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Abstract—We study the problem of optimal sequential (“as-
you-go”) deployment of wireless relay nodes, as a person walks
along a line of random length (with a known distribution). The
objective is to create an impromptu multihop wireless network
for connecting a packet source to be placed at the end of the line
with a sink node located at the starting point, to operate in the
light traffic regime. In walking from the sink towards the source,
at every step, measurements yield the transmit powers required
to establish links to one or more previously placed nodes. Based
on these measurements, at every step, a decision is made to place
a relay node, the overall system objective being to minimize a
linear combination of the expected sum power (or the expected
maximum power) required to deliver a packet from the source to
the sink node and the expected number of relay nodes deployed.
For each of these two objectives, two different relay selection
strategies are considered: (i) each relay communicates with the
sink via its immediate previous relay, (ii) the communication
path can skip some of the deployed relays. With appropriate
modeling assumptions, we formulate each of these problems as a
Markov decision process (MDP). We provide the optimal policy
structures for all these cases, and provide illustrations of the
policies and their performance, via numerical results, for some
typical parameters.

I. INTRODUCTION

We consider the problem of “as-you-go” deployment of
relay nodes along a line, between a sink node and a source
node (see Figure 1), where the deployment operative starts
from the sink node, places relay nodes along the line, and
places the source node where the line ends. The problem is
motivated by the need for impromptu deployment of wireless
networks by “first responders,” for situation monitoring in
an emergency such as a building fire or a terrorist siege.
Such problems can also arise when deploying wireless sensor
networks in large difficult terrains (such as forests) where it
is difficult to plan a deployment due to the unavailability of
a precise map of the terrain, or when such networks need to
be deployed and redeployed quickly and there is little time in
between to plan, or in situations where the deployment needs
to be stealthy (for example, when deploying sensor networks
for detecting poachers or fugitives in a forest).
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Information Technology, via the Indo-US PC3 project, and the Department of
Science and Technology (DST), via the J.C. Bose Fellowship.
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Fig. 1. A line network with one source, one sink and three relays.

Motivated by the above larger problem, we consider the
problem of as-you-go deployment along a line of unknown
random length, L, whose distribution is known. The transmit
power required to establish a link (of a certain minimum
quality) between any two nodes is modeled by a random
variable capturing the effect of path-loss and shadowing. There
is a cost for placing a relay, and the communication cost of
a deployment is measured as some function of the powers
required to communicate over the links. We consider two
performance measures: the sum-power and the max-power
along the path from the source to the sink, under two different
relay selection strategies: (i) each relay communicates with the
sink via its immediate previous relay, (ii) the communication
path can skip some of the deployed relays. Under certain
assumptions on the distribution of L, and the powers required
at the relays, we formulate each of the sequential placement
problems as a total cost Markov decision process (MDP).

The optimal policies for various MDPs formulated in this
paper turn out to be threshold policies; the decision to place
a relay at a given location involves the power required to
establish a link to one or more previous nodes, and the distance
to one or more previous nodes (depending on the objective and
the relay selection strategy). Our analysis and numerical work
also suggest that allowing the possibility of skipping some of
the deployed relays may result in a reduction in the total cost.

A. Related Work
There has been increasing interest in the research commu-

nity to explore the impromptu relay placement problem in
recent years. Howard et al., in [1], provide heuristic algorithms
for incremental deployment of sensors with the objective of
covering the deployment area. Souryal et al., in [2], address the
problem of impromptu deployment of static wireless networks
with an extensive study of indoor RF link quality variation.
However, there has been little effort to rigorously formulate the
problem in order to derive optimal policies. Recently, Sinha et



al. ([3]) have provided an MDP formulation for establishing
a multi-hop network between a destination and an unknown
source location by placing relay nodes along a random lattice
path. They assume a given deterministic mapping between
power and link length, and do not consider the statistical
variability (due to shadowing) of the transmit power required
to maintain the link quality over links of a given length. We,
however, consider such variability, and therefore bring in the
idea of measurement based impromptu placement.1

B. Organization
The system model and notation are discussed in Section II.

In Section III, the problem of sequential relay placement (for
the sum power and max power objectives) is addressed, under
the assumption that a packet originating from the source makes
a hop-by-hop traversal through all relay nodes. In Section IV,
we address the same problems as in Section III, but we relax
the restriction that the links of the path from the source to the
sink must be between adjacent deployed relays. We conclude
in Section V.

II. SYSTEM MODEL AND NOTATION

A. Length of the Line
The length L of the line is a priori unknown, but there

is prior information (e.g., the mean length L) that leads us
to model L as a geometrically distributed number of steps.2

The step length δ (whose values will typically be several
meters, e.g., 2 meters in our numerical work) and the mean
length of the line, L, can be used to obtain the parameter of
the geometric distribution, i.e., the probability θ that the line
ends at the next step. In the problem formulation, we assume
δ = 1 for simplicity. All distances are assumed to be integer
multiples of δ.
B. Deployment Process and Some Notation

As the person walks along the line, at each step he measures
the link quality from the current location to one or more than
one previous node and accordingly decides whether to place
a relay at the current location or not. After the deployment
process is complete (at the end of the line where the source
is placed), we denote the number of deployed relays by N ,
which is a random number, with the randomness coming from
the randomness in the link qualities and in the length of the
line. As shown in Figure 1, the sink is called Node 0, the relay
closest to the sink is called Node 1, and finally the source is
called Node (N + 1). The link whose transmitter is Node i
and receiver is Node j is called link (i, j). A generic link is
denoted by e.

