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This paper considers the problem of impulse noise mitigation when video is encoded using a SoftCast-based Linear Video Coding (LVC) scheme and transmitted using an Orthogonal Frequency-Division Multiplexing (OFDM) scheme over a wideband channel prone to impulse noise. In the time domain, the impulse noise is modeled as independent and identically distributed (iid) Bernoulli-Gaussian variables. A Fast Bayesian Matching Pursuit algorithm is employed for impulse noise mitigation. This approach requires the provisioning of some OFDM subchannels to estimate the impulse noise locations and amplitudes. Provisioned subchannels cannot be used to transmit data and lead to a decrease of the video quality at receivers in absence of impulse noise. Using a phenomenological model (PM) of the residual noise variance after impulse mitigation, we have proposed an algorithms that is able to evaluate the optimal number of subchannels to provision for impulse noise correction. Simulation results show that the PM can accurately predict the number of subchannels to provision and that impulse noise mitigation can significantly improve the decoded video quality compared to a situation where all subchannels are used for data transmission.

INTRODUCTION AND MAIN CONTRIBUTIONS

SoftCast [START_REF] Jakubczak | Softcast: Clean-slate scalable wireless video[END_REF] based Linear video coding (LVC) and transmission schemes [2, 4-8, 10, 13-15, 18, 22-27] have emerged as a promising alternative to classical video coding [START_REF] Sullivan | Overview of the high efficiency video coding (HEVC) standard[END_REF][START_REF] Wiegand | Overview of the H.264/AVC video coding standard[END_REF][START_REF] Wien | Performance analysis of SVC[END_REF] when video has to be transmitted to wireless receivers experiencing different and timevarying channel conditions. In LVC, the video content is encoded with linear-only operators, such as a full-frame Discrete Cosine Transform (DCT) and using linear channel precoding of these DCT coefficients. Since the transmitted symbols are linearly related to the original video pixel values and a Linear Minimum Mean Square Error (LMMSE) estimator is used at receiver side, the decoded video quality scales linearly with the channel signal-noise-ratio (SNR) [START_REF] Jakubczak | Softcast: Clean-slate scalable wireless video[END_REF].

In this paper, we address the problem of impulse noise mitigation when the LVC-encoded video is transmitted using an Orthogonal Frequency-Division Multiplexing (OFDM) scheme over a wideband channel prone to impulse noise. Many communication channels may be also prone to impulse noise, e.g., in Power Line Telecommunications (PLT) channels [START_REF] Zimmermann | Analysis and modeling of impulsive noise in broad-band powerline communications[END_REF]. Impulse noise has a high magnitude (its power may be 50dB above that of the background noise), and when it is bursty, may corrupt the channel for more than 1 ms. If impulse noise is not corrected, the communication performance may be significantly degraded [START_REF] Tareq | Impulse noise estimation and removal for ofdm systems[END_REF][START_REF] Lin | Impulsive noise mitigation in powerline communications using sparse bayesian learning[END_REF]. As in [START_REF] Tareq | Impulse noise estimation and removal for ofdm systems[END_REF], the impulse noise is modeled in the time domain by iid Bernoulli-Gaussian variables. In here Fast Bayesian Matching Pursuit (FBMP) [START_REF] Schniter | Fast bayesian matching pursuit[END_REF] algorithm is employed for impulse noise mitigation. This approach requires the provisioning of some OFDM subchannels to estimate the impulse noise locations and amplitudes. Since nothing can be transmitted on provisioned subchannels, this leads to a decrease of the number of transmitted chunks and to a decrease of the video quality at receivers in absence of impulse noise. A trade-off has thus to be found between impulse noise correction efficiency and nominal PSNR reduction.

Compared to the state-of-the-art, our contributions are (i) adapt FBMP in channel impulse noise mitigation for LVC schemes; (ii) propose a phenomenological model (PM) structure to describe the variance of residual noise after impulse noise mitigation. (iii) By using this PM to provide an algorithm for the selection of the optimal number of subchannels to provision for impulse noise correction. Simulation results illustrate the performance improvements provided by the proposed impulse noise mitigation scheme.

