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CHANNEL IMPULSIVE NOISE MITIGATION
FOR LINEAR VIDEO CODING SCHEMES

S. Zheng, M. Cagnazzo

LTCI, Télécom ParisTech,
Univ Paris-Saclay, 75013, Paris, France.

ABSTRACT

This paper considers the problem of impulse noise mitigatitben
video is encoded using a SoftCast-based Linear Video Cqtv@)
scheme and transmitted using an Orthogonal Frequencgibivi

M. Kieffer

L2S, CNRS—CentraleSupelec—Univ Paris-Sud,
Univ Paris-Saclay, 3 rue Joliot-Curie,
91192 Gif-sur-Yvette, France.

noise is modeled in the time domain by iid Bernoulli-Gaussiari-
ables. In here Fast Bayesian Matching Pursuit (FBMP) [1g0-al
rithm is employed for impulse noise mitigation. This apmioae-
quires the provisioning of some OFDM subchannels to esérte
impulse noise locations and amplitudes. Since nothing eanans-

Multiplexing (OFDM) scheme over a wideband channel prone tojtteq on provisioned subchannels, this leads to a decrafathe

impulse noise. In the time domain, the impulse noise is nemtiel
as independent and identically distributed (iid) Berne@lhussian
variables. A Fast Bayesian Matching Pursuit algorithm ipleyed
for impulse noise mitigation. This approach requires thavision-

ing of some OFDM subchannels to estimate the impulse noise lo

cations and amplitudes. Provisioned subchannels cannatdibto
transmit data and lead to a decrease of the video qualityceivers
in absence of impulse noise. Using a phenomenological n{Bdi4)
of the residual noise variance after impulse mitigationharee pro-
posed an algorithms that is able to evaluate the optimal eurob
subchannels to provision for impulse noise correction. Ution
results show that the PM can accurately predict the numbsulof
channels to provision and that impulse noise mitigation signif-
icantly improve the decoded video quality compared to aasibn
where all subchannels are used for data transmission.

Index Terms— Video transmission. SoftCast. OFDM. Impulse

noise correction. Sparse vector estimation. Optimization

1. INTRODUCTION AND MAIN CONTRIBUTIONS

SoftCast [9] based Linear video coding (LVC) and transroissi
schemes [2,4-8,10,13-15, 18,22—-27] have emerged as asprigmi
alternative to classical video coding [19-21] when vides tmbe
transmitted to wireless receivers experiencing differ@amd time-
varying channel conditions. In LVC, the video content is eded
with linear-only operators, such as a full-frame Discretesi@Ge
Transform (DCT) and using linear channel precoding of tH2G&
coefficients. Since the transmitted symbols are lineargted to
the original video pixel values and a Linear Minimum Mean &gu
Error (LMMSE) estimator is used at receiver side, the dedadgeo
quality scales linearly with the channel signal-noiséeré&NR) [9].

number of transmitted chunks and to a decrease of the vidale qu
ity at receivers in absence of impulse noise. A trade-offthas to
be found between impulse noise correction efficiency andimam
PSNR reduction.

Compared to the state-of-the-art, our contributions gradapt
FBMP in channel impulse noise mitigation for LVC schemas), (
propose a phenomenological model (PM) structure to desdhie
variance of residual noise after impulse noise mitigatidiii.) By
using this PM to provide an algorithm for the selection ofdpé&mal
number of subchannels to provision for impulse noise ctioec
Simulation results illustrate the performance improvetsgnovided
by the proposed impulse noise mitigation scheme.

The rest of the paper is organized as follows. The applioaifo
FBMP for impulse noise mitigation to LVC scheme is described
Section 2. Section 3 presents the way the optimal numberlsf su
channels to provision can be determined for impulse noiseeco
tion. Simulation results are described in Section 4 befoesvihg
some conclusions in Section 5.

2. IMPULSE NOISE CORRECTION SCHEME FOR LVC

In this section we present the architecture of the proposguliise
noise correction scheme for SoftCast-based [9] LVC archites,
which is shown in Fig. 1. In this paper we focus on Scaling, Im-
pulse Noise EstimatiorE), Impulse Noise MitigationINM) and
decoding (LMMSE) modules, while the other steps are the s@ne
in [9].

