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Abstract

It is the purpose of this paper to formu-
late the issue of scoring multivariate observa-
tions depending on their degree of abnormal-
ity/novelty as an unsupervised learning task.
Whereas in the 1-d situation, this problem
can be dealt with by means of tail estima-
tion techniques, observations being viewed as
all the more ”abnormal” as they are located
far in the tail(s) of the underlying probabil-
ity distribution. In a wide variety of appli-
cations, it is desirable to dispose of a scalar
valued ”scoring” function allowing for com-
paring the degree of abnormality of multi-
variate observations. Here we formulate the
issue of scoring anomalies as a M -estimation
problem. A (functional) performance crite-
rion is proposed, whose optimal elements are,
as expected, nondecreasing transforms of the
density. The question of empirical estima-
tion of this criterion is tackled and prelimi-
nary statistical results related to the accuracy
of partition-based techniques for optimizing
empirical estimates of the empirical perfor-
mance measure are established.

1 INTRODUCTION

In a wide variety of applications, ranging from the
monitoring of aircraft engines in aeronautics to non de-
structive control quality in the industry through fraud
detection, anomaly/novelty detection is of crucial im-
portance. In practice, its very purpose is to rank
observations by degree of abnormality/novelty, rather
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than simply assigning them a binary label, ”abnor-
mal” vs ”normal”. Whereas in the case of univari-
ate observations generally, abnormal values are those
which are extremes, i.e. ”too large” or ”too small”
in regard to central quantities such as the mean or
the median, and anomaly detection may then derive
from standard tail distribution analysis, it is far from
easy to formulate the issue in a multivariate situation.
In high-dimensional situations, a variety of statistical
techniques, relying on the concept of minimum volume
set proposed in the seminal contribution of Polonik
[1997], have been developed in order to split the fea-
ture space, X ⊂ Rd with d ≥ 1 say, into two halves
and decide whether observations should be considered
as normal or not (see also Scott and Nowak [2006] and
Koltchinskii [1997] for closely related notions). The
problem considered here is of different nature, the goal
pursued is not to assign to all possible observations a
label ”normal” vs ”abnormal”, but to rank them ac-
cording to their level of ”abnormality”. The most nat-
ural way to define a preorder on the feature space X is
to transport the natural order on the real line through
some (measurable) scoring function s : X → R+: the
”smaller” the score s(X), the more likely the observa-
tion X is viewed as ”abnormal”. This problem shall
be here referred to as anomaly scoring and can be
related to the literature dedicated to statistical depth
functions in nonparametric statistics and operations
research, see Zuo and Serfling [2000] and the references
therein. Such functions are generally proposed ad hoc
to defined a ”center” for the probability distribution
of interest and a notion of distance to the latter. The
angle embraced in this paper is quite different, it is
that of statistical learning theory. Our objective is in-
deed twofold: 1) propose a performance criterion for
the anomaly scoring problem so as to formulate it in
terms of M -estimation 2) investigate the accuracy of
scoring rules which optimize empirical estimates of the
criterion thus tailored.

Due to the global nature of the problem, the crite-
rion we promote is functional and is referred to as the
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Mass-Volume curve (MV-curve in abbreviated form).
The latter induces a partial preorder on the set of scor-
ing functions: the collection of optimal elements is de-
fined as the set of scoring functions whose MV-curve
is minimum everywhere and is shown to coincide, as
expected, as increasing transforms of the underlying
probability density. The issue of estimating the crite-
rion based on data is then tackled and statistical re-
sults for learning strategies based on the minimization
of such empirical estimates are then established.

The remainder of the article is organized as follows.
Section 2 sets out the main notations and briefly re-
calls the crucial notions related to anomaly detection
on which the results of the paper rely. Section 3
first provides an informal description of the anomaly
scoring problem and then introduces a criterion dedi-
cated to evaluate the performance of any scoring func-
tion in this context. The set of optimal elements is
described and statistical estimation of the criterion
proposed is also tackled. Statistical learning of an
anomaly scoring function is then formulated as a func-
tional M -estimation problem in section 4. Section 5
is devoted to the study of (partition-based) learning
techniques for the design of optimal anomaly scoring
functions based on empirical estimates of the perfor-
mance measure, according to the empirical risk min-
imization paradigm. Technical proofs are postponed
to the Appendix section.

