
HAL Id: hal-02163114
https://telecom-paris.hal.science/hal-02163114v1

Submitted on 24 Jun 2019 (v1), last revised 14 Oct 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensitivity to forecast errors in energy storage arbitrage
for residential consumers

Diego Kiedanski, Umar Hashmi, Ana Bušić, Daniel Kofman

To cite this version:
Diego Kiedanski, Umar Hashmi, Ana Bušić, Daniel Kofman. Sensitivity to forecast errors in energy
storage arbitrage for residential consumers. SmartGridComm 2019, Oct 2019, Beijing, China. �hal-
02163114v1�

https://telecom-paris.hal.science/hal-02163114v1
https://hal.archives-ouvertes.fr


Sensitivity to forecast errors in energy storage
arbitrage for residential consumers

Diego Kiedanski∗, Md Umar Hashmi†, Ana Bušić†, Daniel Kofman∗
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Abstract—With the massive deployment of distributed energy
resources, there has been an increase in the number of end
consumers that own photovoltaic panels and storage systems.
The optimal use of such storage when facing Time of Use (ToU)
prices is directly related to the quality of the load and generation
forecasts as well as the algorithm that controls the battery. The
sensitivity of such control to different forecasts techniques is
studied in this paper. It is shown that good and bad forecasts
can result in losses in particularly bad days. Nevertheless, it is
observed that performing Model Predictive Control with a simple
forecast that is representative of the pasts can be profitable under
different price and battery scenarios. We use real data from
Pecan Street and ToU price levels with different buying and
selling price for the numerical experiments.

Index Terms—Sensitivity, Arbitrage, Smart Grids, Battery,
Load forecast

I. INTRODUCTION

With new technological advances and an increase in Dis-
tributed Energy Resources (DER), exploiting end customer’s
flexibility becomes a feasible and important task. A major
policy change in this direction was allowing end customers
to sell their energy surplus and inject it to the grid.

In the face of such changes, a model that has grown in
popularity is that of a household with a photovoltaic panel,
a battery and possibly an electric vehicle (EV). The model
requires an algorithm to operate the battery in the most
efficient way possible. This usually means maximizing auto
consumption.

The above model is similar to a pure arbitrage problem with
two differences. First, the household has an inflexible load
that has to be satisfied at all moments. Second, residential
households are rarely faced with real time prices. Moreover,
the types of tariffs faced by this customers consist, most of
the time, of a selling price that is lower than the buying price
at all moments (that is the case for the Parisian tariff heures
creuses). This implies that arbitrage in the traditional sense is
not possible.

This setting, in which an end customer owns a battery and
faces a Time of Use (ToU) tariff has been studied in [1],
were they use Model Predictive Control (MPC) paired with
a persistence forecast to control the battery. The same setting

was used in [2], but the Reinforcement Learning technique
used by the authors requires only a forecast for the next time
slot, which they model as the true value plus a Gaussian noise.

If the household is subject to a Time of Use, the objective of
arbitrage is to shift the consumption from the expensive period
into the low price one [3]. As in the pure arbitrage model,
stochasticity might prevent them from optimally utilizing of
the battery. While in the pure arbitrage case the uncertainties
are in the prices, for households they originate from renewable
generation and consumption (load is external to the algorithm
using the battery). This is an important point because unlike
market price prediction which has received a lot of attention
from many disciplines or forecasting the aggregation of several
loads [4], [5], [6], [7]; forecasting the load of a single
household is a difficult problem [8], [9]. Not only it is hard,
but also expensive: unlike a market forecast that can be used
by many, the forecast of a residential household has to be done
independently for each house.

Sensitivity analysis for storage systems when the variability
comes from the price (real time market prices) but ignore the
load have been studied thoroughly: [10], [11]. Authors in [12],
include a forecast of the load in addition to prices, but do not
take it into account in their discussion.

Studies regarding sensitivity in the operation of a battery
with respect to its different characteristics have been carried
in the past. In [13], the authors perform a sensitivity analysis
on the profitability of PV-storage systems for households but
do not consider the impact of forecasts, which is the main
goal in this work. A sensitivity analysis in the battery charac-
teristics together with the evaluation of different optimization
techniques to solve the problem has also been studied in [14].
Furthermore, it has already been shown that if the price of
buying and selling are the same, then the load does not affect at
all the operation of a battery [15]. For cases where selling price
is not equal to buying price, the storage decisions are governed
by price and load variations. In this work we consider energy
storage arbitrage under ToU price and Feed in Tariff for excess
production. Under such a case storage operation is affected by
load variations. This work aims to answer how important is
the forecast of the load when the tariff is a Time of Use. We



use data from Pecan Street, real ToU prices and forecast of
varying degree of precision in order to obtain an estimate of
the importance of such forecasts. We provide important insight
on the relationship of the predictions and battery usage that
will help future practitioners decide the accuracy of the model
they are willing to work with.