The rest of the paper is organized as follows. The application of FBMP for impulse noise mitigation to LVC scheme is described in Section 2. Section 3 presents the way the optimal number of subchannels to provision can be determined for impulse noise correction. Simulation results are described in Section 4 before drawing some conclusions in Section 5.

IMPULSE NOISE CORRECTION SCHEME FOR LVC

In this section we present the architecture of the proposed impulse noise correction scheme for SoftCast-based [START_REF] Jakubczak | Softcast: Clean-slate scalable wireless video[END_REF] LVC architectures, which is shown in Fig. 1. In this paper we focus on Scaling, Impulse Noise Estimation (INE), Impulse Noise Mitigation (INM) and decoding (LMMSE) modules, while the other steps are the same as in [START_REF] Jakubczak | Softcast: Clean-slate scalable wireless video[END_REF].

The input video is organized in Group of Pictures (GoP); each GoP undergoes 3D-DCT and the resulting coefficients are organized in blocks called chunks. The number of chunks per GoP is referred to as nCk. The chunks are scaled and used to modulate the carriers of an OFDM-based transmission scheme with nSC subchannels; a total power pT is available for each OFDM symbol. In this paper, we focus on the luminance part of the video. The chrominance components undergo a similar processing.

To perform scaling and transmission, nr × nc chunk vectors ti, i = 1, . . . , nr × nc, each of dimension nCk, are formed by selecting for each vector one coefficient per chunk. The tis can be seen as realizations of nr × nc iid Gaussian vectors with covariance matrix Λ = diag(λ1 . . . λn Ck ). Without loss of generality, the chunks, are assumed to be sorted according to decreasing variance [START_REF] Jakubczak | Softcast: Clean-slate scalable wireless video[END_REF][START_REF] Lee | Optimal linear coding for vector channels[END_REF][START_REF] Zheng | SoftCast with per-carrier power-constrained channels[END_REF] designed in such a way that ui = Gti satisfies a power constraint pT/2. We focus on a bandwidth constrained scenario where nSC nCk. In this case, onlt the first nSC largest variance chunks can be transmitted [START_REF] Jakubczak | Softcast: Clean-slate scalable wireless video[END_REF]. Moreover, due to the total power constraint, it is possible that the q lowest-variance chunks must further be discarded [START_REF] Lee | Optimal linear coding for vector channels[END_REF][START_REF] Zheng | SoftCast with per-carrier power-constrained channels[END_REF]. In our proposed architecture, it is possible to discard chunk even when there is enough available transmission power, since this operation will improve the robustness towards impulse noise, as shown later on. In any case, when we discard q chunks, the last q rows of G are null.

Then, nr × nc/2 vectors of complex symbols are formed by combining pairs of consecutive scaled chunk vectors: ui = G (t2i-1 + jt2i), i = 1, . . . , nr × nc/2; the power of ui is pT.

Next the uis are used to modulate the OFDM carriers in a standard way. For the sake of simplicity, in what follows the index i is omitted, since all vectors ui have similar distribution and undergo the same processing. In the plain Softcast, a Hadamard transform is performed after chunk scaling. Here, to simplify presentation, this additional transform is not considered.

