the maximum charging and discharging rate (in power),
h is the length of each time interval and bmax and bmin are the
maximum and minimum SoC of the battery.

X (b) = [max{δminh, bmin − b},min{δmaxh, bmax − b}] (2)

Because we consider efficiency losses, the actual energy
required to charge the battery an amount xt is xt

ηc
(ηc ∈ (0, 1])

while the energy seen from outside the battery when it dis-
charges xt is xtηd (ηd ∈ (0, 1]). In what follows, we will denote
the energy seen from the outside of the battery st.

Each time slot t, consumers are faced with a buying price pbt
and a selling price pst . The inflexible load of the consumer at
time t is denoted zt (a positive value represents consumption
while a negative value represents surplus of generation).

For a given and finite time horizon T , the consumer is
interested in solving the optimization problem given as

P ) minimize
x0, . . . , xT−1

f(x) =

T−1∑
i=0

pbi [si + zi]
+ − psi [si + zi]

−

(3a)
subject to

bj+1 = bj + xj j = 0, . . . , T − 1, (3b)
xj ∈ X (bj) j = 0, . . . , T − 1 (3c)

where [·]+ = max{·, 0} and [·]− = max{−·, 0}.

Problem P) was studied in [26], [29] were the authors proved
that the optimal policy has a threshold structure and propose an
algorithm to solve the optimization problem efficiently.

The solution of the optimization problems depends on the
battery characteristics, the price of electricity (both of which are
known) and on the electricity load profile z. Denote x∗ = x∗(z)
the optimal solution of the optimization problem when the load
profile z is used as input and f∗ = f(x∗(z)) (f is the electricity
cost incurred by a household in a day). If instead of the original
profile z only an approximation of it is available (ẑ), we seek
to understand how x∗ and x̂ = x∗(ẑ) are related, as well as f∗

and f̂ = f∗(x∗(ẑ)).

A. Model Predictive Control

A natural idea in this kind of iterative problems where
information becomes available as time goes by, is to use a
receding horizon and solve the problem iteratively, as new
information arrives. In the next sections we will make use
of Model Predictive Control (MPC). Here we briefly describe
some of the conventions used. Let j ∈ {0, 1, . . . , T − 1} index
the time slots of a given day. For j = 0, problem P) is
solved using [z0 ẑ1:T−1] as the load profile (where [ ] denotes
the concatenation of the two vectors). We denote the optimal
solution x0∗. In general, at timeslot j, problem P) is solved
using [z0:j ẑj+1:T−1] as the load profile and also imposing that
the first j coordinates of x∗j are the decisions already taken,
i.e., x∗j0:j−1 = x∗j−10:j−1. We refer to this as MPC(1).

In this work, we also consider MPC with updates that can
be made only at time steps j ∈ {0, d, 2d, . . . , T − d}, where
d is a divisor of T . We will denote this version of MPC with
decreased sampling time as MPC(d).

Because we will sometimes need the error of the forecast used
while doing MPC(X), we will adopt the following convention:
the error associated with MPC(X) is the weighted average of all
the errors of the forecasts used, where each weight corresponds
to the number of decisions taken with it.

III. EXPERIMENT SETUP

In this section we will describe the experiment design and the
parameters used. This involves the tariff structures, the battery
parameters, the consumption profiles, the forecasting techniques
and the algorithms to solve the minimization problem. When-
ever it is possible, we try to use real data as to get ”practical”
results.

To begin with, the Parisian two-period ToU heures creuses
was used. During the cheap period heures creuses (hours 23:00
to 7:00), the price of energy is 12.3c/KWh and during the
expensive period heures pleines (hours 7:00 to 23:00) the price
is 15.8c/KWh. Moreover, photovolatic energy can be sold back
to the grid at the tarif rachat or Feed in Tariff (FIT), which as of
March 2019 is 10c/KWh. In order to understand how different
tariffs affect the profitability of arbitrage we considered four
additional tariffs summarized in Table I, based on the Parisian
ToU. In all cases, the low price period is from 23:00 to 7:00.

The battery parameters are modeled after Tesla’s Powerwall
2 [30], arguably the most well known storage product in the
market in the Spring of 2019. The parameters of the battery are



TABLE I
TARIFFS USED IN THE EXPERIMENT

Name Price Low Price High Selling Price (FIT)
P1 12.3 15.8 10
P2 12.3 15.8 5
P3 12.3 15.8 1
P4 12.3 20 10
P5 12.3 20 5

described in Table II. It has been shown that the performance of
a battery doing arbitrage with real time prices depends on the
speed of charging and discharging with respect to battery charge
capacity [31]. To take this phenomenon into account, we also
used a modified versions of the Powewall 2 with Bmax = 25
kWh and δmax = −δmin = 100 kW. We will refer to this new
battery as Fastbat.