The rest of the paper is organized as follows: in Section II
the mathematical model of the problem is formulated. Section
III describes the methodology and problem setup used for our
analysis. Numerical results with the appropriate discussion are
presented in Section IV. Finally, Section V includes closing
remarks.

II. MODEL DESCRIPTION

This study focuses on households that own a battery. Such
battery will be modeled by the difference equation (1) in
discrete time:

bt+1 = bt + xt, (1)

where bi is the State of Charge (SoC) of the battery at time
i and B0, the initial SoC, is given. In Equation (1), xt ∈
X (b) denotes the energy charging (positive) or discharging
(negative) the battery. The set X (b) of feasible actions depends
on the SoC and is defined in Equation (2) where δmax and
δmin denote the maximum charging and discharging rate (in
power), h is the length of each time interval and bmax and
bmin are the maximum and minimum SoC of the battery.

X (b) = [max{δminh, bmin − b},min{δmaxh, bmax − b}]
(2)

Because we consider efficiency losses, the actual energy
required to charge the battery an amount xt is xt

ηc
(ηc ∈ (0, 1])

while the energy seen from outside the battery when it
discharges xt is xtηd (ηd ∈ (0, 1]). In what follows, we will
denote the energy seen from the outside of the battery st.

Each time slot t, consumers are faced with a buying price pbt
and a selling price pst . The inflexible load of the consumer at
time t is denoted zt (a positive value represents consumption
while a negative value represents surplus of generation).

For a given and finite time horizon T , the consumer is
interested in solving the optimization problem given as

P ) minimize
x0, . . . , xT−1

f(x) =

T−1∑
i=0

pbi [si + zi]
+ − psi [si + zi]

−

(3a)
subject to

bj+1 = bj + xj j = 0, . . . , T − 1, (3b)
xj ∈ X (bj) j = 0, . . . , T − 1 (3c)

where [·]+ = max{·, 0} and [·]− = max{−·, 0}.
Problem P) was studied in [15] were the authors proved

that the optimal policy has a threshold structure and propose
an algorithm to solve the optimization problem efficiently.

The solution of the optimization problems depends on the
battery characteristics, the price of electricity (both of which
are known) and on the electricity load profile z. Denote x∗ =
x∗(z) the optimal solution of the optimization problem when

the load profile z is used as input and f∗ = f(x∗(z)) (f is the
electricity cost incurred by a household in a day). If instead of
the original profile z there is access only to an approximation
of it, ẑ, we seek to understand how x∗ and x̂ = x∗(ẑ) are
related, as well as f∗ and f̂ = f∗(x∗(ẑ)).

A. Model Predictive Control

A natural idea in this kind of iterative problems where
information becomes available as time goes by, is to use a
receding horizon and solve the problem iteratively, as new
information arrives. In the next sections we will make use of
Model Predictive Control (MPC). Here we briefly describe
some of the conventions used. Let j ∈ {0, 1, . . . , T − 1}
index the time slots of a given day. For j = 0, problem P) is
solved using [z0 ẑ1:T−1] as the load profile (where [] denotes
the concatenation of the two vectors). We denote the optimal
solution x0∗. In general, at timeslot j, problem P) is solved
using [z0:j ẑj+1:T−1] as the load profile and also imposing
that the first j coordinates of x∗j are the decisions already
taken, i.e, x∗j0:j−1 = x∗j−10:j−1. We refere to this as MPC(1).

In this work, we also consider MPC with updates that can
be made only at time steps j ∈ {0, d, 2d, . . . , T−d−1, T−1},
where d is a divisor of T . We will denote this version of MPC
with decreased sampling time as MPC(d).

Because we will sometimes need the error of the forecast
used while doing MPC(X), we will adopt the following
convention: the error associated with MPC(X) is the weighted
average of all the errors of the forecasts used, where each
weight corresponds to the number of decisions taken with it.

III. EXPERIMENT SETUP

In this section we will describe the experiment design
and the paramaters chosen for it. This involves the tariff
structures, the battery paramters, the consumption profiles,
the forecasting techniques and the alogrithms to solve the
minmization problem. Whenever it is possible, we try to use
real data as to get ”practical” results.

