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Abstract
Statistical analysis of rank data describing pref-
erences over small and variable subsets of a po-
tentially large ensemble of items {1, . . . , n} is
a very challenging problem. It is motivated by
a wide variety of modern applications, such as
recommender systems or search engines. How-
ever, very few inference methods have been doc-
umented in the literature to learn a ranking model
from such incomplete rank data. The goal of this
paper is twofold: it develops a rigorous mathe-
matical framework for the problem of learning
a ranking model from incomplete rankings and
introduces a novel general statistical method to
address it. Based on an original concept of multi-
resolution analysis (MRA) of incomplete rank-
ings, it finely adapts to any observation setting,
leading to a statistical accuracy and an algorith-
mic complexity that depend directly on the com-
plexity of the observed data. Beyond theoretical
guarantees, we also provide experimental results
that show its statistical performance.

1. Introduction
Motivated by numerous modern applications ranging from
the design of recommender systems to customer analytics
through the optimization of search engines, the analysis
of rank data has recently been the subject of much atten-
tion in the machine-learning literature. A “full ranking”
on a set of n ≥ 1 items JnK := {1, . . . , n} is an order-
ing of the form a1 � · · · � an, where a1 and an are
respectively the items ranked first and last. It is usually
described as the permutation σ on JnK that maps an item
to its rank, i.e. such that σ(ai) = i for all i ∈ JnK. The
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variability of a statistical population of full rankings is thus
modeled by a probability distribution p on the symmetric
group Sn, the set of all permutations on JnK, called a rank-
ing model. The statistical issue is then to learn this rank-
ing model from the available observations, either through
parametric modeling such as those proposed in the semi-
nal contributions of (Mallows, 1957), (Luce, 1959; Plack-
ett, 1975) or more recently in (Fligner & Verducci, 1986;
Liqun, 2000; Lebanon & Lafferty, 2002; Meek & Meila,
2014), or through “nonparametric-like” approaches (i.e.
without assuming an explicit structure for the distribution),
such as kernel estimation (Lebanon & Mao, 2008; Sun
et al., 2012), techniques based on sparsity concepts (Jaga-
bathula & Shah, 2011), independence modeling (Huang &
Guestrin, 2009) or inference based on harmonic analysis of
the space of distributions on Sn (Diaconis, 1988; Huang
et al., 2009; Kondor & Barbosa, 2010; Irurozki et al., 2011;
Kakarala, 2011; Kondor & Dempsey, 2012).

However, a major issue arises in practice from the fact that
rank data seldom take the form of full rankings. Much more
frequently the available rank data describe “limited” infor-
mation, of the form of partial and/or incomplete rankings.
Formally, they correspond to partial orders on JnK and can
be naturally identified as subsets of permutations on JnK,
the subsets formed by their linear extensions. Let p be the
probability distribution on Sn of the random permutation
Σ that models the variability of the preferences among the
population of interest. The probability of a partial order
represented by S ⊂ Sn is then defined by

P[Σ ∈ S] =
∑
σ∈S

p(σ).

For instance, the probability that item i be ranked first is
given by P[Σ(i) = 1] =

∑
σ∈Sn, σ(i)=1 p(σ), and the

probability that item i be preferred to item j is given by
P[Σ(i) < Σ(j)] =

∑
σ∈Sn, σ(i)<σ(j) p(σ). These quan-

tities correspond to marginal probabilities of the ranking
model p. One may either seek to estimate the full rank-
ing model p from degraded observations under a strong
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structural assumption on p or else try to learn what is ac-
cessible from the observations and typically build an em-
pirical ranking model, whose observable marginal distribu-
tions are close to those of the true underlying model.

Special attention has been paid in the literature to the sit-
uation where observations are partial rankings or bucket
orders, defined as full rankings with ties, i.e. as orderings
of the form a1,1, . . . , a1,n1

≺ · · · ≺ ar,1, . . . , ar,nr where
1 ≤ r ≤ n and

∑r
i=1 ni = n (see Critchlow, 1985; Fa-

gin et al., 2006, for instance). This type of data includes
most preferred items or more general top-k rankings. The
information carried by such data is of “global” nature in
the sense that it involves all the items (e.g. a most preferred
item is preferred to every other item). Most estimation pro-
cedures originally designed for the observation of full rank-
ings then easily extend to the case where available data are
partial rankings (e.g. Lebanon & Lafferty, 2002; Lebanon
& Mao, 2008; Huang et al., 2012; Kakarala, 2012).