2 THEORETICAL BACKGROUND

As a first go, we start off with describing the mathe-
matical setup and recalling key concepts in anomaly
detection involved in the subsequent analysis.

2.1 Framework and Notations

Here and throughout, we suppose that we observe
independent and identically distributed realisations
X1, . . . , Xn of an unknown continuous probability
distribution F (dx), copies of a generic random variable
X, taking their values in a (possibly very high dimen-
sional) feature space X ⊂ Rd, with d ≥ 1. The den-
sity of the random variable X with respect to λ(dx),
Lebesgue measure on Rd, is denoted by f(x), its sup-
port by suppF and the indicator function of any event
E by I{E}. The pseudo-inverse of any càd-làg func-
tion H(x) on R is defined by H−1(u) = inf{t ∈ R :
H(t) ≥ u}. The essential supremum of any nonnega-
tive r.v. |Y | is denoted by ||Y ||∞. A natural way of
defining preorders on X is to map its elements onto
R+ and use the natural order on the real half-line. For
any measurable function s : X 7→ R+, we denote by
�s the preorder on X defined by

∀(x, x′) ∈ X 2: x �s x′ iff s(x) ≤ s(x′).

We denote the level sets of any scoring function s by:

Ωs,t = {x ∈ X : s(x) ≥ t}, t ∈ [−∞, +∞].

Observe that the sequence is decreasing (for the inclu-
sion, as t increases from −∞ to +∞):

∀(t, t′) ∈ R2, t ≥ t′ ⇒ Ωs,t ⊂ Ωs,t′

and that limt→+∞ Ωs,t = ∅ and limt→−∞Ωs,t = X 1.
When the function s(x) is additionally integrable w.r.t.
Lebesgue measure, it is called a scoring function. The
set of all scoring functions is denoted by S.

The following quantities shall also be used in the se-
quel. For any scoring function s and threshold level
t ≥ 0, define:

αs(t) = P{s(X) ≥ t},
λs(t) = λ ({x ∈ X : s(x) ≥ t}) .

The quantity αs(t) is referred to as the mass of the
level set Ωs,t, while λs(t) is generally termed the vol-
ume (w.r.t. Lebesgue measure). Notice that the vol-
umes are finite on R∗+: ∀t > 0, λs(t) ≤

∫
X s(x)dx/t <

+∞. Reciprocally, for any (total) preorder � on X ,
one may define a scoring function s such that � coin-
cides with �s. Indeed, for all x ∈ X , consider the (sup-
posedly measurable) set Ω�(x) = {x′ ∈ X : x′ � x}.
Then, for any finite positive measure µ(dx) with X
as support, define the scoring function sµ, �(x) =∫
x′∈X I{x′ ∈ Ω(x)}µ(dx′). It is immediate to check

that sµ, � induces the preorder � on X .

For any α ∈ (0, 1) and any scoring function s,
Q(s, α) = inf{u ∈ R : P{s(X) ≤ u} ≥ 1 − α} de-
notes the quantile at level 1−α of s(X)’s distribution
throughout the paper. We also set Q∗(α) = Q(f, α)
for all α ∈ (0, 1).

2.2 Minimum Volume Sets

The notion of minimum volume sets has been intro-
duced in the seminal contribution Polonik [1997] in
order to describe regions where a multivariate r.v. X
takes its values with highest/smallest probability. Let
α ∈ (0, 1), a minimum volume set Ω∗α of mass at least
α is any solution of the constrained minimization prob-
lem

minΩ λ(Ω) subject to P{X ∈ Ω} ≥ α,

1Recall that a sequence (An)n≥1 of subsets of an en-
semble E is said to converge iff lim sup An = lim inf An.
In such a case, one defines its limit, denoted by lim An as
lim sup An = lim inf An.
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where the minimum is taken over all measurable sub-
sets Ω of X . Application of this concept includes in
particular novelty/anomaly detection: for large values
of α, abnormal observations are those which belong
to the complementary set X \ Ω∗α . In the continuous
setting, it can be shown that there exists a threshold
value t∗α

def
= Q(f, α) ≥ 0 such that the level set Ωf,t∗α

is a solution of the constrained optimization problem
above. The (generalized) quantile function is then de-
fined by:

∀α ∈ (0, 1), λ∗(α)
def
= λ(Ω∗α).