The transmitted signal is assumed to be corrupted by Gaussian noise and impulsive noise. At the receiver side, the input of the FFT is a vector y ∈ C n SC that may be modeled as as [START_REF] Tareq | Impulse noise estimation and removal for ofdm systems[END_REF] 

y = F H u + vI + vg, (1) 
where F H is IDFT matrix, vg is a Gaussian noise vector and vI is an impulse noise vector. After the DFT, F vg ∼ CN (0, Ng) can be modeled as a zero-mean complex circular Gaussian noise vector [START_REF] Tareq | Impulse noise estimation and removal for ofdm systems[END_REF] with Ng = 2N and N = diag σ 2 1 , . . . , σ 2 n SC , without loss of generality, one assumes that the subchannel indexing is such that

σ 2 1 • • • σ 2 n SC . The components of vI are iid and such that v I,k = δ k w k , where δ k is the realization of a Bernoulli variable with parameter pI = Pr{δ k = 1} and w k ∼ CN 0, 2σ 2 I with σ 2 I > σ 2 i , i = 1, . . . , nSC.
Since last q rows of G are null, we can introduce the paritycheck matrix Ψ∈ C q×n SC formed by the last q rows of F , and ΨF H G = 0. Then one may evaluate the syndrome vector

s = Ψy = ΨvI + Ψvg, (2) 
where Ψvg ∼ CN (0, Ns), with Ns = 2diag σ 2 n SC -q+1 , . . . , σ 2 n SC . Therefore to mitigate the effect of the impulse noise, one has to estimate the sparse vector vI from noisy measurements of ΨvI. This is a typical compressive sensing estimation problem [START_REF] Rafael E Carrillo | Robust compressive sensing of sparse signals: a review[END_REF] for which many solutions have been proposed. Here, FBMP algorithm is employed to get an estimate vI = E (vI|s) of vI [START_REF] Schniter | Fast bayesian matching pursuit[END_REF]. This step correspond to INE in Figure 1. Finally, after impulse noise mitigation we find y:

y = F y -F vI = u + F (vI -vI) + F vg. (3) 
This step correspond to INM in Figure 1. In what follows, this scheme is called LVC With Subchannel Provisioning and Impulse Correction (LVC-WSP-IC). The main difficulty lies in the optimization of the number q of subchannels provisioned for impulse noise mitigation. A solution to this problem is detailed in Section 3.

OPTIMAL NUMBER OF SUB-CHANNEL PROVISIONING

As shown in [START_REF] Schniter | Fast bayesian matching pursuit[END_REF], the efficiency of the FBMP algorithm increases with the number q of observations of linear combinations of the impulse errors (2). However, increasing q reduces the number of subchannels on which chunk coefficients can be transmitted. A trade-off has thus to be found between efficiency of impulse noise mitigation and transmission performance.

Residual noise after impulse noise mitigation

One may rewrite (3) as

y = u + F vr + F vg, (4) 
where vr = vI -vI represents the impulse noise residual vector after mitigation. This residual can be seen as an additional noise component to the background Gaussian noise affecting the sub-channels. As shown in [START_REF] Tareq | Impulse noise estimation and removal for ofdm systems[END_REF] covariance of impulse noise residual Cov (vr|s) can be approximated as a diagonal matrix, provided that nSC and q are large enough. Therefore, the covariance matrix of 

Considering ( 4) and ( 5), the vectors Gt2i and Gt2i+1 are corrupted respectively by the real and imaginary parts of F vr and F vg, with F vr ∼ CN 0, σ 2 r I . Assuming that F vr and F vg are uncorrelated, each component of Gt2i and Gt2i+1 will be corrupted by a zero-mean Gaussian noise with variance σ 2 c,i = σ 2 i + σ 2 r /2. By using this in the design of the optimal precoding matrix and decoding matrices, the MSE of the received chunk vector E tt 2 2 [START_REF] Lee | Optimal linear coding for vector channels[END_REF][START_REF] Zheng | SoftCast with per-carrier power-constrained channels[END_REF] is

ε = n Ck i=ℓ+1 λi + √ γ ℓ i=1 λiσ 2 c,i , (6) 
where ℓ nSC is the largest integer such that

λ i σ 2 c,i γ -σ 2 c,i > 0, i = 1, . . . , ℓ with √ γ = ℓ i=1 λ i σ 2 c,i p T 2 + ℓ i=1 σ 2 c,i . 