In many practical situations however, the rank data at dis-
posal only provide “local” information, in the sense that
they do not involve all the n items but only small and vari-
able subsets of items. In a recommendation setting for in-
stance, users usually express their preferences through im-
plicit feedback data related to the subset of recommended
items, not to all the items in the catalog. The first step
towards the analysis of such data is the analysis of order-
ings of the form a1 � · · · � ak with k < n, referred to
as incomplete rankings. The case k = 2 corresponds to
the setting of pairwise comparisons, the most widely con-
sidered in the literature (e.g. Wauthier et al., 2013; Busa-
fekete et al., 2014; Rajkumar & Agarwal, 2014). Roughly
speaking, the general problem of ranking model inference
based on incomplete rankings is poorly understood. For
instance, if the Placket-Luce model is naturally adapted to
such rank data and can be used with various statistical es-
timation techniques (see Hunter, 2004; Guiver & Snelson,
2009; Azari Soufiani et al., 2013), inferring the Mallows
model in this context is only possible with one method, in-
troduced in (Lu & Boutilier, 2011). In addition, only two
non-parametric methods capable of dealing with incom-
plete rankings of arbitrary length have been documented
in the literature, those introduced in Kondor & Barbosa
(2010) and Sun et al. (2012) namely.

It is the main purpose of this paper to propose a novel
methodology for the statistical analysis of incomplete rank-
ings. It crucially relies on a recent construction of a mul-
tiresolution analysis (MRA) for incomplete rankings, in-
troduced in Clémençon et al. (2014). Related concepts and
results involved in the subsequent analysis are summarized
in section 3. The first contribution of the present article is
the rigorous definition of an appropriate statistical frame-
work in section 2, together with a full characterization of

the components of a ranking model that can be statistically
recovered without any structural assumption. Its second
contribution is the introduction of a general method to learn
these components in section 4. It is model-free and statisti-
cally efficient, while having tractable complexity, as shown
in section 5. Experimental results are also provided in sec-
tion 6 to illustrate its performance.

Notations. For a set E of finite cardinality |E| < ∞,
we set P(E) = {A ⊂ E | |A| ≥ 2} and denote by
L(E) = {f : E → R} the euclidean space of real-
valued functions on E, equipped with the canonical inner
product 〈f, g〉 =

∑
x∈E f(x)g(x) and the associated norm

‖f‖ = (
∑
x∈E f(x)2)1/2. The indicator function of a sub-

set S ⊂ E is denoted by 1S in general and by δx when
S is the singleton {x}, in which case it is called a Dirac
function. For a r.v. X and a probability distribution µ on
a measurable space X , the notation X ∼ µ means that µ
is the probability distribution of X. For any sigma-algebra
B, we denote by F(B,X ) the set of random variables on X
that are B-measurable.

2. Problem Statement
If full rankings can be regarded as permutations, it is more
convenient to see an incomplete ranking π1 � · · · � πk as
the injective word π = π1 . . . πk, where 2 ≤ k ≤ n (see
Kitaev, 2011). The content of a ranking π is the set c(π) =
{π1, . . . , πk} and its length is the number |π| = |c(π)|.
We denote by Γ(A) the set of all injective words of content
A ∈ P(JnK) and by Γn the set of all incomplete rankings
on JnK. Notice that, equipped with these notations, Γ(JnK)
corresponds to Sn. Word π′ ∈ Γn is a subword of word
π ∈ Γn if there exist indices 1 ≤ i1 < · · · < i|π′| ≤ |π|
such that π′ = πi1 . . . πi|π′| , we then write π′ ⊂ π.

Incomplete rankings - Probabilistic model. With these
notations, the marginal distribution of a ranking model p
on a subset A ∈ P(JnK) is the probability distribution PA
over Γ(A) defined for π ∈ Γ(A) by

PA(π) =
∑

σ∈Sn, π⊂σ

p(σ). (1)

As explained in the Introduction, it is assumed here that
full realizations of a random permutation Σ ∼ p are not
observable. The variability of rankings over a given subset
A ∈ P(JnK) is described by PA, and it is thus natural to
model the observed rankings over A as i.i.d. realizations
of PA. The complexity in learning from incomplete rank-
ings stems from the fact that observations are not made on
one single subset of items only, but on a possibly very large
collection of (small) subsets. In e-commerce for instance, a
user only expresses her preferences on the subset of items
she came upon while browsing. We model the observa-
tion of an incomplete ranking by a random pair (A,Π),
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where A is the subset of items involved in the ranking and
Π is the ranking per se. We assume that A is independent
from the underlying random variable Σ and drawn from
an unknown probability distribution ν on P(JnK). In this
setting, a dataset DN is formed of N ≥ 1 i.i.d. pairs
(A1,Π

(1)), . . . , (AN ,Π
(N)), drawn according to the fol-

lowing scheme:

Ai ∼ ν and Π(i)|(Ai = A) ∼ PA. (2)

Remark 1. The statistical model (2) can be viewed as a
specific case of that introduced in Sun et al. (2012), where
observations of incomplete rankings are modeled as cen-
sored observations of permutations, leading to the follow-
ing setup: first a permutation Σ is drawn from p, then the
subset of items A is drawn from a probability distribution
νΣ on P(JnK), and the ranking Π is taken equal to the rank-
ing induced by Σ over A. This setting boils down to ours
when the distribution νσ is equal to ν for all σ ∈ Sn.