The following assumptions shall be used in the subse-
quent analysis.

A1: the density f is bounded, i.e. ||f(X)||∞ < +∞.

A2: the density f has no flat parts, i.e. for any con-
stant c ≥ 0,

P{f(X) = c} = 0.

Under the hypotheses above, for any α ∈ (0, 1), there
exists a unique minimum volume set Ωf,t∗α (up to sub-
sets of null F -measure), whose mass is equal to α
exactly. Additionally, the mapping λ∗ is continuous
on (0, 1) and uniformly continuous on [0, 1− ε] for all
ε ∈ (0, 1) (when the support of F (dx) is compact, uni-
form continuity holds on the whole interval [0, 1]).

From a statistical perspective, estimates Ω̂∗α of mini-
mum volume sets are built by replacing the unknown
probability distribution F by its empirical version
Fn = (1/n)

∑n
i=1 δXi and restricting optimization to

a collection A of borelian subsets of X , supposed rich
enough to include all density level sets (or reasonable
approximants of the latter). In Polonik [1997], func-
tional limit results are derived for the generalized em-
pirical quantile process {λ(Ω̂∗α)−λ∗(α)} under certain
assumptions for the class A (stipulating in particu-
lar that A is a Glivenko-Cantelli class for F (dx)). In
Scott and Nowak [2006], it is proposed to replace the
level α by α − φn where φn plays the role of toler-
ance parameter (of the same order as the supremum
supΩ∈A |Fn(Ω)−F (Ω)| roughly, complexity of the class
A being controlled by the VC dimension or by means
of the concept of Rademacher averages, so as to estab-
lish rate bounds at n < +∞ fixed.

Alternatively, so-termed plug-in techniques, consisting
in computing first an estimate f̂ of the density f and
considering next level sets Ω bf,t of the resulting esti-
mator have been investigated in several papers, among
which Tsybakov [1997] or Rigollet and Vert [2009] for
instance. Such an approach however yields significant
computational issues even for moderate values of the
dimension, inherent to the curse of dimensionality phe-
nomenon.

3 SCORING ANOMALIES

In this section, the issue of scoring observations de-
pending on their level of novelty/abnormality is first
described in an informal manner and next formulated
quantitatively, as a functional optimization problem.

3.1 Overall Objective

The idea promoted through this article is to
learn a scoring function s, based on training data
X1, . . . , Xn, so as to describe extremal behavior of
the (high dimensional) random vector X by that of the
univariate variable s(X), which can be summarized
by its tail behavior near 0: hopefully, the smaller the
score s(X), the more abnormal/rare the observation
X should be considered. Hence, an optimal scoring
function should naturally permit to rank observations
X by increasing order of magnitude of f(X). The set
of optimal scoring functions is then given by:

S∗ = {T◦f : T : Imf(X)→ R+ strictly increasing},

denoting by Imf(X) the image of the mapping f(X).

The result below connects the notion of optimal scor-
ing function to minimum volume sets. It shows that
solving the anomaly scoring problem boils down to re-
covering all density level sets and can be seen as an
overlaid collection of minimum volume set estimation
problems. This observation shall turn out to be very
useful when designing practical learning strategies, see
section 5.
Lemma 1. (Optimal scoring functions) A
bounded scoring function s∗ belongs to S∗ iff there ex-
ists a nonnegative borelian function ω and a continu-
ous positive r.v. V such that:

∀x ∈ X , s∗(x) = sup
u∈X

s∗(u) + E [ω(V ) · I{f(x) ≥ V }] .

The proof is straightforward and is left to the reader,
due to space limitations. Notice that the equation
above is in particular fulfilled for s∗(x) = f(x), when
ω ≡ ||f(X)||∞ and V = ||f(X)||∞ · U , where U is
uniformly distributed on (0, 1).