C. Traffic Model
We consider a traffic model where the traffic is so low

that there is only one packet in the network at a time; we
call this the “lone packet model.” As a consequence of this

1See [4], the detailed version of this paper, for additional references.
2The geometric distribution is the maximum entropy discrete probability

mass function with a given mean. Thus, by using the geometric distribution,
we are leaving the length of the line as uncertain as we can, given the prior
knowledge of L and the step length δ.

assumption, (i) the transmit power required over each link
depends only on the propagation loss over that link, as there
are no simultaneous transmissions to cause interference, and
(ii) the transmission delay over each link is easily calculated,
as there are no simultaneous transmitters to contend with. This
permits us to easily write down the communication cost on a
path over the deployed relays.

It was shown in [5] that a network operating under
CSMA/CA medium access, and designed for carrying any
positive traffic, with some QoS (in terms of the packet delivery
probability), must necessarily be able to provide the desired
QoS to lone packet traffic. As-you-go deployment of wireless
networks while meeting QoS objectives for specific positive
packet arrival rates is a topic of our ongoing research.

D. Channel Model
For our network performance objective (see Section II-E),

we need the transmit power required to sustain a certain quality
of communication over a link. In order to model this required
power, we consider the usual aspects of path-loss, shadowing,
and fading. A link is considered to be in outage if the received
signal strength drops below Prcv−min (due to fading) (e.g.,
below -88 dBm). The transmit power that we use is such that
the probability of outage is less than a small value (say 5%).
For a generic link of length r, we denote by Γr the transmit
power required; due to shadowing, this is modeled as a random
variable. Since practical radios can only be set to transmit
at a finite set of power levels, the random variable Γr takes
values from a discrete set, S. The distribution function of Γr is
denoted by Gr(·), and the probability mass function (p.m.f.) by
g(r, ·), i.e., g(r, γ) := P (Γr = γ) for all γ ∈ S; g(r, γ) is the
probability that at least the transmit power level γ is required
to establish a link of length r. Since the required transmit
power increases with distance, we assume that {Gr}r=1,2,...

is a sequence of distributions stochastically increasing (for
definition, see [6]) in r. We also need to talk about a specific
link, say e; we will denote the transmit power required for this
link by Γ(e). We assume that the powers required to establish
any two different links in the network are independent, i.e.,
Γ(e1) is independent of Γ(e2) for e1 6= e2. Spatially correlated
shadowing will be considered in our future work.

E. Deployment Objective
In this paper, we do not consider the possibility of another

person following behind, who can learn from the measure-
ments and actions of the first person, thereby supplementing
the actions of the preceding individual. Our objective is to
design relay placement policies so as to minimize the sum of
the expected sum power/ maximum power (to deliver a packet
from the source node to the sink node) and the expected cost
of placing the relays (the expected number of relays multiplied
by the relay cost, ξ). By a standard constraint relaxation,
this problem also arises from the problem of minimizing the
expected sum/ max power, subject to a constraint on the mean
number of relays. Such a constraint can be justified if we
consider relay deployment for multiple source-sink pairs over
several different lines of mean length L, given a large pool of



relays, and we are only interested in keeping small the total
number of relays over all these deployments.

The max-power objective is useful in a typical sensor
network setting, since, to maximize network lifetime, each
relay must use as little power as possible. The sum-power
objective may be useful in a scenario where a mobile station
(MS) tries to establish a multihop connection to a base station
(BS) at an unknown distance by sequentially selecting relays
from a continuum of nodes on the line joining the MS to the
BS, but the MS has to pay a certain price to use each relay
(see [4]). The sum power objective is also interesting in the
context of global energy saving. Note that, our formulation
is applicable if a relay can be set to a low power state
except when it has to receive or transmit, so that the power
consumptions in the transmit and the receive modes govern
the lifetime.

F. Routing over the Deployed Relays

After node deployment, the routes could be constrained so
as to allow transmissions only between adjacent nodes, i.e.,
the routes use solely the links represented by the solid lines in
Figure 1; we consider this problem in Section III. However,
after deployment, it may turn out that it is better that the
route from the source to the sink skips some relays (e.g., in
Figure 1, if the channel between the source node and relay 2
is very good, it could be better to directly transmit from the
source node to relay 2 without using relay 3). Hence, while
formulating the problem, it would be beneficial to permit the
possibility that some of the dotted links in Figure 1 can be
used after deployment; this problem is solved in Section IV.

III. RELAYING VIA ADJACENT PREVIOUS NODE ONLY

In this section we allow relaying from the source to the
sink only by each relay passing the packet to the immediate
previous relay, in the order of deployment.

A. Sum-Power Objective

1) Problem Formulation: We formulate this problem as
an MDP with state (r, γ), where r is the distance of the
current location from the previous node and and γ is the
transmit power required to establish a link to the previous
node from the current location. Based on (r, γ) a decision is
made whether to place a relay at the current position or not.
0 denotes the state at the beginning of the process (at the sink
node). When the source is placed, the process terminates and
the system enters and stays forever at a state e. The action
space is {place, do not place}. The randomness comes from
the random length L and the randomness in Γ(e).