Identifiability. In this paper, the goal pursued is not to
recover the true underlying model p. Focus is rather on
learning an empirical ranking model as close as possible to
the true underlying model p given ν. Indeed, all subsets of
items are not assumed to be observable, which is the case
in many applications where preferences are only observed
on small subsets. In the absence of structural assumptions,
the ranking model p is not identifiable. For instance, when
only pairwise comparisons can be observed, one has ac-
cess to the pairwise marginals, whose distributions are each
characterized by a single parameter, leading to possibly
n(n − 1)/2 accessible parameters, whereas p is described
by n! − 1 free parameters, and thus cannot be identified.
In the general case, the accessible marginals are the PA’s
for A lying in the support of the distribution ν, which is
denoted byA = {A ∈ P(JnK) | ν(A) > 0} and referred to
as the observation design in the sequel. The number of ac-
cessible parameters is therefore equal to

∑
A∈A(|A|!− 1),

which can be greater than n!− 1 even if JnK 6∈ A. It is then
a priori unclear whether they charaterize p or, more gener-
ally, how many degrees of freedom they have. The answers
are provided by the following theorem. For any collection
of subsets S ⊂ P(JnK), we set P(S) =

⋃
A∈S P(A).

Theorem 1. In absence of any restrictive assumption on
the ranking model p, only the marginals pB for B ∈ P(A)
are identifiable from data drawn from (2). They are charac-
terized by

∑
B∈P(A) d|B| independent parameters, where

dk is the number of fixed-point free permutations (also
called derangements) on a set with k elements.

Theorem 1 is a direct consequence of the MRA of in-
complete rankings introduced in Clémençon et al. (2014),
briefly recalled in section 3. It shows for instance that if
A = {A ⊂ JnK | 2 ≤ |A| ≤ k} then the accessible pa-
rameters have O(nk) degrees of freedom. Attempting to
estimate p without any assumption is thus vain in general.

Statistical framework. Practical applications require the
construction of a ranking model, that can be used to com-
pute probabilities of rankings on any subset of items A ∈
P(JnK), as it is well illustrated in Sun et al. (2012). As
Γn =

⊔
A∈P(JnK) Γ(A), we embed all the spaces L(Γ(A))

into L(Γn). Let then MA : L(Γn) → L(Γ(A)) be
the marginal operator on A ∈ P(JnK) defined for any
f ∈ L(Γn) and π ∈ Γ(A) by

MAf(π) =
∑

σ∈Γn, π⊂σ
f(σ),

so that MAp = PA for all A ∈ P(JnK) and MAf = 0 if
f ∈ L(Γ(B)) with A 6∈ P(B). We then consider the prob-
lem of building an empirical ranking model q̂N on Sn from
the dataset DN such that its marginals MAq̂N are accurate
estimators of the PA’s, for A ∈ P(A).

Mathematically, building q̂N fromDN means that q̂N must
be BN -measurable, where BN is the σ-algebra generated
byDN . We allow q̂N to take negative values but we impose
that

∑
σ∈Sn q̂N (σ) = 1. The possible negativity of q̂N (σ)

for σ ∈ Sn does not have much impact in practice because
when the marginals MAq̂N are close to the PA’s, they only
take positive values. We evaluate the quality of the esti-
mation of PA for A ∈ A through the mean squared error
(MSE) E[‖MAq̂N − PA‖2A], where ‖ · ‖A denotes the eu-
clidean norm on L(Γ(A)). Here and throughout the article,
the symbol E represents the expectation with respect to the
randomly drawn dataset DN . As we consider the problem
of simultaneous estimation of the marginals, it is natural to
consider the sum of the errors on each A weighted by ν.
Definition 1 (Performance measure). The performance of
an empirical ranking model q̂N ∈ F(BN , L(Sn)) with∑
σ∈Sn q̂N (σ) = 1 is given by

E(q̂N ) :=
∑
A∈A

ν(A)E
[
‖MAq̂N − PA‖2A

]
.

Statistical and computational challenge. We empha-
size that constructing an accurate empirical ranking model
q̂N in this setting is far from being trivial, because the
marginalsMAq̂N are linked through highly entangled com-
binatorial relationships. Estimating marginals on different
subsets thus cannot be done separately (refer to the Sup-
plementary Material for an illustrative example). Even
if the PA’s are assumed to be known, finding a function
q ∈ L(Sn) such that MAq = PA for all A ∈ A requires
to solve a linear system of

∑
A∈A |A|! equations with n!

unknowns, where each equation MAq(π) = PA(π) for
A ∈ A and π ∈ Γ(A) involves at least n!/|A|! opera-
tions. It therefore represents a daunting computational task
as soon as n > 10, whereas n is around 104 in practical
applications. Fortunately, as shall be seen below, the MRA
framework brings a new representation of the data tailored
to this task, drastically reducing this complexity.
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3. MRA of Incomplete Rankings
Multiresolution analysis of incomplete rankings crucially
relies on the following result: any function f on Sn can
be decomposed as a sum of components that each lo-
calize the specific information of one marginal MBf for
B ∈ P(JnK), in the sense that the marginal MAf on any
subset A ∈ P(JnK) only involves the components specific
to the subsets B ∈ P(A). This is formalized in the follow-
ing theorem, established in Clémençon et al. (2014). Let us
denote by V 0 = R1Sn the 1-d space of constant functions
in L(Sn), and for f ∈ L(Γn), we set f̄ =

∑
π∈Γn

f(π).