3.2 A Functional Criterion

We now introduce the concept of Mass-Volume curve
and shows that it is a natural criterion to evaluate the
accuracy of decision rules in regard to anomaly scoring.
Definition 2. (True Mass-Volume curve) Let s ∈
S. Its Mass-Volume curve (MV curve in abbreviated
form) with respect to X’s probability distribution is the
parametrized curve:

t ∈ R+ 7→ (αs(t), λs(t)) ∈ [0, 1]× [0,+∞].
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In addition, if αs has no flat parts, the MV curve can
also be defined as the plot of the mapping

MVs : α ∈ (0, 1) 7→ MVs(α)
def
= λs ◦ α−1

s (α).

By convention, points of the curve corresponding to
possible jumps are connected by line segments, so that
the MV curve is continuous and can always be seen
as the graph of a mapping MVs on (0, ᾱs) with ᾱs =
supt>0 αs(t). When ᾱs < 1, one sets MVs(α) = +∞
for α ∈ [ᾱs, 1).

This functional criterion induces a partial order over
the set of all scoring functions. Let s1 and s2 be two
scoring functions on X , the ordering provided by s1 is
better than that induced by s2 when

∀α ∈ (0, 1), MVs1(α) ≤ MVs2(α).

We point out that, in certain situations, some parts of
the MV curve may be of interest solely, corresponding
to large values of α when focus is on extremal observa-
tions and to small values of α when modes of the un-
derlying distributions are investigated. For instance,
the more concentrated around its modes X’s distribu-
tion, the closer to the right lower corner of the MV
space the MV curve.

The result below shows that optimal scoring functions
are those whose MV curves are minimum everywhere.

Proposition 3. (Optimal MV curve) Let assump-
tions A1−A2 be fulfilled. The elements of the class S∗
have the same MV curve and provide the best possible
ordering of X ’s elements in regard to the MV curve
criterion:

∀(s, α) ∈ S × (0, 1), MV∗(α) ≤ MVs(α), (1)

where MV∗(α) = MVf (α) for all α ∈ (0, 1).

In addition, we have: ∀(s, α) ∈ S × (0, 1),

0 ≤ MVs(α)−MV∗(α) ≤ λ
(
Ω∗α∆Ωs,Q(s,α)

)
,

where ∆ denotes the symmetric difference.

The proof is immediate based on the results recalled
in subsection 2.2 and is left to the reader. Incidentally,
notice that, equipped with the notations introduced in
2.2, λ∗(α) = MV∗(α) for all α ∈ (0, 1).

Example 1. (Gaussian distribution) In the
case when X is a Gaussian variable N (0, 1), we
have MV∗(α) = 2Φ−1((1 + α)/2), where Φ(x) =
(2π)−1/2

∫ x
−∞ exp(−u2/2)du.

The following result reveals that the optimal MV curve
is convex and provides a closed analytical form for its
derivative.

Proposition 4. (Convexity and Derivative)
Suppose that hypotheses A1 −A2 are satisfied. Then,
the optimal curve α ∈ (0, 1) 7→ MV∗(α) is convex.
In addition, if f is differentiable with a gradient tak-
ing nonzero values on the boundary ∂Ω∗α = {x ∈ X :
f(x) = Q∗(α)}, MV∗ is differentiable at α ∈ [0, 1[ and:

MV∗′(α) =
1

f(Q∗(α))

∫
x∈∂Ω∗α

1
||∇f(x)||

dµ(dx),

where µ denotes the Hausdorff measure on ∂Ω∗α.

See the Appendix section for the technical proof. El-
ementary properties of MV curves are summarized in
the following proposition.

Proposition 5. (Properties of MV curves) for
any s ∈ S, the following assertions hold true.