TABLE II
POWERWALL PARAMETERS

δmax δmin bmax bmin ηc ηd
5 kW -5 kW 13.5 kWh 0 0.95 0.95

For the user profiles, data was obtained from the PecanStreet
project [32]. Data from two users: one with solar generation
(id 5403) and another one without it (id 821) was used.
The granularity of the data used was 15 minutes and for the
experiments, only weekdays from July 2015 were considered
(all weekends were removed from the dataset). In what follows,
when referring to a previous day, we mean the previous day in
the dataset, i.e, the previous day of Monday is Friday.

To run the experiments we solved problem P) using Model
Predictive Control with 4 different sampling times: every
15 minutes (MPC(1)), every hour (MPC(4)), every 12 hours
(MPC(48)) and only once every day (MPC(96)). We expected
to see a natural trade-off between accuracy and increased
computational time.

To generate forecasts, the four following methods were used:
1) ẑ(d) = z(d− 1)
2) ẑ(d) = z(d) + w; z, w ∈ RT ; wi ∼ N (0,∆) i.i.d
3) ẑ(d) = 1

|S|
∑
j∈S z(s), S = {j : j ≡ d mod 7, j < d}

4) ẑ(d) = SARIMA(2, 1, 1)(0, 1, 1, 96)[z(d − 1), . . . , z(d −
4)]

where the notation z(d) means the real profile of the day d 1 and
∆ is exactly half of the the 3rd quantile of the user consumption
(in absolute value). Method 1 is the standard persistence forecast
or also known as day ahead. It assumes that the profile is going
to be exactly as the real profile of the day before. Method 2
(Gauss) corresponds to adding additive noise equally distributed
and independent to all coordinates. We emphasize that we do not
consider this to be a realistic forecast (as it requires knowledge
of the future), but it acts as a placeholder for more accurate
forecasts. Method 3 (AvgPast), consists on an average of all past
days in the dataset that fall in the same weekday, i.e, the average
of all consumption on the past Mondays, Tuesdays, etc. Finally,
for the last method we trained a Seasonal ARIMA (SARIMA)
model. Each time a forecast had to be issued, the previous four

1We enumerated all days in the dataset starting form 0.

days in the dataset were used to fit the parameters of the model
and an out-of-sample forecast was produced.

To evaluate the quality of the forecasts, we used two meth-
ods usually encountered in the literature: the Mean Absolute
Difference / Mean (MAD/MEAN) ratio, an adjusted version
of the Mean Absolute Percentage Error (MAPE) that is useful
when the actual values might be zero or close to it (defined
in Equation 4, [33]) and the Normalized Root Mean Squared
Error (NRMSE) (defined in Equation 5), where z denotes the
average of the coordinates of zT−k+1:T . The advantage of using
the normalised version of RMSE is that it is comparable among
datasets.

MAD/MEAN(ẑT−k+1:T , zT−k+1:T ) =

100%

k

T∑
i=T−k+1

∣∣ ẑi − zi
z

∣∣ (4)

NRMSE(ẑT−k+1:T , zT−k+1:T ) =

√√√√1

k

T∑
i=T−k+1

(
ẑi − zi
z

)2

(5)
The NRMSE of the forecasts used in the dataset is illustrated

in Figure 1. For each of the 22 days considered in the exper-
iment, we include 16 forecasts, one for each combination of
forecasting technique and sampling time. To obtain the forecast
error for a sampling time lower than 96, the weighted average
as described in Section II.A was used.
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Fig. 1. NRMSE for the forecasts used in the study

As a benchmark, we compare the results obtained with [16],
where the authors show that their forecasts have a NRMSE of
approximately 2.

IV. NUMERICAL RESULTS

In this section the numerical results obtained are presented.
First, we will look at the opportunity of arbitrage with perfect
information. Second, we will show how the different sampling
and forecasting techniques affect the earnings obtained as well
as the optimal battery actions. Third, the relationship between
the forecast error metrics and the arbitrage gains is studied.
Finally, a profitability study is included.