Theorem 2. There exists a collection (WB)B∈P(JnK) of
subspaces of L(Sn) orthogonal to V 0 such that:

1. L(Sn) = V 0 ⊕
⊕

B∈P(JnK)WB ,

2. For B ∈ P(JnK) and f ∈WB , MBf = 0⇒ f = 0,

3. For A,B ∈ P(JnK) with B 6⊂ A and f ∈ WB ,
MAf = 0.

In particular for f ∈ L(Sn), decomposed as f =
(1/n!)f̄ +

∑
B∈P(JnK) f̃B , and A ∈ P(JnK), one has:

MAf =
1

|A|!
f̄ +

∑
B∈P(A)

MAf̃B .

At last, dimWB = d|B| for all B ∈ P(JnK).

Multiscale structure. MRA allows to exploit the natural
multiscale structure of the marginals MAf of any function
f ∈ L(Sn). Here, the notion of scale corresponds to
the number of items in the subset on which the marginal
is considered. For k ∈ {2, . . . , n}, the space of scale
k is defined by W k =

⊕
|B|=kWB . One thus obtains

L(Sn) = V 0 ⊕
⊕n

k=2W
k. This last decomposition of

L(Sn) is somehow analogous to classic MRA on L2(R)
and offers a similar interpretation: if a function f ∈ L(Sn)

is projected onto V 0 ⊕
⊕K

k=2W
k with K ∈ {2, . . . , n},

then only the information of f of scale up to K can be cap-
tured. In other words, starting from a constant function in
V 0, each space W k provides the supplementary level of
details specific to scale k. The decomposition of L(Sn)
given by Theorem 2 actually allows to further decompose
a function f ∈ L(Sn) in the “space of items”, where each
component f̃B provides the supplementary level of details
specific to the marginal MBf , for B ∈ P(JnK). To a cer-
tain extent, this “space-scale” localization is analogous to
the classic space-scale localization in wavelet analysis.

When incomplete ranking data generated through the
scheme (2) are observed, one may form empirical versions
of the marginals MAp of the ranking model p on the sub-
sets A ∈ A and represent them as elements of L(Γ(A)).

This raw representation of the data is however not efficient
for a statistical analysis because it does not allow to ex-
ploit the structure induced by equation (1). In contrast, the
MRA framework brings a new representation that defines
efficient “features” for statistical analysis.

To define this representation, we enter the details of the
construction MRA framework. For B ∈ P(JnK), let HB

be the subspace of L(Γ(B)) defined by

HB = {F ∈ L(Γ(B)) |MB′F = 0 for all B′ ( B}.

Let 0̄ be by convention the unique injective word of content
∅ and length 0. Word π′ ∈ Γn is said a contiguous subword
of word π ∈ Γn if there exists i ∈ {1, . . . , |π| − |π′| + 1}
such that π′ = πiπi+1 . . . πi+|π′|−1. This is denoted by
π′ @ π. For A ∈ P(JnK), define the linear embedding
operator φA : L(Γn ∪ {0̄}) → L(Γ(A)) for σ ∈ Γ(A) by
φAδ0̄(σ) = 1/|A|! and for any ranking π ∈ Γn by

φAδπ(σ) =
1

(|A| − |π|+ 1)!
if π @ σ and 0 otherwise.

Then forA ∈ P(JnK), φJnK is an isomorphism betweenHA

andWA. This means that for f ∈ L(Sn) andB ∈ P(JnK),
there exists a unique element XJnK

B f ∈ HB such that f̃B =

X
JnK
B f . Setting X∅f = f̄ δ0̄, one has

f =
∑

B∈P(JnK)∪{∅}

φJnKX
JnK
B f.

More generally, Theorem 2 still holds true for any space
L(Γ(A)) with A ∈ P(JnK), so that L(Γ(A)) = R1Γ(A) ⊕⊕

B∈P(A)W
A
B , where for B ∈ P(A), WA

B is the de-
tail subspace of L(Γ(A)) related to B, and φA is an iso-
morphism between HB and WA

B . Thus for any function
F ∈ L(Γ(A)), there exists a unique family (XA

BF )B∈P(A)

with XA
BF ∈ HB for each B ∈ P(A) such that

F =
∑

B∈P(A)∪{∅}

φAX
A
BF,

where XA
∅ F = F̄ δ0̄. This defines for any B ∈ P(JnK) the

operator XB : L(Γn) → HB on each space L(Γ(A)) with
A ∈ P(JnK) by

XBF = XA
BF if B ⊂ A and 0 otherwise,

for F ∈ L(Γ(A)). Now, a result from Clémençon et al.
(2014) shows that for any A,A′, B ∈ P(JnK) such that
B ⊂ A′ ⊂ A and any F ∈ L(Γ(A)),