1. Limit values.We have MVs(0) = 0 and
limα→+1 MVs(α) = λ(suppF ).

2. Invariance. For any strictly increasing function
ψ : R+ → R+, we have MVs = MVψ◦s.

3. Monotonicity. The mapping α ∈ (0, 1) 7→
MVs(α) is strictly increasing on (0, ᾱs).

4. Differentiability. Suppose that s(X)’s distribu-
tion is continuous and has no plateau. Then, if
t > 0 7→ λs(t) is differentiable and s is Lipschitz,
then MVs is differentiable on (0, 1) and:

MV′s(α) = − 1
α′s(α

−1
s (α))

∫
s−1({α−1

s (α)})

µ(dy)
|∇f(y)|

,

for all α ∈ (0, 1), denoting by µ(dy) the Hausdorff
measure on the boundary s−1({α−1

s (α)}).

These assertions straightforwardly result from Defini-
tion 2. Except those related to the derivative formula,
details are omitted.

3.3 Piecewise Constant Functions

We now focus on scoring functions of the simplest
form. Let K ≥ 1 and consider a partition P of the
feature space X defined by K pairwise disjoint sub-
sets C1, . . . , CK of finite Lebesgue measure plus the
subset X \ ∪k≤KCk. When suppF is compact, one
may suppose X of finite Lebesgue measure and take
X = ∪k≤KCk. Then, for any permutation σ in the
symmetric group SK of {1, . . . , K}, define the piece-
wise constant scoring function given by: ∀x ∈ X ,

sP,σ(x) =
K∑
k=1

(K − k + 1) · I{x ∈ Cσ(k)}.
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Its piecewise linear MV curve (α,MVsP,σ (α)) con-
nects the knots (0, 0) = (αsP,σ (K + 1), λsP,σ (K +
1)), . . . , (αsP,σ (1), λsP,σ (1)), where

αsP,σ (k) =
k∑
j=1

F (Cσ(k)) and βsP,σ (k) =
k∑
j=1

λ(Cσ(k)).

We also have MVsP,σ (α) = +∞ for α >
∑K
k=1 F (Ck).

The following lemma describes the best scoring func-
tions among those of the type defined above in the
sense of the MV curve criterion. Its proof is omitted.

Lemma 6. (Optimality) Let σ∗ ∈ SK such that

λ(Cσ∗(1))
F (Cσ∗(1))

≤ · · · ≤
λ(Cσ∗(K))
F (Cσ∗(K))

.

Then, for any σ ∈ SK , we have:

∀α ∈ (0, 1), MVsP,σ∗ (α) ≤ MVsP,σ (α).

We point out that σ∗ corresponds to a permutation σ
which makes MVP,σ convex on [0, F (∪k≤KCk)].

Approximation of the optimal MV curve. Let
ε ∈ (0, 1) and ∆ : α0 = 0 < α1 < · · · < αK = 1− ε <
αK+1 = 1 be a subdivision of the unit interval. The
MV curve of the piecewise constant scoring function

s∗∆(x) =
K∑
k=1

(K − k + 1) · I{x ∈ Ω∗αk \ Ω∗αk−1
}

is the piecewise linear interpolant of MV∗ on the in-
terval [0, 1 − ε] related to the meshgrid ∆. Hence,
if MV∗ is of class C2 on [0, 1 − ε] and such that
supα∈[0,1−ε] |MV∗′′(α)| ≤ κ < +∞, we classically have
the error estimate, see de Boor [2001]: ∀α ∈ [0, 1− ε],

MVs∗∆
(α)−MV∗(α) ≤ 1

8
κ ·m2

∆, (2)

with m∆ = max0≤k≤K(αi+1 − αi)2. When
λ(suppF ) < +∞, this is still true for ε = 0.

3.4 Empirical Performance

In practice, MV curves are unknown, just like X’s
probability distribution, and must be estimated based
on the observed sample X1, . . . , Xn. Replacing the
mass of level sets by its empirical counterpart in Def-
inition 2 leads to define the notion of empirical MV
curve. We set, for all t ≥ 0,

α̂s(t) =
1
n

n∑
i=1

I{s(Xi) > t}.

Notice that α̂s takes its values in the set {k/n : k =
0, . . . , n} and set ̂̄αs = (1/n)

∑n
i=1 I{s(Xi) > 0}.