The problem we seek to solve here is:

min
π∈Π

Eπ
(N+1∑

i=1

Γ(i,i−1) + ξN

)
(1)

where Π is the set of all stationary deterministic Markov
placement policies. Here we have countable state space and
finite action space. The single-stage costs are nonnegative.

Hence, based on the theory in [7], we can concentrate only
on stationary deterministic Markov policies.

Solving (1) also helps in solving the following constrained
problem (see [8]):

min
π∈Π

Eπ
(N+1∑
i=1

Γ(i,i−1)

)
such that EπN ≤M, (2)

where M represents the constraint on the mean number of
deployed relays. In this paper, however, we consider only the
unconstrained problem.

If the state is (r, γ) and a relay is placed, the relay cost ξ
and the power cost γ is incurred at that step. We do not count
the price of the source node, but include the power used by
the source in our cost. No cost is incurred if we do not place a
relay at a certain location. Note that, in this problem, 0 also
denotes the state immediately after placing a relay, since the
process regenerates whenever a relay is placed (this follows
from the memoryless property of geometric distribution and
the independence of Γ(i,j) and Γ(k,l) for (i, j) 6= (k, l)). Let
us define Jξ(r, γ) and Jξ(0) to be the optimal expected cost-
to-go starting from state (r, γ) and state 0 respectively.

2) Bellman Equation: By Proposition 3.1.1 of [7], Jξ(·)
satisfies the following Bellman equation, where cp and cnp
are the cost of placing a relay and the cost of not placing a
relay at the state (r, γ), respectively:

Jξ(r, γ) = min

{ cp︷ ︸︸ ︷
ξ + γ + Jξ(0),

cnp︷ ︸︸ ︷
θE(Γr+1) + (1− θ)EJξ (r + 1,Γr+1)

}
Jξ(0) = θE(Γ1) + (1− θ)EJξ (1,Γ1) (3)

If the current state is (r, γ) and the line has not ended yet,
we can take either of the two actions. If we place a relay, a
cost (ξ + γ) is incurred; another cost Jξ(0) is also incurred
since the decision process regenerates at that point. If we do
not place a relay, the line will end with probability θ in the
next step, in which case a cost E(Γr+1) will be incurred. If
the line does not end in the next step, the next state will be
(r + 1, γ′) where γ′ ∼ Gr+1 and a mean cost of EJξ(r +
1,Γr+1) =

∑
γ g(r+ 1, γ)Jξ(r+ 1, γ) will be incurred. Note

that it is never optimal to place a relay at state 0. If it were
so, then we would have placed infinitely many relays at the
sink, leading to infinite relay cost. But if we place one relay
at each step until the line ends, the expected cost will be less
than ( 1

θ + 1)(ξ + E(Γ1)) <∞.

3) Value Iteration: The value iteration for (1) is given by:
J

(k+1)
ξ (0) = θE(Γ1) + (1− θ)EJ(k)

ξ (1,Γ1)

J
(k+1)
ξ (r, γ) = min

{
ξ + γ + J

(k)
ξ (0), θE(Γr+1)

+ (1− θ)EJ(k)
ξ (r + 1,Γr+1)

}
(4)

with J (0)
ξ (r, γ) = 0 for all r, γ and J (0)

ξ (0) = 0.
Lemma 1: The value iteration (4) provides a nondecreasing

sequence of iterates that converges to the optimal value func-



tion, i.e., J (k)
ξ (r, γ) ↑ Jξ(r, γ) for all r, γ, and J (k)

ξ (0) ↑ Jξ(0)
as k ↑ ∞.

Proof: The proofs of all lemmas and theorems of this
paper are available in [4].

4) Policy Structure:
Lemma 2: Jξ(r, γ) is concave, increasing in γ and ξ and

also increasing in r. Jξ(0) is concave, increasing in ξ. �
Theorem 1: Policy Structure: The optimal policy for Prob-

lem (1) is a threshold policy with a threshold γth(r) increasing
in r such that at a state (r, γ) it is optimal to place a relay
if and only if γ ≤ γth(r). This corresponds to the condition
cp ≤ cnp. �

Remark 1: If γ = γth(r), either action is optimal.
Discussion of the Policy Structure: We do not place at an r if
the required power is too high, as one might expect to get a
better channel if one takes another step. For each r, there is a
threshold on γ below which we place. This threshold increases
with r since Gr(·) is stochastically increasing in r.

Note that the optimal policy in Theorem 1 can also be stated
as follows: place a relay if and only if r ≤ rth(γ) (i.e., cp ≤
cnp) where rth(γ) is some threshold on r, increasing in γ.

5) Computation of the Optimal Policy: Let us write
Vξ(r) := EJξ (r,Γr), i.e., Vξ(r) :=

∑
γ g(r, γ)Jξ (r, γ) for

all r ∈ {1, 2, 3, · · · }, and Vξ(0) := Jξ(0). Also, for each
stage k ≥ 0 of the value iteration (4), define V

(k)
ξ (r) :=

EJ (k)
ξ (r,Γr) and V (k)

ξ (0) := J
(k)
ξ (0).