The input video is organized in Group of Pictures (GoP); each
GoP undergoes 3D-DCT and the resulting coefficients arenarga
in blocks called chunks. The number of chunks per GoP isneder
to asnck. The chunks are scaled and used to modulate the carri-

In this paper, we address the problem of impulse noise miters of an OFDM-based transmission scheme wigh subchannels;
igation when the LVC-encoded video is transmitted using an O a total powerpr is available for each OFDM symbol. In this pa-

thogonal Frequency-Division Multiplexing (OFDM) schemepa

per, we focus on the luminance part of the video. The chrontiea

wideband channel prone to impulse noise. Many communitatio components undergo a similar processing.

channels may be also prone to impulse noesg,,in Power Line
Telecommunications (PLT) channels [29]. Impulse noiseghhaigh

To perform scaling and transmission; x nc chunk vectors
ti, 1 = 1,...,m X nc, each of dimensiomcy, are formed by se-

magnitude (its power may be 50dB above that of the backgrountecting for each vector one coefficient per chunk. Thecan be

noise), and when it is bursty, may corrupt the channel forentloan
1 ms. If impulse noise is not corrected, the communicatiaope
mance may be significantly degraded [1, 12]. As in [1], thelisp

seen as realizations af; x nc iid Gaussian vectors with covari-
ance matrixA = diag(A: ... Ang ). Without loss of generality, the
chunks, are assumed to be sorted according to decreasiagoar
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Fig. 1:
with subchannel provisioning and impulse noise mitigatiofhe
transmitter and the receiver are shown.

Aiyi=1,...
a diagonal precoding matrig € R™sc*"ck [9,11, 28] designed in
such a way that; = Gt; satisfies a power constraipt/2. We
focus on a bandwidth constrained scenario whege < nck. In

this case, onlt the firstsc largest variance chunks can be transmit-

ted [9]. Moreover, due to the total power constraint, it isgible that

the ¢ lowest-variance chunks must further be discarded [11,2B].

our proposed architecture, it is possible to discard chwek ehen
there is enough available transmission power, since thésabion
will improve the robustness towards impulse noise, as sHaten
on. In any case, when we discaya¢hunks, the lasj rows of G are
null.

Then, n, x nc/2 vectors of complex symbols are formed

by combining pairs of consecutive scaled chunk vectais: =
G (t2i—1 + jt2i), i = 1,...,m X ne/2; the power ofu; is pr.

Proposed architecture for Modified SoftCast-based LVC

,nck. The chunk vectors are multiplied (scaling) by

typical compressive sensing estimation problem [3] foralitmany
solutions have been proposed. Here, FBMP algorithm is eredlo
to get an estimaté, = E (uvi|s) of vy [17]. This step correspond to
INE in Figure 1. Finally, after impulse noise mitigation we figid

y=Fy— Iy
:ﬂ+F(U|—iJ\|)+F’Ug. (3)

This step correspond ttNM in Figure 1. In what follows, this
scheme is called LVC With Subchannel Provisioning and Isgul
Correction (LVC-WSP-IC). The main difficulty lies in the apiiza-
tion of the numbeg of subchannels provisioned for impulse noise
mitigation. A solution to this problem is detailed in Secti®.

3. OPTIMAL NUMBER OF SUB-CHANNEL
PROVISIONING

As shown in [17], the efficiency of the FBMP algorithm increas
with the numbey; of observations of linear combinations of the im-
pulse errors (2). However, increasingeduces the number of sub-
channels on which chunk coefficients can be transmittedadetioff
has thus to be found between efficiency of impulse noise atibg
and transmission performance.