To begin with, the Parisian two-period ToU heures creuses
was used. During the cheap period heures creuses (23 to 7),
the price of energy is 12.3c/KWh and during the expensive
period heures pleines (7 to 23) the price is 15.8c/KWh.
Moreover, photovolatic energy can be sold back to the grid
at the tarif rachat or Feed in Tariff (FIT), which as of March
2019 is 10c/KWh. In order to undestand how different tariffs
affect the profitabily of arbitrage we considerd four additional
tariffs, based on the Parisian ToU. Table I summarizes them.
In all of them, the low price period is from 23 to 7.

TABLE I
TARIFFS USED IN THE EXPERIMENT

Name Price Low Price High Selling Price (FIT)
P1 12.3 15.8 10
P2 12.3 15.8 5
P3 12.3 15.8 1
P4 12.3 20 10
P5 12.3 20 5



The battery parameters are modeled after Tesla’s Powerwall
2 [16], arguably the most well known storage product in the
market as of writing this. The parameters of the battery are
described in Table II. It has been shown that the performance
of a battery doing arbitrage with real time prices depends on
the speed of it (the time it takes to charge or discharge) [15]. To
take this phenomenon into account, we also used a modified
versions of the Powewall 2 with Bmax = 25 and δmax =
−δmin = 100. We will refer to this new battery as Fastbat.

TABLE II
POWERWALL PARAMETERS

δmax δmin bmax bmin ηc ηd
5 -5 13.5 0 0.95 0.95

For the user profiles, data was obtained from the PecanStreet
project [17]. Data from two users: one with solar generation
(id 5403) and another one without it (id 821) was used.
The granularity of the data used was 15 minutes and for the
experiments, only weekdays from July 2015 were considered.
That is, all weekends were removed from the dataset. In
what follows, when referring to a previous day, we mean the
previous day in the dataset, i.e, the previous day of Monday
is Friday.

To run the experiments we solved problem P) using Model
Predictive Control with 4 different sampling times: every
15 minutes (MPC(1)), every hour (MPC(4)), every 12 hours
(MPC(48)) and only once every day (MPC(96)). We expected
to see a natural trade-off between accuracy and increased
computational time.

To generate forecasts, the four following methods were
used:

1) ẑ(d) = z(d− 1)
2) ẑ(d) = z(d) + w; z, w ∈ RT ; wi ∼ N (0,∆) i.i.d
3) ẑ(d) = 1

|S|
∑
j∈S z(s), S = {j : j ≡ d mod 7, j < d}

4) ẑ(d) = SARIMA(2, 1, 1)(0, 1, 1, 96)[z(d−1), . . . , z(d−
4)]

where the notation z(d) means the real profile of the day d
1 and ∆ is exactly half of the the 3rd quantile of the user
consumption (in absolute value). Method 1 is the standard
persistence forecast or also known as day ahead. It assumes
that the profile is going to be exactly as the real profile of the
day before. Method 2 (Gauss) corresponds to adding additive
noise equally distributed and independent to all coordinates.
We emphasis that we do not consider this to be a realistic
forecast (as it requires knowledge of the future), but it acts as
a placeholder for more accurate forecasts. Method 3 (AvgPast),
consists on an average of all past days in the dataset that fall
in the same weekday, i.e, the average of all consumption on
the past Mondays, Tuesdays, etc. Finally, for the last method
we trained a Seasonal ARIMA (SARIMA) model. Each time a
forecast had to be issued, the previous four days in the dataset
where used to fit the parameters of the model and an out-of-
sample forecast was produced.

1We enumerated all days in the dataset starting form 0.

To evaluate the quality of the forecasts, we used two
methods usually encountered in the literature: MAPE (defined
in Equation 4) and NRMSE (defined in Equation 5), where z
denotes the average of the coordinates of zT−k+1:T .

MAPE(ẑT−k+1:T , zT−k+1:T ) =
100%

k

T∑
i=T−k+1

∣∣ ẑi − zi
z

∣∣
(4)

NRMSE(ẑT−k+1:T , zT−k+1:T ) =

√√√√1

k

T∑
i=T−k+1

(
ẑi − zi
z

)2

(5)
The NRMSE of the forecasts used in the dataset is illustrated

in Figure 1. For each of the 22 days considered in the
experiment, we include 16 forecasts, one for each combination
of forecasting technique and sampling time. To obtain the
forecast error for a sampling time lower than 96, the weighted
average as described in section II.A was used.
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Fig. 1. NRMSE for the forecasts used in the study

As a benchmark, we compare the results obtained with [8],
where the authors show that their forecasts have a NRMSE of
approximately 2.