Observe that from the value iteration (4), we obtain:

V
(k+1)
ξ (r) =

∑
γ

g(r, γ) min

{
ξ + γ + V

(k)
ξ (0),

θE(Γr+1) + (1− θ)V (k)
ξ (r + 1)

}
V

(k+1)
ξ (0) = θE(Γ1) + (1− θ)V (k)

ξ (1) (7)

Since J
(k)
ξ (r, γ) ↑ Jξ(r, γ) for each r, γ and J

(k)
ξ (0) ↑

Jξ(0) as k ↑ ∞, we can argue that V (k)
ξ (r) ↑ EJξ(r,Γ(r))

for all r ∈ {1, 2, 3, · · · } (by Monotone Convergence Theorem)
and V

(k)
ξ (0) ↑ Jξ(0). Thus, V (k)

ξ (r) ↑ Vξ(r) and V
(k)
ξ (0) ↑

Vξ(0). Hence, by the function iteration (7), we obtain Vξ(0)
and Vξ(r) for all r ≥ 1. Then, from (3), we can compute
γth(r). Thus, for this iteration, we simply need to keep track
of V (k)

ξ (r) instead of J (k)
ξ (r, γ) for each r, γ.

6) A Numerical Example: We take δ = 2 meters and
θ = 0.025, (i.e., L = 40 steps, or 80 meters), and S =
{−25,−20,−15,−10,−5, 0, 3} in dBm. Using a standard
model, with transmit power PT (mW), the received power
(in mW) at a distance r from the transmitter is given by
PTα( rr0 )−ηH10−

ν
10 where α is a constant and r0 is a refer-

ence distance. H models Rayleigh fading, and is exponentially
distributed with mean 1. ν is assumed to be distributed as
N (0, σ2) with σ = 8 dB; i.e., we have log-normal shadowing.
The shadowing is assumed to be independent from link to
link. For a commercial implementation of the PHY/MAC of
IEEE 802.15.4 (a popular wireless sensor networking stan-
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Fig. 2. Relaying only via last placed relay: γth(r) vs. r, for various relay
costs, ξ, for the numerical example described in Section III-A6.

dard), −88 dBm received power corresponds to a 2% packet
loss probability for 140 byte packets. Taking −88 dBm to
be the minimum acceptable received power, we set the target
received power (averaged over fading) to be ψ = 10−7.5 mW
(i.e., −75 dBm), which (under Rayleigh fading) yields an “out-
age” probability of 5%. Hence, the transmit power required to
establish the link is:

Preq =
ψ

10−
ν
10 α

(
r

r0

)η
(8)

Now, since the set S is bounded, at large distance the required
power to achieve ψ will exceed 2 mW (i.e., 3 dBm) with high
probability. To tackle this problem, we modify the problem
formulation by requiring that a relay is placed when r = 10
(in steps). For 1 ≤ r ≤ 10 (in steps), we obtain Γr from (8)
and using the next higher power level in S. For example, if
the required transmit power to establish the link is in (−5, 0]
dBm, then we say that the power requirement is 0 dBm for
that link. But, if the power requirement is more than 3 dBm,
then we say that the required power is 3 dBm. It is easy to
see that the distribution Gr(·) of Γr obtained in this fashion
is stochastically increasing 3 in r. For the numerical work,
we assume that η = 2.5, α

r−η0

= 10−3/m−2.5 (−30 dB).
With these parameters, the probability of the transmit power
required to achieve a target received power ψ = −75 dBm
(averaged over fading) for a link of length 10 steps (20 meters)
exceeding 3 dBm (the maximum transmit power) will be less
than 2.65%, and it will be even less for links having smaller
length. Clearly, there is a positive probability of deployment
failure; we will quantify this later in Section III-A7.

Figure 2 shows the variation of γth(r) with r and ξ. Here
the unit of ξ is mW/relay, so that the unit of Jξ(0) is also mW.
We see from Figure 2 that, for ξ = 0.001, if r = 8 meters,
and the required power is −20 dBm or below, then a relay
should be placed at this point. Also, note that −25 dBm is the
smallest possible transmit power level, and for ξ = 0.001 we
will never place a relay at r = 2 meters since there γth(r) is
0 mW (−∞ dBm). Figure 2 shows that γth(r) is decreasing
in ξ for each r. All it says is that as the price of a relay, ξ,
increases, we will place the relays less frequently.

3The results asserted for the formulation in Section III-A, e.g., threshold
structure of the optimal policy, hold for this variation as well. The only change
will be that at r = 10 steps the only feasible action is to place the relay. We
can use similar iterations as (4) and (7) to compute the optimal policy.



Jξ(r, γ, γmax) = min

{ cp︷ ︸︸ ︷
ξ + θEmax{γ, γmax,Γ1}+ (1− θ)EJξ(1,Γ1,max{γ, γmax}),

cnp︷ ︸︸ ︷
θEmax{γmax,Γr+1}+ (1− θ)EJξ(r + 1,Γr+1, γmax)

}
(5)

J
(k+1)
ξ (r, γ, γmax) = min

{
ξ + θEmax{γ, γmax,Γ1}+ (1− θ)EJ(k)

ξ (1,Γ1,max{γ, γmax}),

θEmax{γmax,Γr+1}+ (1− θ)EJ(k)
ξ (r + 1,Γr+1, γmax)

}
(6)

ξ = 0.001 ξ = 0.01 ξ = 0.1
E(N) 15.8754 10.3069 5.3225

Relay cost ξE(N) 0.01588 0.10307 0.53225
Power Cost 0.07513 0.08277 0.19291
Jξ(0) 0.09101 0.18584 0.72516

TABLE I
RELAYING VIA THE LAST PLACED RELAY: BREAK-UP OF THE OPTIMAL
COST FOR THE EXAMPLE IN SECTION III-A6, FOR THREE VALUES OF ξ.