A. Arbitrage opportunity with perfect information

The arbitrage opportunity with perfect information (AO) can
be defined as the difference in electricity cost in a single day
between a scenario without battery (CwB) and a scenario with a



battery and perfect information (CBPI). This metric will enable
us to better understand the results obtained by performing arbi-
trage. Moreover, this metric is sufficient to determine whether
the investment in a battery is profitable. As the AO is the
optimal case, if a particular storage is not profitable under these
circumstances, it will not be at all.
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Fig. 2. AO using a Powerwall 2 for households: 5403 on top, 821 below.

Figure 2 shows the AO for the two household (5403 with
generation on top and 821 without generation on the bottom).
For the household with id 5403, it can be seen that the AO
increases as the selling price decreases (P1 → P2 → P3).
This effect can be explained as follows: when the FIT is high
enough, the advantage between storing for later consumption
and selling to the grid and re-buying later is less compared to
the scenario when the selling price is very low. On the contrary,
for a consumer without generation, a high selling price helps
mitigate forecast errors: if energy was bought but it was not
needed, it can be resold again for a small loss.
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Fig. 3. AO using Fastbat for households: house id 5403 on top, 821 below.

Figure 3 shows the equivalent results when Fastbat is used
instead. It can readily be seen that while the overall gains in-
crease, the trend persists. Also, the difference between scenarios
P4 and P5 with the other three is easily explained. In those cases,
the gap between low buying price and the high buying price is
bigger and so the AO is bigger as well. Recall that for a ToU
tariff, arbitrage is mostly equivalent to switching consumption
from the expensive period to the cheap one.
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Fig. 4. AOF for house id 5403 for some days under tariff P1. Each row
corresponds to a different forecast technique. From top to bottom: persistence,
Gaussian, AvgPast and SARIMA.
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Fig. 5. AOF for house id 821 during some days under tariff P1. Each row
corresponds to a different forecast technique. From top to bottom: Persistence,
Gaussian, AvgPast and SARIMA.

B. Arbitrage opportunity without perfect information

Having assessed the potential of arbitrage for the different
prices and households, we turn our attention on how those
benefits are affected when forecasts are used instead. For house-
hold 5403, these results while using a Powerwall 2 are shown
in Figure 4. In it, each bar represents the cost incurred using
a forecast (CF) minus the cost of having perfect information
(CBPI) while the black line depicts the cost of not having a
battery (CwB) minus the CBPI. In this way, all results between
the x-axis and the black curve imply that profit was obtained
when using the forecast while bars above the black line stand
for days in which doing nothing would have been a better
choice. As it can be seen in Figure 4, July 24 th is a particularly
bad day. Only with a very accurate forecast losses could have
been avoided.

In Figure 4, each subplot shows the result for a different
forecasting technique. For top to bottom: persistence, Gaussian,
AvgPast and SARIMA. Moreover, each color stands for the
frequency of sampling used for running MPC. The blue bars
(1) are standard MPC taking actions every timeslot while the
purple bars (96) are cases when all actions were decided at
the beginning of the day. As it was to be expected, the most



frequent the sampling time is while running MPC, the lower the
incurred cost is. There is a natural trade-off between CPU usage
and accuracy. It can be observed that using a more frequent
sampling is more important that using a good forecast.

In contrast with household 5403 who is a producer, household
821 can operate closer to optimality using less accurate fore-
casts. This is evidenced in Figure 5 where the same information
as in Figure 4 is plotted for household 821. MPC(1) performs
remarkably well.

Turning our attention to the optimal actions, for household
5403 and the forecasting technique AvgPast, Figures 6 and 7
plot the different usages of the battery for days 1st and 24th of
July respectively.
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Fig. 6. Differences in optimal battery operation during the 1st of July using
the AvgPast forecast for household 5403

In Figure 6, only MPC(96) differs strongly from the real
data at the beginning of the day. During July 1st all sampling
frequencies were profitable using the AvgPast forecast. In Figure
7 however, it can be seen that all techniques made the wrong
decision at the beginning and near the end of the day, resulting
in an overall loss. This can happen if the day in question is very
different than the previous ones.
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Fig. 7. Differences in optimal battery operation during the 24th of July using
the AvgPast forecast for household 5403

C. Sensitivity of the gains to NRMSE and MAD/MEAN
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Fig. 8. Average savings as a function of the forecasting error metrics.