Estimation of σ 2

r σ 2 r depends on q = nSCℓ, Ng, σ 2 I , and pI [START_REF] Schniter | Fast bayesian matching pursuit[END_REF]. An explicit expression of the evolution of σ 2 r is very difficult to obtain. Thus, in this section, we will resort to a phenomenological model (PM) of σ 2 r as a function of these parameters. First experiments have been conducted to characterize the structure of the model. Then the value of the model parameters are estimated via least-square estimation. Two main channels with nSC = 256 subchannels and nSC = 416 subchannels are considered here. For both channels, Gaussian background noise with Ng = 2σ 2 g I and impulse noise σ 2 I = 100 are introduced. The variance of the background noise is adjusted in such a way that the impulsive to background noise ratio (INR) in dB, i.e., 10 log 10 σ 2 I /σ 2 g ranges from 10 dB to 30 dB with a step of 2 dB. The impulse probability pI ranges from 0.5% to 3% with a step of 0.5%. Under these channel conditions, σ 2 r is evaluated, which is obtained as the average of vI -vI 2 2 , where vI is obtained from the FBMP algorithm. One evaluates σ 2 r considering different proportions of unused subchannels rd = q n SC ranging from 0.15 to 0.75 with a step of 0.05. Since the FBMP only uses the syndrome (2), which does not depend on the transmitted chunks, all evaluations are performed assuming that all-zero chunks are transmitted.

From the experimental results, one observes that log 10 σ 2 r can be represented as a function of (1rd) 2 , INRdB and log 10 (pI) and shows an almost linear dependency on each variable when the others are fixed. Therefore one may approximate log 10 σ 2 r as log 10 σ 2 r = µ0 (rd, INRdB) + µ1 (rd, INRdB) log 10 (pI) , [START_REF] Fan | Layered soft video broadcast for heterogeneous receivers[END_REF] where µi (rd, INRdB), i = 0, 1 are considered to have structure as µi (rd,

INRdB) = µi,0 + µi,1INRdB + µi,2 (1 -rd) 2 + µi,3 (1 -rd) 2 INRdB.
Considering all collected data, and using the PM [START_REF] Fan | Layered soft video broadcast for heterogeneous receivers[END_REF], one may easily get a least-square estimate of the value of the parameter vectors µ i = (µi,0, . . . , µi,3), i = 0, 1. One gets µ 256 0 = (2.6, -0.14, -1.71, 0.29) , µ 256 1 = (0.71, -0.003, -0.92, 0.1) for the channel with 256 subchannels, µ 416 0 = (2.6, -0.12, -1.79, 0.27), µ 416 1 = (0.72, 0.007, -0.93, 0.09) for the channel with 416 subchannels. One observes that both sets of parameters have very close values. By using estimated parameter vectors µ 0 and µ 1 , in most of the cases, estimated σ 2 r s by using model [START_REF] Fan | Layered soft video broadcast for heterogeneous receivers[END_REF] are very close to the values obtained experimentally, since the maximum gap is less than 2.6 . Consequently, the PM (7) provides a good estimate of σ 2 r and can be used in [START_REF] Fan | Wavecast: Wavelet based wireless video broadcast using lossy transmission[END_REF] to evaluate the total distortion.

Optimization of sub-channel provisioning

This section describes the way of optimal provisioning subchannels number q evaluation, which is a function of Ng, σ 2 I , pI, pT, nSC and vector of chunk variances (λ1 . . . λn Ck ). Here, one assumes a point-to-point communication.

For a given value of rd = q n SC , 1. σ 2 r is deduced from the PM ( 7), 2. one evaluates the target transmitted chunks number ℓt = nSCq, 3. chunk reconstruction MSE ε (rd) is obtained from [START_REF] Fan | Wavecast: Wavelet based wireless video broadcast using lossy transmission[END_REF]. At Step 3, the actual transmitted chunk number ℓ may be less than the target number ℓt due to power constraint [START_REF] Lee | Optimal linear coding for vector channels[END_REF][START_REF] Zheng | SoftCast with per-carrier power-constrained channels[END_REF].