Table I shows that as ξ increases, the mean number of relays
E(N) decreases, and the power cost and Jξ(0) increase.

7) Deployment Failure: Because of the bounded transmit
power (e.g., 3 dBm) of a node, there is a possibility that a
deployment can fail. Here we provide a simulation estimate
of the deployment failure probabilities under the threshold
policies obtained in Section III-A6. A deployment failure can
occur if: (i) for at least one relay, at r = 10 steps the required
power exceeds 3 dBm, and (ii) the source at the end of the line
requires more than 3 dBm power. By simulating 200000 de-
ployments, we observe that the deployment failure probability
for ξ = 0.001, 0.01, 0.1 and 1 are 0.025%, 0.057%, 0.555%
and 3.8% respectively. Evidently, there is a trade-off between
the target link performance and the probability of link failure.
In addition, by placing relays more frequently, we reduce the
chance of being caught in a situation where the deployment
operative has walked too far without placing a relay and is
unable to get a workable link to the previous node. In future
work, we propose to include deployment failure probability
as a constraint in the optimization formulation. Another way
to reduce deployment failure is to permit back-tracking by
the deployment operative, which, of course, will require the
placement algorithm to keep more measurement history; we
propose to permit this in our future work as well.

B. Max-Power Objective
1) Problem Formulation: We aim to address the following

problem:

min
π∈Π

Eπ
(

max
i∈{1,2,··· ,N+1}

Γ(i,i−1) + ξN

)
(9)

We formulate (9) as an MDP with state (r, γ, γmax), where r
and γ are the same as before. γmax is the maximum power
used in all the previously established links. The action space
is {place, do not place}. The power cost is incurred only after
the source node is placed.

2) Bellman Equation: By Proposition 3.1.1 of [7], Jξ(·)
satisfies the Bellman equation (5). At state 0, it is not optimal
to place a relay. Hence, Jξ(0) = θE(Γ1)+(1−θ)EJξ(1,Γ1, 0).

At state (r, γ, γmax), if we place a relay, we incur a cost
ξ. In the next step the line ends with probability θ, in
which case a power cost of Emax{γ, γmax,Γ1} is incurred.

If the line does not end in the next step, the next state
becomes (1, γ′,max{γ, γmax}) where γ′ ∼ G1(·), and a cost
of EJξ(1,Γ1,max{γ, γmax}) is incurred. On the other hand,
if we do not place a relay at state (r, γ, γmax), the line ends in
the next step with probability θ, in which case a power cost
of Emax{γmax,Γr+1} is incurred. If the line does not end in
the next step, the next state will be (r + 1,Γr+1, γmax).

3) Value Iteration: The value iteration for this MDP is
given by (6) with J (0)

ξ (r, γ, γmax) = 0 for all r, γ, γmax.
Lemma 3: The iterates of the value iteration (6) con-

verge to the optimal value function, i.e., J (k)
ξ (r, γ, γmax) ↑

Jξ(r, γ, γmax) for all (r, γ, γmax), as k ↑ ∞. �

4) Policy Structure:
Lemma 4: Jξ(r, γ, γmax) is concave, increasing in ξ and

increasing in r, γ, γmax. �
Theorem 2: Policy Structure: The conditions for optimal

relay placement are:
(i) If γ ≤ γmax, place the relay when r ≥ rth(γmax) where

rth(γmax) is a threshold value.
(ii) If γ > γmax, place the relay when γ ≤ γth(r, γmax), where

γth(r, γmax) is a threshold increasing in r and γmax. �

Discussion of the policy structure: When γ ≤ γmax, we can
postpone placement until the point beyond which the chance
of getting a worse value of power becomes significant. For
γ > γmax, waiting to place the relay may result in a better
channel; there is a threshold γth(r, γmax) such that γth(r, γmax)
may cross γmax for large r. If γ is between these two values
then we place.

5) Computation of the Optimal Policy: Let us define
Vξ(r, γmax) := EJξ(r,Γr, γmax). We can again argue that
the following function iteration (similar to that used in Sec-
tion III-A) will yield Vξ(r, γmax) for all r, γmax, from which
we can compute rth(γmax) and γth(r, γmax):

V
(k+1)
ξ (r, γmax) =

∑
γ

g(r, γ) min

{
ξ + θEmax{γ, γmax,Γ1}

+ (1− θ)V (k)
ξ (1,max{γ, γmax}),

θEmax{γmax,Γr+1}

+ (1− θ)V (k)
ξ (r + 1, γmax)

}
(10)

with V (0)
ξ (r, γmax) = 0 for all r, γmax.

6) A Numerical Example: Figure 3 (see next page) shows
the variation of rth(γmax) with γmax and ξ, for the same setting
as Section III-A6. The plot shows that rth(γmax) increases with
γmax. Let us consider the situation γ < γmax. If r is small,
then it is more likely that in the next step also the power
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Fig. 3. Relaying only via last placed relay: rth(γmax) vs. γmax, for various
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Fig. 4. Relaying only via last placed relay: γth(r, γmax) vs. r, for γmax =
−20 dBm and various ξ, for the numerical example in Section III-B6.

required to establish a link to the last node will be below
γmax, and hence we don’t need to place a relay. But if r is
large, then it is more likely that the power will cross γmax in
the next step, and hence we will have a threshold rth(γmax)
beyond which we have to place the relay. As γmax increases,
the probability that the power required to establish a link to
the last node exceeding γmax decreases for each r, thereby
increasing rth(γmax). Also, rth(γmax) increases with ξ because
if ξ increases, we will place relays less frequently.