In a sensitivity analysis, it is natural to consider how does the
output vary in response to the input. In Figure 8, we investigate
the arbitrage gains as a function of the precision of the forecast.
In the x-axis the two error metrics are plotted: MAD/MEAN in
the left and NRMSE in the right. The y-axis represents the linear
mapping defined as

G(ẑ) =
f̂ − f∗

CwB(z)− f∗
(6)

It is 0, when the forecast performs as having perfect in-
formation, 1 when it performs as not having a battery and
values greater than 1 are worst than doing nothing. Observe that
although there is not a clear correlation between both axes, it is
possible to find a threshold (vertical bar) for which all forecast
with less error than the threshold (to the left of it) perform better
than not having a battery (below the horizontal line).
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Fig. 9. Savings using the Powerwall 2 battery for household 5403 and price
scenario P1

D. Profitability analysis for Powerwall 2

We conclude the analysis with the evaluation of the average
performance of each forecasting technique and each sampling
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Fig. 10. Savings using the Fastbat for household 5403 and price scenario P1

TABLE III
NUMBER OF YEARS THAT IT WOULD TAKE HOUSEHOLD 5403 TO RECOVER

ITS INVESTMENT IN A POWERWALL 2 FOR THE DIFFERENT PRICE
SCENARIOS AND FORECASTING TECHNIQUES

Persistance Gaussian AvgPast SARIMA Perfect
P1 89.0 58.0 83.0 94.0 54.0
P2 51.0 31.0 45.0 63.0 29.0
P3 39.0 23.0 33.0 49.0 21.0
P4 26.0 19.0 27.0 26.0 18.0
P5 21.0 15.0 21.0 24.0 14.0

frequency using MPC for household 5403. Figure 9 and 10
depict the savings obtained by having a battery with respect
to not having one in a given day for Powerwall 2 and Fastbat,
respectively. As expected, gains decrease with less sampling,
but interestingly for a simple forecast as AvgPast, it would be
possible to use a less coarse sampling time and still obtain
profits. Regarding both batteries, it can be seen that while
SARIMA and the persistence forecast are not profitable with the
Powerwall 2, they are with the Fastbat. Finally Table III shows
the number of years it would take consumer 5403 using MPC(1),
for the different forecasting techniques and price scenarios, to
recover the investment in a Powerwall 22. Unfortunately, it does
not seem likely that under any scenario the investment will be
profitable. With perfect information and the best price structure
(P5) it will take 14 years to get the Return of Investment while
with a good but imperfect forecast the time to get the ROI
increases to 15 or 21 years.

E. Extended Dataset

An extended dataset was considered consisting
in the 15-minute energy usage of users with ids:
26, 59, 86, 93, 101, 114, 171, 186, 821, 5403, 5450, 3204
between the 1st February 2019 and the 31th May 2019.
The first three months were used to fit the AvgPast forecast,
but only the month of May was used to run the experiments.
Given SARIMA’s bad performance in Figures 9 & 10, it was
excluded from the analysis. In the following experiments,
weekends were not removed.

2The cost of a Powerwall 2 is 7000 euros in France.
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Fig. 11. Arbitrage opportunity for the extended dataset

Figure 11 depicts the value of the linear map defined in
Equation (6), for each sampling frequency of MPC and each
of the forecasting techniques used. Recall that an y-value of
0 is equivalent to having perfect information, a value of 1 is
equivalent to not having a battery and for values greater than
1, the performance is worst than doing nothing. Qualitatively,
results preserve the structure observed before: for all the fore-
casting techniques, MPC(1) (the highest sampling) is enough to
guarantee a profit for the battery. Moreover, with less sampling,
AvgPast performs better than Persistence.

V. CONCLUSIONS

Consumers facing a Time of Use can perform arbitrage by
shifting their consumption in the expensive period to the cheap
period. For a consumer without generation, a higher selling price
will mitigate unnecessary energy bought because of a forecast
error. On the contrary, for a consumer with generation, a high
selling price will translate in large lost opportunities whenever
energy is not sold due to a forecasting error. Even then, as prices
do not spike, the margins are low. Such low margins imply
that for some days, even with very accurate forecast it will be
very hard not to lose money. That is the case of household
5403 during the 24th of July. It is found that the sampling
time greatly impacts the profit and only very good forecasts
can avoid losses with a sampling frequency greater than one. In
spite of such negative results, on average, running MPC(1) with
the AvgPast forecast seems to be sufficient to guarantee profit.
These conclusions were validated with our extended dataset. We
conclude that forecasting does have a big impact on the profits
obtained facing a Time of Use. However, since such profits are
low, the gap between the AvgPast and very accurate Gaussian
approximation of forecast do not yield a very big difference.
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