Definition 7. (Empirical MV curve) Let s ∈ S.
By definition, the empirical MV curve of s is the graph
of the (piecewise constant) function

M̂Vs : α ∈ [0, ̂̄αs] 7→ λs ◦ α̂−1
s (α).

By convention, set M̂Vs(α) = +∞ for α ∈ [̂̄αs, 1].

The empirical MV curve can be viewed as the restric-
tion to (0, ̂̄αs) of the plot of a mapping denoted by
M̂Vs : α ∈ (0, 1) 7→ M̂Vs(α), where M̂Vs(α) = +∞
on (α̂s(s(Xσs(ns)), 1).
Remark 1. (Alternative definition) One could
also consider, as statistical version of the MV curve,
the broken line connecting the knots corresponding to
jumps of the curve M̂Vs. Its asymptotic properties can
be straightforwardly derived from those of M̂Vs, see
Theorem 8 below.

The theorem below reveals that, under mild assump-
tions, the empirical MV curve is a consistent and
asymptotically Gaussian estimate of the MV curve,
uniformly over any subinterval of [0, 1[. It involves the
assumptions listed below. Let ε ∈ (0, 1) be fixed.

A3 The r.v. s(X) is bounded, i.e. ||s(X)||∞ < +∞,
and has a continuous distribution with differen-
tiable density fs(t) such that:

∀α ∈ [0, 1− ε], fs(α−1
s (α)) > 0

and, for some γ > 0,

sup
α∈[0,1−ε]

d log(fs ◦ αs)
dα

(α) ≤ γ < +∞.

A4 The mapping λs is of class C2.

Theorem 8. Let 0 < ε ≤ 1 and s ∈ S. Assume
that Assumptions A3 −A4 are fulfilled. The following
assertions hold true.

(i) (Consistency) With probability one, we have
uniformly over [0, 1− ε]:

lim
n→+∞

M̂Vs(α) = MVs(α).

(ii) (Strong approximation) There exists a se-
quence of Brownian bridges (W (n)(α))α∈(0,1) such
that we almost-surely have, uniformly over the
compact interval [0, 1− ε]: as n→∞,

√
n
(

M̂Vs(α)−MVs(α)
)

= Z(n)(α) + o(vn),

with, for all n ≥ 1,

vn =
(log log n)ρ1(γ) logρ2(γ) n√

n
,
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where

(ρ1(γ), ρ2(γ)) =

 (0, 1) if γ < 1
(0, 2) if γ = 1
(γ, γ − 1 + η) if γ > 1

,

the parameter η > 0 being arbitrary, and

Z(n)(α) =
λ′s(α

−1
s (α))

fs(α−1
s (α))

W (n)(α), for α ∈ (0, 1).

See the Appendix for the technical proof, which re-
lies on standard strong approximation results for
the quantile process, see Csorgo and Revesz [1981].
Assertion (ii) means that the fluctuation process
{
√
n(M̂Vs(α) − MVs(α))}α∈[0,1−ε] converges in the

space of càd-làg function on [0, 1 − ε] equipped with
the sup norm, to the law of a Gaussian stochastic pro-
cess {Z(1)(α)}α∈[0,1−ε].
Remark 2. (Asymptotic normality) It results
from Assertion (ii) in Theorem 8 that, for any α ∈
(0, 1), the pointwise estimator M̂Vs(α) is asymptoti-
cally Gaussian under Assumptions A3 −A4. For all
α ∈ (0, 1), we have the convergence in distribution:√
n{M̂Vs(α) − MVs(α)} ⇒ N (0, σ2

s), as n → +∞,
with σ2

s = α(1− α)(λ′s(α
−1
s (α))/fs(α−1

s (α)))2.
Remark 3. (Confidence regions) In practice, it is
difficult to construct confidence regions for MV curves
from simulated brownian bridges, based on the approx-
imation above. Following in the footsteps of Silverman
and Young [1987], it is recommended instead to imple-
ment a smoothed bootstrap procedure. The asymptotic
validity of such a resampling method immediately de-
rives from the strong approximation result previously
stated, by standard coupling arguments.