IV. RESULTS

In this section the numerical results obtained are presented.
First, we will look at the opportunity of arbitrage with perfect
information. Second, we will show how the different sampling
and forecasting techniques affect the earnings obtained as
well as the optimal battery actions. Thirdly, the relationship
between the forecast error metrics and the arbitrage gains is
studied. Finally, a profitability study is included, as a summary
of our findings.

A. Arbitrage opportunity with perfect information

The arbitrage opportunity with perfect information (AO)
can be defined as the difference in electricity cost in a single
day between a scenario without battery (CwB) and a scenario
with a battery and perfect information (CBPI). This metric
will enable us to better understand the results obtained by
performing arbitrage. What is more, this metric could suffice
to determine whether the investment in a battery is profitable.
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Fig. 2. AO using a Powerwall 2 for households: 5403 on top, 821 below.

As the AO is the optimal case, if a particular storage is not
profitable under these circumstances, it will not be at all.

Figure 2 shows the AO for the two household (5403 with
generation on top and 821 without generation on the bottom).
For the household with id 5403, it can be seen that the AO
increases as the selling price decreases (P1 → P2 → P3).
This effect can be explained as follows: when the FIT is high
enough, the advantage between storing for later consumption
and selling to the grid and re buying later is less compared
to the scenario when the selling price is very low. On the
contrary, for a consumer without generation, a high selling
price helps mitigate forecast errors: if energy was bought but
it was not needed, it can be resold again for a small loss.
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Fig. 3. AO using Fastbat for households: 5403 on top, 821 below.

Figure 3 shows the equivalent results when Fastbat is
used instead. It can readily be seen that while the overall
gains increase, the trend persists. Also, the difference between
scenarios P4 and P5 with the other three is easily explained.
In those cases, the gap between low buying price and the high
buying price is bigger and so the AO is bigger as well. Recall
that for a ToU tariff, arbitrage is mostly equivalent to switching
consumption from the expensive period to the cheap one.

B. Arbitrage opportunity without perfect information
Having assessed the potential of arbitrage for the different

prices and households, we turn our attention on how those
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Fig. 4. AOF for 5403 for some days under tariff P1. Each row corresponds
to a different forecast technique. From top to bottom: persistence, Gaussian,
AvgPast and SARIMA.
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Fig. 5. AOF for 821 during some days under tariff P1. Each row corresponds
to a different forecast technique. From top to bottom: persistance, Gaussian,
avgpast and SARIMA.

benefits are affected when forecasts are used instead. For
household 5403, these results while using a Powerwall 2
are shown in Figure 4. In it, each bar represents the cost
incurred using a forecast (CF) minus the cost of having perfect
information (CBPI) while the black line depicts the cost of not
having a battery (CwB) minus the CBPI. In this way, all results
between the x-axis and the black curve imply that profit was
obtained when using the forecast while bars above the black
line stand for days in which doing nothing would have been
a better choice. As it can be seen in Figure 4, July 24 th is a
particularly bad day. Only with a very accurate forecast losses
could have been avoided.

In Figure 4, each subplot shows the result for a different
forecasting technique. For top to bottom: persistence, Gaus-
sian, AvgPast and SARIMA. Moreover, each color stands for
the frequency of sampling used for running MPC. The blue
bars (1) are standard MPC taking acctions every timeslot while
the purple bars (96) are cases when all actions were decided
at the beginning of the day. As it was to be expected, the
most frequent the sampling time is while running MPC, the
lower the incurred cost is. There is a natural trade-off between



CPU usage and accuracy. It can be observed that using a
more frequent sampling is more important that using a good
forecast.

In contrast with household 5403 who is a producer, house-
hold 821 can operate closer to optimality using less accurate
forecasts. This is evidenced in Figure 5 where the same
information as in Figure 4 is plotted for household 821.
MPC(1) performs remarkably well.