XBMA′F = XBF. (3)

Equation (3) means that the component XBF of F is “in-
variant under marginal transform”. In a statistical learn-
ing perspective, the marginals should thus be more ef-
ficiently estimated when represented through the projec-
tors XB . We call the operators XB the wavelet pro-
jectors, and define the wavelet transform as the operator
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P̂{2,4} P̂{1,2,3} P̂{1,3} P̂{3,4} M{1,3,4}q̂N

X̂{2,4} X̂{1,2} X̂{2,3} X̂{1,3} X̂{1,2,3} X̂{3,4}

Figure 1. Principle of the MRA-based linear ranking model

ΨX : L(Γn) →
⊕

B∈P(JnK)HB , F 7→ (XBF )B∈P(JnK).
The wavelet transform defines the representation that we
use for any function F ∈ L(Γ(A)) with A ∈ P(JnK). We
summarize its properties in the following theorem.
Theorem 3 (MRA representation). Let A ∈ P(JnK) and
F ∈ L(Γ(A)). Then

F =
∑

B∈P(A)∪{∅}

φAXBF and

MA′F =
∑

B∈P(A′)∪{∅}

φA′XBF for any A′ ∈ P(A).

4. MRA-based Estimation
The MRA framework shows that the marginals PA for
A ∈ A of the ranking model p are characterized by the
wavelet projections XBp for B ∈ P(A) :=

⋃
A∈A P(A).

This proves Theorem 1 and shows more specifically that
the component of p that can be learned when data is drawn
from the scheme (2) is φJnK

∑
B∈P(A)XBp. Based on this

observation, we introduce a general learning method that
relies on the estimation of the wavelet projections XBp of
the ranking model p for all B ∈ P(A).
Definition 2 (MRA-based empirical ranking model). The
general MRA-based learning method consists in construct-
ing for each B ∈ P(A) an estimator X̂B ∈ F(BN , HB) of
XBp from the dataset DN . The empirical ranking model is
then given by q̂N =

∑
B∈P(A)∪{∅} φJnKX̂B , where we fix

X̂∅ = δ0̄ for all empirical ranking models.

From dependence to independence. We underline that
the major advantage of this approach consists in the fact
that, as the wavelet projections are by construction linearly
independent, it turns the complex problem of simultane-
ously estimating the marginals into a collection of estima-
tion problems that can be solved independently. The per-
formance of a ranking model constructed this way can be
easily controlled via the following proposition.
Proposition 1. Let (X̂B)B∈P(A) with X̂B ∈ F(BN , HB)
for each B ∈ P(A) and q̂N the associated empirical rank-
ing model from definition 2. Then

E(q̂N ) ≤
∑

B∈P(A)

νφ(B)E
[∥∥∥X̂B −XBp

∥∥∥2

B

]

where νφ(B) =
∑
A⊂JnK, B⊂A ν(A)2|A|/(|A| − |B|+ 1)!.

Sketch of proof. One can show that for A,B ∈ P(JnK)
withB ⊂ A and F ∈ L(Γ(B)), ‖φAF‖2A = ‖F‖2B/(|A|−
|B| + 1)!. Then the proof is concluded using Theorem 3
and the Cauchy-Schwarz inequality. Refer to the Supple-
mentary Material for the technical details.

Among all the empirical ranking models that can be built
according to the principle formulated in Definition 2, we
consider a specific class of models, that shall be referred
to as MRA-based linear empirical ranking models. Its def-
inition is based on several empirical estimates built from
the dataset DN = {(A1,Π

(1)), . . . , (AN ,Π
(N))}. For

A ∈ P(JnK), we set ÎA = {1 ≤ i ≤ N |Ai = A}, so
that “ÎA 6= ∅” means that A is observed in the dataset DN .
The empirical estimator ν̂N of ν is naturally defined by
ν̂N (A) = |ÎA|/N for A ∈ P(JnK). We denote its support
by ÂN and refer to it as the empirical observation design.
Notice that ÂN ⊂ A, the support of ν. For A ∈ P(JnK),
we define the empirical estimator of PA for π ∈ Γ(A) by
P̂A(π) = |{i ∈ ÎA | Π(i) = π}/|ÎA| if A ∈ ÂN and
1/|A|! otherwise. We denote by BνN the σ-algebra gener-
ated by ν̂N .