The minimization of ε (rd) may then be performed, e.g., by exhaustive search, or by gradient descent to find rd = arg min

r d ε (rd) . ( 8 
)
The version of the LVC scheme implementing the Optimal Subchannel Provisioning (OSP) with the Impulse noise Correction (IC) is denoted LVC-OSP-IC in what follows.

SIMULATION

In this section, three variants of LVC schemes are compared. The first one is baseline LVC with No Impulse noise Correction (LVC-NIC). The number of transmitted chunks is only constrained by the bandwidth and total power constraints. Nevertheless, the effect of the impulse noise is taken into account by an increase of the variance of the background noise from σ 2 i to pIσ 2 I + σ 2 i . The precoding and decoding matrices are adapted accordingly [START_REF] Lee | Optimal linear coding for vector channels[END_REF][START_REF] Zheng | SoftCast with per-carrier power-constrained channels[END_REF]. The second one is LVC-WSP-IC (Section 2). The third one is LVC-OSP-IC (Section 3.3). The simulation parameters are detailed in Section 4.1. Simulation results are described in Section 4.2.

In all cases, metadata have to be transmitted to indicate the indexes and variances of the chunks, the subchannel noise variances of the reference channel, as well as the variance and probability of the impulse noise, etc. The amount of side information is of the same order of magnitude as that of plain SoftCast [START_REF] Jakubczak | Softcast: Clean-slate scalable wireless video[END_REF] and is neglected in what follows.

Simulation parameters

Two video sequences are taken from the MPEG test set used for the standardization of HEVC [START_REF] Ohm | Comparison of the coding efficiency of video coding standards-including high efficiency video coding (HEVC)[END_REF], namely BQSquare (Class D) and RaceHorse (Class C). One considers only the luminance component of each video. Consider OFDM subchannels with a bandwidth fSC = 24.414 kHz. Using analog QAM and root-raised-cosine Nyquist filters with βr = 30 % roll-off, one obtains a per-subchannel transmission rate rSC = 2f SC 1+βr . The subchannels number nSC for transmission are respectively 256 and 416 for BQSquare and Race-Horses. The GoP size nF is 8 frames. The chunk size nr × nc is 30 × 32. The frame rare rF is 60 and 30 for BQSquare and Race-Horses respectively. The number of chunks a subchannel can transmit for the duration of a GoP is νCk

= n F r F r SC nrnc .
For the typical values of the parameters considered in the simulations, vCk > 1, i.e., several chunks have to be transmitted on the same subchannel for the duration of a GoP. Therefore at most nTCk = νCknSC chunks can be transmitted. Moreover the nCk chunks are ordered by decreasing variance and are partitioned into ngCk = n Ck ν Ck groups of νCk chunks of similar variance. Consequently, νCk precoding (and decoding) matrices have to be designed considering the ngCk chunks of same index in each groups of chunks. In the simulation, we take νCk = 3 for BQSquare and νCk = 8 for RaceHorses. For impulse noise correction, the parameter D used in the FBMP is chosen equal to 5, which represents a compromise between complexity and performance as shown in [START_REF] Schniter | Fast bayesian matching pursuit[END_REF].

Simulation results

Impact of rd on the efficiency of impulse noise correction

The average PSNR of the first 5 GoPs of BQSquarre and Race-Horses is evaluated for SNRs ranging from 0 dB to 20 dB. This accounts only for the Gaussian noise, while the impulse noise power is considered via the INR. The power constraint pt for one OFDM symbol is set with 2560. The variance and the probability of impulse noise are σ 2 I = 100 and pI = 0.01 or pI = 0.02. Figure 2 represents the gains obtained by LVC-WSP-IC compared to LVC-NIC at different SNRs and for different target values of rd taken in R = {0.25, 0.33, 0.41, 0.5, 0.66, 0.75}. One observes that the optimal value of rd depends on the value of the channel SNR. At low SNRs, rd should be large, whereas at large SNRs, rd may be reduced. This is mainly due to the fact that at low SNR, the INR is low and impulse noise identification is difficult with few syndrome samples. 