4 A M-ESTIMATION APPROACH

The anomaly scoring problem consists in building
a scoring function s(x), based on the training set
X1, . . . , Xn, such that MVs is as close as possible to
the optimum MV∗. Due to the functional nature of the
criterion performance, there are many ways of mea-
suring how close the MV curve of a scoring function
candidate and the optimal one are. The Lp-distances,
for 1 ≤ p ≤ +∞, provide a relevant collection of
risk measures. Let ε ∈ (0, 1) be fixed (take ε = 0 if
λ(suppF ) < +∞) and consider the losses related to
the sup-norm and that related to the L1-distance:

d1(s, f) =
∫ 1−ε

0

|MVs(α)−MV∗(α)|dα,

d∞(s, f) = sup
α∈[0,1−ε]

{MVs(α)−MV∗(α)}.

Observe that, by virtue of Proposition 3, the ”excess-
risk” decomposition applies in the L1 case and the

learning problem can be directly tackled through stan-
dard M -estimation arguments:

d1(s, f) =
∫ 1−ε

0

MVs(α)dα−
∫ 1−ε

0

MV∗(α)dα.

Hence, possible learning techniques could be based on
the minimization, over a set S0 ⊂ S of candidates,
of empirical counterparts of the area under the MV
curve, such as

∫ 1−ε
0

M̂Vs(α)dα. In contrast, the ap-
proach cannot be straightforwardly extended to the
sup-norm situation. A possible strategy would be to
combine M -estimation with approximation methods,
so as to ”discretize” the optimization task. This would
lead to replace the unknown curve MV∗ by an approx-
imant, a piecewise linear interpolant M̃V

∗
related to a

subdivision ∆ : 0 < α1 < · · · < αK = 1 − ε say and
decompose the L∞-risk as

d∞(s, f) ≤ sup
α∈[0,1−ε]

{MVs∗∆
(α)−MV∗(α)}+

sup
α∈[0,1−ε]

{MVs∗∆
(α)−MVs(α)},

the first term on the right hand side of the bound above
being viewed as the bias of the statistical method.
If one restricts optimization to the set of piecewise
constant scoring functions taking K + 1 values, the
problem thus boils down to recovering the bilevel sets
R∗k = Ω∗αk \ Ω∗αk−1

for k = 1, . . . , K. This simple ob-
servation paves the way for designing scoring strategies
relying on the estimation of a finite number of mini-
mum volume sets, just like the approach described in
the next section.

5 A PARTITIONING ALGORITHM

Now that the anomaly scoring problem has been rigor-
ously formulated, we propose a data-based partition-
ing method to solve it and establish learning rates for
the latter. For simplicity, we assume that suppF is a
compact subset of Rd, the unit cube [0, 1]d say.

5.1 Histogram Scoring Rules

Suppose that we are given a partition of the space
X = [0, 1]d formed of (Λ = Jd) cubes of side length
1/J , J ≥ 1: C1, . . . , CΛ. Consider a subdivision ∆ :
α0 = 0 < α1 < · · · < αK < αK+1 = 1 of [0, 1].
We set: α̂(C) = (1/n)

∑n
i=1 I{Xi ∈ C} for any subset

C ⊂ X . Let φn ∈ (0, 1) be some tolerance parameter,
the algorithm is implemented in three steps as follows.

Algorithm

1. Sort the cubes by increasing order of magnitude
of the empirical mass:

α̂
(
C(1)

)
≥ · · · ≥ α̂

(
C(Λ)

)
.
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2. For k = 1 to K − 1,

(a) Compute

jk = inf

{
j ≥ 1 :

j∑
l=1

α̂
(
C(l)
)
≥ αk − φn

}

(b) Bind the cubes together, so as to form

ΩJ,k =
jk⋃
j=1

C(j).

3. Compute the piecewise constant scoring function:

ŝJ,∆(x) =
K∑
k=1

(K − k + 1) · I{x ∈ RJ,k}, (3)

where RJ,k = ΩJ,k \ ΩJ,k−1 for 1 ≤ k ≤ K, with
ΩJ,0 = ∅ by convention.