For a given subset of items B ∈ P(A), there are two pos-
sibilities. Either B 6∈ P(ÂN ), meaning that it is not in-
cluded in any of the observed sets of items. In this case
one cannot infer anything about X̂B without additional reg-
ularity assumption. Or else B ∈ P(ÂN ), meaning that
there exists at least one observed subset of items A ∈ ÂN
such that B ⊂ A. Then natural candidates for X̂B are the
wavelet projections XBP̂A of the empirical estimators P̂A
for A ∈ ÂN such that B ⊂ A. This essential observa-
tion motivates the learning method proposed below. For
B ∈ P(JnK), we set Q(B) = {A ⊂ JnK | B ⊂ A}.
Definition 3 (MRA-based linear ranking model). For B ∈
P(A) and θ̂ ∈ F(BN ,R2n), the MRA-based linear estima-
tor related to the weighting vector θ̂ is defined by

X̂B,θ̂ =
∑

A∈ÂN∩Q(B)

θ̂(A)XBP̂A,

where by convention X̂B,θ̂ = 0 when ÂN ∩ Q(B) = ∅ or

equivalently B 6∈ P(ÂN ). We denote by q̂N,θ̂ the related

empirical ranking model and fix X̂∅,θ̂ = δ0̄.
Example 1. The principle of the MRA-based estimator is
depicted in Fig. 1. In this example, we assume that ÂN =
{{2, 4}, {1, 2, 3}, {1, 3}, {3, 4}}. For each A ∈ ÂN , the
empirical estimator P̂A contributes to the estimators X̂B of
XBp for all B ∈ P(A). Then the prediction on a (possi-
bly unobserved) subset A, A = {1, 3, 4} in the illustration,
only involves the X̂B’s for B ∈ P(A) ∩ P(ÂN ).
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Remark 2. Several methods for ranking aggregation or esti-
mation rely on the breaking of rankings into pairwise com-
parisons (see Hüllermeier et al., 2008, for instance). For
the usual parametric ranking models, it is usually shown
that these methods do not degrade the available informa-
tion too much (see for instance Lu & Boutilier, 2011; Meek
& Meila, 2014). When no structural assumption is made
however on the ranking model p, breaking all the observed
rankings into pairwise comparisons boils down to suppress-
ing all the information of scale higher than 2 defined in
the MRA framework. In particular any MRA-based lin-
ear ranking model defined from pairwise comparisons only
would be such that X̂B,θ̂ = 0 for allB ⊂ JnK with |B| > 2.

The following result provides asymptotic guarantees for
the accuracy of the MRA-based empirical ranking model
we proposed. We say that an empirical ranking model
q̂N ∈ F(BN , L(Sn)) is asymptotically unbiased if
limN→∞ E[MAq̂N ] = PA for all A ∈ A.

Proposition 2. Let θ̂ ∈ F(BνN ,R2n). Then the MRA-based
linear ranking model q̂N,θ̂ is asymptotically unbiased if

limN→∞ E
[∑

A∈ÂN∩Q(B) θ̂(A)
]

= 1 for all B ∈ P(A).

Sketch of proof. By Theorem 3, one has E[MAq̂N ] =∑
B∈P(A)∪{∅} φAE[X̂B,θ̂] for A ∈ A. Now, for B ∈

P(A) and π ∈ Γ(B), one can show after some calculations
that E[X̂B,θ̂(π)] = XBp(π)E

[∑
A∈ÂN∩Q(B) θ̂(A)

]
. This

suffices to conclude the proof. Refer to the Supplementary
Material for the technical details.

Notice that Proposition 2 requires that the weights θ̂(A) are
BνN -measurable, in other words that they are constructed
from ν̂N . They can be constructed from ÂN but not from
the P̂A’s for A ∈ ÂN for instance. This hypothesis is how-
ever not too limiting in practice. It is satisfied in particular
by the weighted least square estimator defined below.
Definition 4 (WLS estimator). Let B ∈ P(A). Given ν̂N ,
the solutions of the following minimization problem

min
θ̂∈R2n

∑
A∈ÂN∩Q(B)

ν̂N (A)‖X̂B,θ̂ −XBP̂A‖2B

are the vectors θ̂ ∈ R2n defined for all A ∈ ÂN ∩QB by

θ̂WLS(A) :=
ν̂N (A)∑

A′∈ÂN∩Q(B) ν̂N (A′)
. (4)

We then define the weighted least square estimator by
X̂WLS
B := X̂B,θ̂WLS and denote the related empirical rank-

ing model by q̂WLS
N .

Beyond the fact that the WLS ranking model is a natu-
ral choice among the class of MRA-based linear empir-
ical ranking models, the result stated below reveals that

it is asymptotically unbiased with an error rate of order
O(1/N), the optimal rate in parametric estimation.

Theorem 4. The WLS estimator q̂WLS
N is asymptotically

unbiased and has an error bounded by

E
(
q̂WLS
N

)
≤ C1

N
+ C2ρ

2N

for all N ≥ 1, where 0 < ρ < 1 is a constant that only de-
pends on ν and C1 and C2 are positive constants that only
depend on p and ν, given in the Supplementary Material.

Sketch of proof. First, using (4) one obtains, for B ∈
P(A), E

[∑
A∈ÂN∩Q(B) θ̂

WLS(A)
]

= 1 − (1 −∑
A∈Q(B) ν(A))N . Since B ∈ P(A), A ∩ Q(B) 6= ∅

and
∑
A∈Q(B) ν(A) > 0. Then Proposition 2 ensures

that q̂WLS
N is asymptotically unbiased. To bound the er-

ror, we use Proposition 1 and calculate explicitly the terms
E
[
‖X̂WLS

B −XBp‖2B
]

for B ∈ P(A) through the bias-
variance decomposition. Refer to the Supplementary Ma-
terial for technical details.