3.1. Residual noise after impulse noise mitigation

One may rewrite (3) as
y=1u+ Fu + Fug, 4

wherev, = v — v represents the impulse noise residual vector after
mitigation. This residual can be seen as an additional remsgo-

Next theu;s are used to modulate the OFDM carriers in a standarghent to the background Gaussian noise affecting the subrel

way. For the sake of simplicity, in what follows the indéis omit-

As shown in [1] covariance of impulse noise residual Cays)

ted, since all vector; have similar distribution and undergo the can be approximated as a diagonal matrix, provided thatand

same processing. In the plain Softcast, a Hadamard transfor
performed after chunk scaling. Here, to simplify preseéatgtthis
additional transform is not considered.

g are large enough. Therefore, the covariance matrix'of|s
Cov(Fu|s) = FCov(u|s) F™ has its diagonal elements equal
to o7 = Tr(Cov(u|s)) /nsc. Clearly, the off-diagonal entries in

The transmitted signal is assumed to be corrupted by GaussiaCov (Fu|s) are not zero, but they are neglected in what follows to

noise and impulsive noise. At the receiver side, the inpthefFT
is a vectory € C"sc that may be modeled as as [1]

y = FH17+U|+UQ, (8]

where F¥ is IDFT matrix, vq is a Gaussian noise vector andis
an impulse noise vector. After the DFFvy ~ CN (0, Ng) can

get
COV(F'Url ) NUrI (5)

Considering (4) and (5), the vectof#&.; and Gt2;+1 are cor-
rupted respectively by the real and imaginary part§’of and F'vg,
with Fur ~ CN (0,071) . Assuming that'v, and Fvg are uncor-
related, each component Gft2; and Gtai41 will be corrupted by
a zero-mean Gaussian noise with varianée o? + a?/2. By

be modeled as a zero-mean complex circular Gaussian naise velsing this in the design of the optimal precoding matrix aadodi-

tor [1] with Ny = 2N andN = diag(o7,...,0..), without loss
of generality, one assumes that the subchannel indexingisthat
O'% < -0 < aisc.
parametep; = Pr{s, = 1} andwi ~ CN (0,207) with of > o7,
7= 1 , nsc.

Slnce lastg rows of G are null, we can introduce the parity- \where/ <

check matrix@e C7*"s¢ formed by the lasly rows of F, and
UFH @G = 0. Then one may evaluate tisgndrome vector

s = Wy = Yo 4+ Yoy, 2)

whereWvg ~ CN (0, N.), with N, = 2diag (o, PITR Orse)-
Therefore to mitigate the effect of the impulse noise, oretbasti-
mate the sparse vectorfrom noisy measurements @fv;. This is a

The components ofy are iid and such that
v, = dxwy, Wheredy, is the realization of a Bernoulli variable with

ing matrices, the MSE of the received chunk ve(ﬁb[H -1, }
[11,28]is

TCk

= Z/\+\/_21/AU“, (6)

i=0+1

2
— Uc,i >

nsc is the largest integer such th VC :

Z o'

0,2=1,.. erthﬁ—W
i=1"¢,i

3.2. Estimation ofo?

o? depends oy = nsc — £, Ny, o, andp, [17]. An explicit ex-
pression of the evolution of?2 is very difficult to obtain. Thus, in



this section, we will resort to a phenomenological model P2
as a function of these parameters. First experiments haare dmn-
ducted to characterize the structure of the model. Thendheof
the model parameters are estimated via least-square &stima
Two main channels withsc 256 subchannels anflsc =

4. SIMULATION

In this section, three variants of LVC schemes are comparféxr:
first one is baseline LVC with No Impulse noise Correction ¢V
NIC). The number of transmitted chunks is only constraingdhe

416 subchannels are considered here. For both channels, @aussbandwidth and total power constraints. Nevertheless, fieeteof

background noise wittNy = 2041 and impulse noise? = 100
are introduced. The variance of the background noise isttjun
such a way that th@npulsive to background noise rat{dNR) in
dB, i.e, 10log,, (o7 /og) ranges fromi0 dB to 30 dB with a step
of 2 dB. The impulse probability, ranges fron0.5% to 3% with
a step 0f0.5%. Under these channel conditions? is evaluated,
which is obtained as the average|lef — 7i||Z, where® is obtained
from the FBMP algorithm. One evaluates considering different
proportions of unused subchannels= nisc ranging from0.15 to

the impulse noise is taken into account by an increase ofdhe v
ance of the background noise frarf to pioi + 2. The precoding
and decoding matrices are adapted accordingly [11, 28]. SEce
ond one is LVC-WSP-IC (Section 2). The third one is LVC-OSP-I
(Section 3.3). The simulation parameters are detailed itiGe4.1.
Simulation results are described in Section 4.2.