Turning our attention to the optimal actions, for household
5403 and the forecasting technique AvgPast, Figures 6 and 7
plot the different usages of the battery for days 1st and 24th
of July respectively.
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Fig. 6. Differences in optimal battery operation during the 1st of July using
the AvgPast forecast for household 5403

In Figure 6, only MPC(96) differs strongly from the real
data at the beginning of the day. During July 1st all sampling
frequencies were profitable using the AvgPast forecast. In
Figure 7 however, it can be seen that all techniques made
the wrong decision at the beginning and near the end of the
day, resulting in an overall loss. This can happen if the day in
question is very different to the previous ones.
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Fig. 7. Differences in optimal battery operation during the 24th of July using
the AvgPast forecast for household 5403

C. Sensitivity of the gains to NRMSE and MAPE
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Fig. 8. Average savings as a function of the forecasting error metrics.

In a sensitivity analysis, it is natural to consider how does
the output vary in response to the input. In this setting, we are
interested in understanding the arbitrage gains as a function of
the precision of the forecast. Figure 8 provides insight in this
matter. In the x-axis the two error metrics are plotted: MAPE
in the left and NRMSE in the right. The y-axis represents the
linear mapping defined as

G(ẑ) =
f̂ − f∗

CwB(z)− f∗
(6)

It is 0, when the forecast performs as having perfect
information, 1 when it performs as not having a battery and
values greater than 1 are worst than doing nothing. Observe
that although there is not a clear correlation between both axes,
it is possible to find a threshold (vertical bar) for which all
forecast with less error than the threshold (to the left of it)
perform better than not having a battery (below the horizontal
line).

Persistance Gauss AvgPast ARIMA

-30

-20

-10

0

10

20

30

40

50

C
en

ts

MPC(1) MPC(2) MPC(48) MPC(96)

Fig. 9. Savings using the Powerwall 2 battery for household 5403 and price
scenario P1



Persistance Gauss AvgPast ARIMA

-40

-20

0

20

40

60
C

en
ts

MPC(1) MPC(2) MPC(48) MPC(96)

Fig. 10. Savings using the Fastbat for household 5403 and price scenario
P1

TABLE III
NUMBER OF YEARS THAT IT WOULD TAKE HOUSEHOLD 5403 TO

RECOVER ITS INVESTMENT IN A POWERWALL 2 FOR THE DIFFERENT
PRICE SCENARIOS AND FORECASTING TECHNIQUES

Persistance Gaussian AvgPast SARIMA Perfect
P1 89.0 58.0 83.0 94.0 54.0
P2 51.0 31.0 45.0 63.0 29.0
P3 39.0 23.0 33.0 49.0 21.0
P4 26.0 19.0 27.0 26.0 18.0
P5 21.0 15.0 21.0 24.0 14.0

D. Profitability analysis for Powerwall 2

We conclude the analysis with the evaluation of the average
performance of each forecasting technique and each sampling
frequency using MPC for household 5403. Figure 9 and 10
depict the savings obtained by having a battery with respect
to not having one in a given day for the two batteries,
respectively. As expected, gains decrease with less sampling,
but interestingly enough for a simple forecast as AvgPast, it
would be possible to use a less coarse sampling time and still
obtain profits. Regarding both batteries, it can be seen that
while SARIMA and the persistence forecast are not profitable
with the Powerwall 2, they are with the Fastbat. Finally Table
III shows the number of years it would take consumer 5403
using MPC(1), for the different forecasting techniques and
price scenarios, to recover the investment in a Powerwall 22.
Unfortunately, it does not seem likely that under any scenario
the investment will be profitable. With perfect information and
the best price structure (P5) it will take 14 years to get the
Return of Investment while with a good but imperfect forecast
the time increases from 1 to 5 years.

V. CONCLUSIONS

Consumers facing a Time of Use can perform arbitrage
by shifting their consumption in the expensive period to the
cheap period. If it is possible to sell back to the grid, a
consumer with generation will obtain a bigger reward from
a battery if such selling price is low. The contrary ocurrs for

2The cost of a Powerwall 2 is 7000 euros in France.

a consumer without generation. Even then, as prices do not
spike, the margins are low. Such low margins imply that for
some days, even with very accurate forecast it will be very
hard not to lose money. That is the case of household 5403
during the 24th of July. It is found that the sampling time
greatly impacts the profit and only very good forecasts can
avoid losses with a sampling frequency greater than one. In
spite of such negative results, on average, running MPC(1)
with the AvgPast forecast seems to be sufficient to guarantee
profit. We conclude that forecasting does have a big impact
on the profits obtianed facing a Time of Use. However, since
such profits are low, the gap between the AvgPast and very
accurate Gaussian approximation of forecast do not yield a
very big difference.
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