Optimal subchannel provisioning

Section 3.3 illustrated how to find rd in the case of LVC-OSP-IC, while here we show how to find it in the case of LVC-WSP-IC. Figure 3 represents the PSNR differences between LVC-OSP-IC and LVC-WSP-IC. In most of the cases, LVC-OSP-IC provides better results (positive PSNR difference), since the search for the optimal rd is in a larger set ranging from 0.15 to 0.75 with a step 0.005, and the time to evaluate ( 6) is negligible. In some cases, LVC-OSP-IC may not perform as well as LVC-WSP-IC due to a mismatch of the PM. Nevertheless, the PNSR loss remains less than 0.05 dB. Finally, Figure 4 shows reconstructed frames of RaceHorses with LVC-NIC and LVC-OSP-IC when σ 2 I = 100, pI = 0.01, SNR = 15 dB. A gain of 7.8 dB is observed when the impulse noise mitigation is performed. Reconstructed videos, including one additional test sequence (BasketballDrive) are available at https://drive.google.com/drive/folders/13LB5nR3nY79bF3CEMUl41HY4Bc_ekhBF.

Analysis of the effect of mismatched channel conditions

In the following experiments, the channel SNR is set equal to 20 dB. One considers several target impulse noise probabilities pIt chosen equal to 0%, 0.5%, 1%, or 2% for the LVC-OSP-IC scheme. Then PSNR results for actual impulse noise probabilities pIs ranging from 0% to 4% are shown in Figure 5. In simulation, at receiver side, the parameters of impulse noise correction (FBMP algorithm) and decoding matrix computation (Section 3.1) use the actual channel im- pulse noise probability. As expected, the performance is best when pI matches pIt. Choosing a large pIt improves the robustness to a larger pI, but the price to be paid is a lower PSNR when pI is smaller than pIt. It also shows that even if a small pIt = 0.5% is chosen, in case of mismatch, the PSNR decrease is much smoother than in absence of subchannel provisioning for impulse noise mitigation.

CONCLUSION

This paper considers SoftCast-based video transmission scheme affected by impulse noise. FBMP algorithm is adapted for impulse noise mitigation. This requires the provisioning of some subchannels on which no information is transmitted. In this case the nominal PSNR decreases in absence of impulse noise. A trade-off has thus to be found between impulse noise correction efficiency and nominal PSNR reduction.

To address this problem, a PM model proposed to evaluate the variance of the impulse noise residual after mitigation step. This model allows one to estimate optimal number of subchannel to provision for impulse noise correction. The performance of proposed LVC-OSP-IC scheme has been evaluated on two reference video sequences. The performance is significantly better than LVC baseline LVC-NIC.

Future work will be dedicated to the evaluation of the optimal number of subchannels to provision for impulse noise correction in case of LVC under multicast situation.

  F vr|s Cov (F vr|s) = F Cov (vr|s) F H has its diagonal elements equal to σ 2 r = Tr (Cov (vr|s)) /nSC. Clearly, the off-diagonal entries in Cov (F vr|s) are not zero, but they are neglected in what follows to get Cov (F vr|s) ≈ σ 2 r I.
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 23 Fig. 2: PSNR gain of LVC-WSP-IC compared to LVC-NIC for different rd when σ 2 I = 100. (a) BQSquare; (b) RaceHorses.

  (a) LVC-NIC: PSNR=30.83dB (b) LVC-OSP-IC: PSNR=38, 64dB.
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 45 Fig. 4: First frame of RaceHorses. σ 2 I = 100, pI = 0.01 and SNR=15dB. (a) by using LVC-NIC; (b) by using LVC-OSP-IC.