Figure 4 shows the variation of γth(r, γmax) with r for
γmax = −20 dBm and two different values of ξ. For very
small ξ (e.g., ξ = 0.00001), γth(r, γmax) can be more than
γmax for all r. For moderate values of ξ (e.g., ξ = 0.01
in Figure 3), γth(r, γmax) vs. r curve crosses γmax at r =
rth(γmax). Also, we have seen numerically that for ξ very
large, γth(r, γmax) is 0 mW for r ≤ 9 steps; for large ξ we
will place a relay only when r = 10 steps (20 meters).

Table II shows that as ξ increases, the mean number of
relays decrease, and the power cost and Jξ(0) increase. Note
that, for any given deployment and any given relay cost ξ,
the sum power is always greater than the max power in the
network. Hence, for a given ξ, the optimal mean power cost
and Jξ(0) for the sum power objective will be greater than
the corresponding values for the max-power objective, as seen
in Table I and Table II.

The estimated probability of deployment failure obtained
from simulation for ξ = 0.001, 0.01, 0.1 and 1 are
0.01%, 0.145%, 0.73% and 5.39% respectively.

IV. RELAYING VIA ANY PREVIOUS NODE

In Section III, we considered the case where, after the
deployment is over, only the links between adjacent nodes are
permitted, i.e., only the links represented by the solid lines

ξ = 0.001 ξ = 0.01 ξ = 0.1
E(N) 18.1178 8.6875 4.6615

Relay Cost ξE(N) 0.01812 0.08688 0.46615
Power Cost 0.01524 0.04436 0.15079
Jξ(0) 0.03336 0.13124 0.61693

TABLE II
RELAYING VIA THE LAST PLACED RELAY: BREAK-UP OF THE OPTIMAL
COST FOR THE EXAMPLE IN SECTION III-B6, FOR THREE VALUES OF ξ.
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γ(1)Relay 1 Relay 3
y1

y2
y3

y4

Current loationRelay 2Sink Node
Fig. 5. Measurement-based sequential relay placement. When standing at the
“current location,” the deployment operative, having already deployed Relays
1, 2, 3, makes the power measurements γ(k), and knows the distances yk .

in Figure 1 can be used. However, as discussed in Section II,
while formulating the problem we need to take into account the
fact that some relays might be skipped after deployment, i.e.,
some of the links represented by the dotted lines in Figure 1
can be used. This section is dedicated to such formulations.

A. Sum-Power Objective
1) Problem Definition: Given a deployment of N relays,

indexed 1, 2, · · · , N, consider the directed acyclic graph on
these relays along with the sink (Node 0) and the source (Node
N + 1), whose links are all directed edges from each node to
every node with smaller index. Hence, if i and j are two nodes
with i > j, there is only one link (i, j) between them. Consider
all directed acyclic paths from the source to sink, on this graph.
Let us denote by p any arbitrary directed acyclic path from
the source to the sink, and by E(p) the set of (directed) links
of the path p. We also define Pn := {p : (i, j) ∈ E(p) =⇒
i > j, |i−j| ≤ n} a subcollection of paths between the source
and the sink on the directed acyclic graph, such that no path
in Pn contains a link between two nodes whose indices differ
by a number larger that n. We call n the “memory” of the
class of policies we are considering.

Here we consider the following problem:

min
π∈Π

Eπ
(

min
p∈Pn

∑
e∈E(p)

Γ(e) + ξN

)
(13)

where Γ(e) is the power used on the link e. We
call

∑
e∈E(p) Γ(e) the “length” of the path p, and

minp∈Pn
∑
e∈E(p) Γ(e) the length of the “shortest path” from

the source to the sink (over the relays deployed by policy π
in a given realization of the decision process).

2) MDP Formulation: Consider the evolution of the net-
work as the relays are deployed. Suppose that at some point in
the deployment process there are m preceding nodes, including
the sink; see Figure 5 where m = 4. The transmit power
required to establish a link from the current location to the
k-th previous node is denoted by γ(k), and the distance of the
current location from the k-th previous node is denoted by yk.
Let P (k)

n denote the length of the “shortest path” from the k-th
previous node to the sink. We define P (m)

n := 0 if m ≤ n, i.e.,



Jξ

(
{yk}nk=1; {P (k)}nk=1; {γ(k)}nk=1

)
= min

{
ξ + θEmin

{
min

k∈{1,2,··· ,n−1}
(Γyk+1+P (k)),Γ1+ min

k∈{1,2,··· ,n}
(γ(k)+P (k))

}
+ (1− θ)EJξ

(
1, y1 + 1, · · · , yn−1 + 1; min

k∈{1,··· ,n}
(γ(k)+P (k)), P (1), · · · , P (n−1); Γ1,Γy1+1, · · · ,Γyn−1+1

)
,

θE min
k∈{1,··· ,n}

(
Γyk+1+P (k)

)
+ (1− θ)EJξ

(
{yk + 1}nk=1; {P (k)}nk=1; {Γyk+1}nk=1

)}
(11)