Remark 3. The two non-parametric approaches proposed
in the literature to handle incomplete rankings in Kondor
& Barbosa (2010) and Sun et al. (2012) both rely on kernel
regularization of a global estimator defined as

p̂N =
1

N

N∑
i=1

|Ai|!
n!

1Sn(Π(i)) (5)

in the present setting, where Sn(π) = {σ ∈ Sn | π ⊂ σ}
is the set of linear extensions of the ranking π ∈ Γn. The
choice of this estimator relies on the following heuristic:
the observation of an incomplete ranking π is actually a
degraded observation of a full ranking σ ∈ Sn(π). Thus it
gives the same information as the uniform distribution over
Sn(π), equal to (|π|!/n!)1Sn(π). The estimator p̂N is then
simply the average of the uniform distributions over the
Sn(Π(i))’s. Though this assumption is appealing, the esti-
mator p̂N is fundamentally biased. Indeed for B ∈ P(JnK)
and π ∈ Γ(B), E [MB p̂N (π)] =∑

A∈A
ν(A)

|A|!
n!

∑
π′∈Γ(A)

PA(π′)
〈
1Sn(π′),1Sn(π)

〉
,

which is usually different from PB(π) because the Sn(π)’s
are not disjoint for different π’s in general. For instance
in the case where only pairwise comparisons are observed,
one obtains after some calculations, for i 6= j ∈ JnK:

E
[
M{i,j}p̂N (ij)

]
=

1

2
+ ν({i, j})P ′{i,j}(ij)

+
1

3

∑
k∈JnK\{i,j}

[
ν({i, k})P ′{i,k}(ik) + ν({j, k})P ′{j,k}(kj)

]
,
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where for k 6= l ∈ JnK and π ∈ Γ({k, l}), P ′{k,l}(kl) :=

P{k,l}(kl) − 1/2. Except if the distribution ν is con-
centrated on the pair {i, j} solely (in which case there is
not much to say), this expression shows that the estimate
E
[
M{i,j}p̂N (ij)

]
blends the probabilities of many other

pairwise comparisons and is therefore fundamentally dif-
ferent from P{i,j}(ij).

The MRA representation allows to exploit only the infor-
mation from the observed dataset, which is why the con-
stants C1 and C2 in Theorem 4 depend on p and ν and
not directly on n. We point out however that the more dif-
fuse ν is, the more degrees of freedom the dataset has, and
the bigger they are. The same interpretation applies to the
computational aspects.

5. Computational Advantages
To be useful in practice, an empirical ranking model q̂N ∈
L(Sn) must face the following three intertwined computa-
tional challenges.

1. Storage of the ranking model: the naive storage of
a vector (q̂N (σ))σ∈Sn requires n! − 1 parameters,
which is largely unfeasible when n becomes greater
than 15.

2. Complexity of the learning procedure: the learning
procedure can require a drastic amount of operations,
because of the high dimensionality of the data.

3. Complexity of the computation of a marginal: for
A ∈ P(JnK) and π ∈ Γ(A), the naive computation of
MAq̂N (π) for π ∈ Γ(A) requires n!/|A|! operations.

Example 2. Consider the empirical model p̂N defined in
Remark 3 by (5). It can be rewritten as

p̂N =
∑
A∈ÂN

ν̂N (A)
∑

π∈Γ(A)

P̂A(π)1Sn(π).

Its most efficient storage is under the form of the collections
of parameters (ν̂N (A))A∈ÂN and (P̂A(π))A∈ÂN , π∈Γ(A),
and the learning procedure is naturally in O(N). But then,
each computation of the marginal probability of a ranking
π′ ∈ Γn involves the computation of all the inner prod-
ucts

〈
1Sn(π′),1Sn(π)

〉
for π ∈

⊔
A∈ÂN Γ(A). This is

at the root of the main computational limitation of the ap-
proaches introduced in Kondor & Barbosa (2010) and Sun
et al. (2012).

The MRA-based linear empirical ranking model is defined
in terms of wavelet projections and thus naturally over-
comes challenges 1. and 3., as shown by the following
result (see the Supplementary Material for the technical
proof). We denote by K = maxA∈A |A| the maximum
size of an observable subset.

Proposition 3. Let q̂N ∈ F(BN , L(Sn)) be a MRA-based
linear ranking model.

• Its storing requires a number of parameters upper
bounded by K! 2K min(N, |A|).

• The computation of MAq̂N (π) for A ∈ P(JnK) and
π ∈ Γ(A) needs less than |A|(|A| − 1)/2 operations.

As K is small in practical applications, these bounds are
quite reasonable. Analyzing the complexity of the learning
procedure for a general MRA-based linear ranking model is
too intricate because it depends on the choice of weighting
vector θ̂ ∈ R2n . We do it for the weighted least squares
model, using the following explicit formula (proved in the
Supplementary Material).