In all cases, metadata have to be transmitted to indicatethe
dexes and variances of the chunks, the subchannel noisemvesi of
the reference channel, as well as the variance and pratyadfilihe

0.75 with a step 0f0.05. Since the FBMP only uses the syndrome impulse noisegtc The amount of side information is of the same

(2), which does not depend on the transmitted chunks, dliatians
are performed assuming that all-zero chunks are tranghitte
From the experimental results, one observes that leg’) can

be represented as a function(af— rq)?, INRgs and log,, (pr) and
shows an almost linear dependency on each variable whetthbieso
are fixed. Therefore one may approximatellpg;?) as

log,, (07) = po (ra, INRas) + 21 (ra, INRag) 10gyo (1), (7)

where u; (rq,INRgg), @ = 0,1 are considered to have struc-
ture asy; (¢, INRg) = piio + pi,1INRas + pi2 (1 —ra)® +
i3 (1 —74)* INRgs.

Considering all collected data, and using the PM (7), on
may easily get a least-square estimate of the value of trenpar
eter vectors; = (pti0,...,14,3), @ = 0,1. One getsus™® =
(2.6, —0.14, —1.71, 0.29), u2°® = (0.71, —0.003, —0.92, 0.1)
for the channel witl256 subchannelgey'® = (2.6, —0.12, —1.79,
0.27), 1'% = (0.72, 0.007, —0.93, 0.09) for the channel with

416 subchannels. One observes that both sets of parameters h

very close values. By using estimated parameter vegigraind
1., in most of the cases, estimategs by using model (7) are very
close to the values obtained experimentally, since the mmaxi gap

[S)

order of magnitude as that of plain SoftCast [9] and is negtbt
what follows.

4.1. Simulation parameters

Two video sequences are taken from the MPEG test set used for
the standardization of HEVC [16], namely BQSquare (Clasari)
RaceHorse (Class C). One considers only the luminance compo
nent of each video. Consider OFDM subchannels with a bartdwid
fsc = 24.414 kHz. Using analog QAM and root-raised-cosine
Nyquist filters withs, = 30 % roll-off, one obtains a per-subchannel
transmission ratesc 2fsc - The subchannels numbesc for

ST 1+
fransmission are respectlvéﬁG and416 for BQSquare and Race-

Horses. The GoP sizer is 8 frames. The chunk size; x nc is
30 x 32. The frame rare is 60 and 30 for BQSquare and Race-
Horses respectively. The number of chunks a subchannetaas:t
mit for the duration of a GoP igck = Z—E % For the typical values
of the parameters considered in the simulatiorg,> 1, i.e., sev-
| chunks have to be transmitted on the same subchanniefor

uration of a GoP. Therefore at mastcy veknsc chunks can
be transmitted. Moreover thecx chunks are ordered by decreasing
variance and are partitioned intgck = Z—SE groups ofvck chunks of

is less thar2.6 . Consequently, the PM (7) provides a good estimateSimilar variance. Consequentlyx precoding (and decoding) matri-

of o2 and can be used in (6) to evaluate the total distortion.

3.3. Optimization of sub-channel provisioning

This section describes the way of optimal provisioning salbnels
numberq evaluation, which is a function aiVy, ol | pi, pT, nsc
and vector of chunk variancés\; ...\, ). Here, one assumes a
point-to-point communication.

For a given value ofq = %

1. o2 is deduced from the PM (7),
2. one evaluates the target transmitted chunks nunibet
nsc —4d¢,

3. chunk reconstruction MSE(rq) is obtained from (6).
At Step3, the actual transmitted chunk numbkemay be less than
the target numbef; due to power constraint [11, 28].

The minimization ofe (rq4) may then be performee,g, by ex-
haustive search, or by gradient descent to find

Ta = argmine (rq) . (8)
Td

The version of the LVC scheme implementing the Optimal Saheh

nel Provisioning (OSP) with the Impulse noise Correctid@)(ls

denoted LVC-OSP-IC in what follows.

ces have to be designed consideringrthex chunks of same index
in each groups of chunks. In the simulation, we take = 3 for
BQSquare andck = 8 for RaceHorses. For impulse noise correc-
tion, the parameteb used in the FBMP is chosen equaktovhich
represents a compromise between complexity and perfoenasc
shown in [17].