Jξ

(
{yk}mk=1; {P (k)}mk=1; {γ(k)}mk=1

)
= min

{
ξ + θEmin

{
min

k∈{1,2,··· ,m}
(Γyk+1+P (k)),Γ1+ min

k∈{1,2,··· ,m}
(γ(k)+P (k))

}
+ (1− θ)EJξ

(
1, y1 + 1, · · · , ym + 1; min

k∈{1,··· ,m}
(γ(k)+P (k)), P (1), · · · , P (m); Γ1,Γy1+1, · · · ,Γym+1

)
,

θE min
k∈{1,··· ,m}

(
Γyk+1+P (k)

)
+ (1− θ)EJξ

(
{yk + 1}mk=1; {P (k)}mk=1; {Γyk+1}mk=1

)}
(12)

Current loation
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γ(1)Relay 1 Relay 2
y1
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Relay 3Sink Node
Fig. 6. Sequential deployment with n = 2. When standing at the “current
location,” the deployment operative, having already deployed Relays 1, 2, and
3, measures the powers γ(1), γ(2), and knows the distances y1, y2 and the
lengths P (1), P (2) of the shortest paths from relay 3 and relay 2 to the sink.

the length of the shortest path from the sink to itself is 0 (when
m ≤ n, the m-th previous node is the sink). For notational
simplicity, we drop the subscript and denote P (k)

n by P (k). The
deployment operative decides whether to place a node at his
current position based on (i) the powers γ(1), γ(2), · · · , γ(n),
(ii) the distances y1, y2, · · · , yn, and (iii) the length of the
shortest paths P (1), P (2), · · · , P (n). If n = 2, at the “current
location” shown in Figure 6, the decision will be based on the
powers γ(1), γ(2), the distances y1, y2, and the shortest paths
P (1) and P (2) at nodes 3 and 2 respectively. However, in case
m < n, we do not have measurements for n previous nodes.
Hence, let us define lm := min{m,n}. At each step, the
deployment operative knows the distance {yk}lmk=1, the power
{γ(k)}lmk=1 and the lengths of the shortest paths {P (k)}lmk=1.
He decides based on this information whether to place a relay
at the current position or not. We formulate this problem as
an MDP with state ({yk}lmk=1; {P (k)}lmk=1; {γ(k)}lmk=1), and the
action space {place, do not place}. The state at the sink is
denoted by 0. Since the set S of transmit power levels is
countable, {P (k)}lmk=1 also take values from a countable set.
Hence, the state space is countable in our problem.

If the state is ({yk}lmk=1; {P (k)}lmk=1; {γ(k)}lmk=1) and a relay
is placed, the relay cost ξ is incurred. The power cost is
incurred only after the source is placed, and that cost will
be the length of the shortest path in Pn from the source to the
sink. Let us define Jξ({yk}lmk=1; {P (k)}lmk=1; {γ(k)}lmk=1) and
Jξ(0) to be the optimal expected cost-to-go starting from state
({yk}lmk=1; {P (k)}lmk=1; {γ(k)}lmk=1) and state 0 respectively.

3) Bellman Equation: Jξ(·) satisfies the Bellman equations
(11) for m ≥ n and (12) for m < n, for the optimal cost
function. The first term in the min{·, ·} is the cost if we place
a relay at the state ({yk}lmk=1; {P (k)}lmk=1; {γ(k)}lmk=1), and the
second term is the cost if we do not place a relay.

Observe that it is never optimal to place a relay at state 0
because, in doing so, a cost ξ will unnecessarily be incurred.

Hence, Jξ(0) = θE(Γ1) + (1− θ)EJξ(1; 0; Γ1).
When m ≥ n, if we place a relay at the current location and

if the line ends in the next step, the length of the shortest path
from the source to the sink will be seen as a terminal cost,
and is equal to Emin{mink∈{1,··· ,n−1}(Γyk+1 + P (k)),Γ1 +
mink∈{1,··· ,n}(γ

(k)+P (k))}. Note that in this case the shortest
path from the source to the sink can pass via the relay placed
at the “current location”, or via one of the (n − 1) previous
relays. For example, in the scenario shown in Figure 6 (with
n = 2), if we place a relay at the “current location” and the
line ends at the next step, then the neighbouring node of the
source along the shortest path can be the relay placed at the
“current location” or relay 3 (source is not allowed to transmit
directly to relay 2 because n = 2). Keeping this in mind,
Γyk+1 + P (k) is the sum of two costs: the (random) power
Γyk+1 from the source to the (k + 1)-st previous node w.r.t
the source (after placing the relay at the current location, the
current k-th previous node will become the (k+1)-st previous
node in the next step, where the source will be placed) and the
length of the shortest path P (k) from that node to the sink.
Γ1 + mink∈{1,··· ,n}(γ

(k) + P (k)) is the sum of the random
power Γ1 required to establish a link from the source to the
relay deployed at the current location, and the length of the
shortest path from this relay to the sink.