Proposition 4. For B ∈ P(ÂN ) and π ∈ Γ(B),

X̃WLS
B (π) =

∑
π′∈Γ(B)

αB(π, π′)|{1 ≤ i ≤ N | π′ ⊂ Π(i)}|∑
A∈ÂN∩Q(B) |IA|

,

where αB(π, π′) := XBδπ(π′) for π′ ∈ Γ(B).

The coefficients αB(π, π′) for B ∈ P(JnK) and π, π′ ∈
Γ(B) do not depend on the application nor on the dataset,
they can be pre-computed. It is shown in the Supplemen-
tary Material how their computation can be implemented
with complexity bounded by K2K!.

Proposition 5. Assuming that all coefficients αB(π, π′) for
B ∈ P(A) and π, π′ ∈ Γ(B) have been pre-computed,
the WLS ranking model can be learned with complexity
bounded by 2K(K! + 1)(N + |A|).

Refer to the Supplementary Material for the proof of Propo-
sition 5. The bounds given by Propositions 3 and 5 are not
small but they depend directly on the complexity of the ob-
served dataset, not on the number of items n. This is a great
achievement regarding the computational challenges of the
analysis of incomplete rankings.

6. Numerical Experiments
Here we examine the performance of the WLS empirical
ranking model in numerical experiments and compare it
with three others: the Plackett-Luce model (estimated by
means of the MM algorithm introduced in Hunter (2004)),
the estimator from Sun et al. (2012), called SLK (we take
the bandwidth of the kernel equal to

(
n
2

)
+ 1 to be sure

that the smoothing is applied to the entire dataset), and the
collection of empirical estimators (P̂A)A∈A. The latter are
not given as the marginals of a ranking model and besides,
it may be the case that no ranking model induces them due
to sampling noise. It is however interesting to see them as
a baseline.
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Figure 2. Evolution of the performance E(q̂N ) with N for each estimator: WLS in squares, empirical in diamonds, Plackett-Luce in
triangles and SLK in circles, with different underlying ranking models: APA dataset (first row), Mallows (second row), Plackett-Luce
(third row) and with probability ν uniform on {A ⊂ J5K | 2 ≤ |A| ≤ k} with k = 2, 3, 4, 5 (from left to right). For the Mallows and
Plackett-Luce models, the results are represented on a logarithmic scale.

Each experiment is characterized by a ranking model p,
a probability distribution ν and a number of observa-
tions N . We consider two theoretical ranking models,
namely a Plackett-Luce model defined for σ ∈ Sn by
pw(σ) =

∏n
i=1 wσi/(

∑n
j=i wσj ) with parameter vector

w = (w1, . . . , wn) drawn uniformly at random on the sim-
plex {x ∈ [0, 1]n |

∑n
i=1 xi = 1} and a Mallows model

defined for σ ∈ Sn by p(σ) ∝ e−T (σ0,σ) where T is the
Kendall’s tau distance on Sn and σ0 = 12 . . . n, and one
empirical model, namely the distribution of the 5738 votes
in the APA dataset (see Diaconis, 1989) that we consider
as a ground truth ranking model. In all the experiments,
n = 5. For each ranking model, we examine the four dif-
ferent settings where ν is the uniform probability distribu-
tion on {A ⊂ J5K | 2 ≤ |A| ≤ k} for k = 2, 3, 4, 5, and
let the size of the drawn dataset DN vary between 500 and
5000. We then evaluate the performance of an empirical
ranking model q̂N constructed from DN through a Monte-
Carlo estimate of the performance E(q̂N ) averaged from
100 drawings of DN .

Fig. 2 depicts the experimental results. As explained in Re-
mark 3, the SLK ranking model applies a strong smoothing
which leads to a very small variance but an important bias
when p differs from the uniform distribution on Sn. This is
why it converges rapidly and its performance is almost con-
stant through the experiments for N ≥ 500. The Plackett-
Luce model relies on a structural assumption and is thus

naturally biased when p is not a Plackett-Luce model. This
explains why it does not perform best in the latter case.
As noticed in Remark 2, the marginals of the WLS rank-
ing model are equal to the empirical estimators when only
pairwise comparisons are observed. More generally, they
are both asymptotically unbiased whatever the underlying
ranking model p and have similar behaviors, except that
the WLS has reduced variance and thus converges faster.
Globally, the WLS ranking model quickly outperforms its
competitors when N grows.

7. Conclusion
In this paper, we rigorously formulated the issue of learning
a ranking model from incomplete rankings, as the problem
of building an empirical ranking model whose marginals
are good estimators of those of the true underlying ranking
model, when they are observable. Based on the concept
of MRA of incomplete rankings introduced in (Clémençon
et al., 2014), we provided a general framework to construct
an asymptotically unbiased ranking model with an optimal
convergence rate, which can be computed with complex-
ity directly depending on the data. These theoretical guar-
antees, as well as the good performance observed in nu-
merical experiments, are an encouragement to pursue the
development of this framework, for instance to define effi-
cient regularization procedures or apply it to other statisti-
cal tasks.
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