4.2. Simulation results
4.2.1. Impact of-q on the efficiency of impulse noise correction

The average PSNR of the first GoPs of BQSquarre and Race-
Horses is evaluated for SNRs ranging frandB to 20 dB. This
accounts only for the Gaussian noise, while the impulseenuisver

is considered via the INR. The power constrainfor one OFDM
symbol is set with2560. The variance and the probability of im-
pulse noise arei? = 100 andp, = 0.01 orp; = 0.02. Figure 2
represents the gains obtained by LVC-WSP-IC compared to-LVC
NIC at different SNRs and for different target valuesrgtaken in

R = {0.25,0.33,0.41,0.5,0.66, 0.75}. One observes that the op-
timal value ofrq depends on the value of the channel SNR. At low
SNRs,q should be large, whereas at large SNRsnay be reduced.
This is mainly due to the fact that at low SNR, the INR is low and
impulse noise identification is difficult with few syndromansples.
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Fig. 5. Effect of the mismatch between the target impulse noise

probability pix and the actual impulse noise probability when

At high SNR, the INR increases, and it becomes easier toifglent SNR=20dB (for the RaceHorses video sequence)

impulse noise.

pulse noise probability. As expected, the performance $ Wwaen

pi matchespy. Choosing a larger: improves the robustness to a
Section 3.3 illustrated how to findy in the case of LVC-OSP-IC, largerpi, but the price to be paid is a lower PSNR wheiis smaller
while here we show how to find it in the case of LVC-WSP-IC. Fig- thanpu. It also shows that even if a smalk = 0.5% is chosen,
ure 3 represents the PSNR differences between LVC-OSP4C arin case of mismatch, the PSNR decrease is much smootherrthan i
LVC-WSP-IC. In most of the cases, LVC-OSP-IC provides brette absence of subchannel provisioning for impulse noise atitg.
results (positive PSNR difference), since the search ferotimal

rq IS in a larger set ranging froMm 15 to 0.75 with a step0.005, and

4.2.2. Optimal subchannel provisioning

the time to evaluate (6) is negligible. In some cases, LVQROS 5. CONCLUSION
may not perform as well as LVC-WSP-IC due to a mismatch of the
PM. Nevertheless, the PNSR loss remains less @h@indB. This paper considers SoftCast-based video transmissianse af-

Finally, Figure 4 shows reconstructed frames of RaceHorsefected by impulse noise. FBMP algorithm is adapted for irapul
with LVC-NIC and LVC-OSP-IC wherv? = 100, pi = 0.01, noise mitigation. This requires the provisioning of sombchan-
SNR = 15 dB. A gain of 7.8 dB is observed when the impulse nels on which no information is transmitted. In this caserthinal
noise mitigation is performed. Reconstructed videos, uidicly PSNR decreases in absence of impulse noise. A trade-offibasd
one additional test sequence (BasketballDrive) are adailmt be found between impulse noise correction efficiency andimaim
https://drive.google.com/drive/folders/13LB5nR3MFICEMUI41HY4Bc_ekhBF PSNR reduction.

To address this problem, a PM model proposed to evaluate the
variance of the impulse noise residual after mitigatiorp st@his
model allows one to estimate optimal number of subchanngide
In the following experiments, the channel SNR is set equadtdB.  Vision for impulse noise correction. The performance ofppsed
One considers several target impulse noise probabiliieshosen ~ LVC-OSP-IC scheme has been evaluated on two reference seeo
equal t00%, 0.5%, 1%, or 2% for the LVC-OSP-IC scheme. Then quences. The performance is significantly better than LVé&lie
PSNR results for actual impulse noise probabilifigsranging from  LVC-NIC.

0% to 4% are shown in Figure 5. In simulation, at receiver side, the  Future work will be dedicated to the evaluation of the optima
parameters of impulse noise correction (FBMP algorithng de-  number of subchannels to provision for impulse noise ctioedn
coding matrix computation (Section 3.1) use the actual sbbim-  case of LVC under multicast situation.

4.2.3. Analysis of the effect of mismatched channel camditi
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