When m ≥ n, if we place a relay and the line does not
end in the next step, the terms yn, P (n) and γ(n) disappear
from the state (because a new relay has been placed, which
must be taken into account in the state) and the distance 1 of
the next location from the newly placed relay at the current
location is absorbed into the state. Other distances in the state
increase by 1 each. The length of the shortest path from the
newly placed relay to the sink, i.e., mink∈{1,··· ,n}(γ

(k)+P (k))
enters the state, and the power required at the next location to
connect to the n previous relays (w.r.t the next location) are
independently sampled again. Hence, the new state becomes:

(1, y1 + 1, · · · , yn−1 + 1; min
k∈{1,··· ,n}

(γ(k) + P (k)),

P (1), · · · , P (n−1); Γ1,Γy1+1, · · · ,Γyn−1+1)

Similarly, if m ≥ n and we do not place a relay at the
current location, in the next step the line may end with prob-
ability θ and may not end with probability (1− θ). If the line
ends, a cost of the shortest path Emink∈{1,··· ,n}(Γyk+1+P (k))



will be incurred. If the line does not end, the next state will
be ({yk + 1}nk=1; {P (k)}nk=1; {γk}nk=1), where for each k, γk
will be drawn independently from Gyk+1(·).

Similar arguments can be used to explain (12) in case m <
n. The difference is that if we place a relay at the current
location and the line does not end in the next step, the next
state will have three more terms, since the information for the
newly placed relay can be accomodated into the state. On the
other hand, if the line ends in the next step, the source will
be able to communicate to the sink via one of the m relays
(there will be (m+ 1) preceding nodes, including the sink).

4) Results and Discussion:
Theorem 3: Policy Structure: For the state

({yk}lmk=1; {P (k)}lmk=1; {γ(k)}lmk=1), the optimal relay
placement policy is the following:

Place a relay if and only if mink∈{1,··· ,lm}(γ
(k) + P (k)) ≤

c({yk}lmk=1; {P (k)}lmk=1) where c({yk}lmk=1; {P (k)}lmk=1) is a
threshold value. �

Discussion of the Policy Structure: The structure of the
optimal policy as stated in Theorem 3 is intuitive because here
we need to check whether the quantity mink∈{1,··· ,lm}(γ

(k) +
P (k)) which is the length of the shortest path from the current
location to the sink, is below a certain threshold.

Evidently, the optimal cost Jξ(0) of (13) is always less
than or equal to that of (1), for the same ξ. This is because
each policy for n = 1 will be a policy for n = 2 as well.
Also, n =∞ provides the best policy since there we consider
information from all previous nodes.

B. Max-Power Objective
Here we are going to address the following problem:

min
π∈Π

Eπ
(

min
p∈Pn

max
e∈E(p)

Γ(e) + ξN

)
(14)

We call maxe∈E(p) Γ(e) the “length” of the path p, and
minp∈Pn maxe∈E(p) Γ(e) the length of the “shortest path”
from the source to the sink.

The Bellman equations will be similar to (11) and (12),
except that the red + operations will be replaced by max
operations (for exact Bellman equation, see [4]).

Theorem 4: Policy Structure: For the state
({yk}lmk=1; {P (k)}lmk=1; {γ(k)}lmk=1), the optimal relay
placement policy is the following:

Place a relay if and only if
mink∈{1,··· ,lm}max{γ(k), P (k)} ≤ c({yk}lmk=1; {P (k)}lmk=1)

where c({yk}lmk=1; {P (k)}lmk=1) is a threshold value. �
(3) and (5) can be obtained from the corresponding Bellman

equations for arbitrary n, by putting n = 1; see [4], Section IV.
C. Performance comparison between n = 1 and n = 2

A comparative study of the optimal costs with n = 1 and
n = 2 is summarized in Table III. Here we have used the same
model as used in Section III in the max-power case, but we
have considered S = {0.1, 0.2, · · · , 2} mW in the sum-power
case in order to avoid huge computational requirement (see
[4]). The study suggests that, for small relay cost, n = 2 can

ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1
Sum-power 0.61946 0.65759 1.0414 4.49396

(n = 1)
Sum-power 0.50723 0.56834 1.0233 4.43836

(n = 2)
Max-power 0.03336 0.13124 0.61693 4.10798

(n = 1)
Max-power

(n = 2) 0.02119 0.10686 0.60548 4.09718

TABLE III
COMPARISON OF Jξ(0) FOR n = 1 AND n = 2 FOR VARIOUS ξ:

SUM-POWER OBJECTIVE AND MAX-POWER OBJECTIVE. TWO DIFFERENT
TRANSMIT POWER SETS ARE USED FOR THE TWO OBJECTIVES.

provide a significant percentage gain over the optimal cost for
n = 1. Since at small ξ we tend to place more relays (but
the relay cost is small compared to Jξ(0), see Table I and
Table II), skipping relays could be useful. For large ξ, we place
fewer relays, but the relay cost will dominate. As ξ becomes
very high, we will always place the relays at every 10 steps,
and nowhere else; hence the relay cost becomes independent
of n and the little variation in power cost will be insignificant.
D. Computational Issues

The dimension of the state space is 3n in the value iter-
ation, and hence the computational complexity and memory
requirement increases with n. However, we can reduce the
value iteration to a function iteration as in (7) and (10), and
reduce the dimension of the domain of the function to 2n.

V. CONCLUSION

In this paper, we explored several sequential relay place-
ment problems for as-you-go deployment of wireless relay
networks, assuming very light traffic. The problems were
formulated as MDPs, optimal policies were derived, and
the procedure illustrated via numerical examples. There are
numerous issues to improve upon: (i) the light traffic (“lone
packet model”) assumption, (ii) the assumption of independent
shadow fading from link to link, and (iii) the deployment
failure issue. Extension to positive traffic might require a
different approach: perhaps one that requires a performance
analysis model working in conjunction with an optimal se-
quential decision technique. We are addressing these issues in
our ongoing work.
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