Incidentally, we point out that the empirical MV curve
of the scoring function produced by the algorithm
above is always convex, just like the target MV∗ (see
Proposition 4). Borrowing standard concepts of the
finite element method, consider the ”hat functions”:
ψk(·) = ψ(·; (αk−1, αk))−ψ(·; (αk, αk+1)), for 1 ≤ k <
K, with ψ(α, (α′, α′′)) = (α − α′)/(α′′ − α′) · I{α ∈
[α′, α′′]} for α′ < α′′, and set ψK = ψ(·; (αK , 1)). We
may then write:

M̂VbsJ,∆(α) =
K∑
k=1

jk
Jd
· ψk(α).

One may also easily check that this curve is domi-
nated everywhere on [0, 1] by the MV curve of any
scoring function taking at most K + 1 different values
and constant on each cube C(j): the function ŝJ,∆(x)
is thus the empirical risk minimizer over the corre-
sponding class of scoring rules in the strong L∞-sense.
Of course, the success of such an approach crucially
depends on the accuracy of the (linear) approximation
scheme the algorithm tries to mimic and on the capac-
ity of binded cubes of side length 1/J to approximate
well bilevel sets of the underlying density f(x).

5.2 Rate Bound Analysis

We now investigate to which extent the procedure de-
scribed above yields a scoring rule whose MV curve
is close to the optimal one, in the sup norm sense.
As a first go, the theorem below describes the accu-
racy of empirical minimum volume sets, on which the
scoring function (3) is based. Except it incorporates
the impact of the bias, the result is a straightforward
application of Theorem 3 in Scott and Nowak [2006].

Theorem 9. Suppose that Assumptions A1 −A2 are
fulfilled. Let (α, δ) ∈ (0, 1)2. Fix J ≥ 1. Assume that
the boundary of Ω∗α is of finite perimeter per(∂Ω∗α) <
+∞. Take φn(δ) =

√
(2Jd log(2) + log(2/δ))/(2n)

and j = inf{l ∈ {1, . . . , J} :
∑j
l=1 α̂(C(l)) ≥ α− φn}

and set Ω̂α =
⋃
l≤j C(l). Then, for some constant

c < +∞, with probability at least 1− δ: ∀n ≥ 1,

P{X ∈ Ω̂α} ≥ α−2φn and λ(Ω̂α) ≤ λ∗(α)+c
per(∂Ω∗α)

Jd
.

We point out that, if f(x) is of bounded variation,
∂Ω∗α is classically of finite perimeter for all α ∈ (0, 1),
cf Evans and Gariepy [1992].

Theorem 10. Suppose that Assumptions A1 −A2

are satisfied. Assume that there exist finite constants
M , 0 < θ0 < θ1, κ and C such that, for all t ≥ 0,
per(∂Ωf,t) ≤ M < +∞ and MV∗ is of class C2 with
MV∗′′ ≤ κ, θ0 ≤ MV∗′ ≤ θ1 and ∆ = ∆n is such that
m∆ ≤ C/K. Then, we have with probability at least
1− δ: ∀α ∈ [0, 1],

MVbsJ,∆(α)−MV∗(α) ≤ c1 log(1/δ)×{
1
Jd

+
1
K2

+

√
2Jd + logK

n

}
,

where c1 is a constant depending on M , c, θ0, θ1 and
κ solely.

Of course, much faster rates can be derived under more
restrictive smoothness assumptions for the boundaries
∂Ωt, see Mammen and Tsybakov [1995]. Observe also
that, as a byproduct, one gets an empirical estimate
of the optimal MV curve, M̂VbsJ,∆ , whose sup norm
distance to MV∗ can be easily shown to be bounded as
in the theorem above (up to a multiplicative constant).

Before summarizing our findings and sketching lines of
further research, a few remarks are in order.

Remark 4. (Plug-in) A possible strategy would be
to estimate first the unknown density function f(x) by
means of (non-) parametric techniques and next use
the resulting estimator as a scoring function. Beyond
the computational difficulties one would be confronted
to for large or even moderate values of the dimension,
we point out that the goal pursued in this paper is by
nature very different from density estimation: the local
properties of the density on a given cell Cj are useless
here, only the ordering of the cells is of importance.

Remark 5. (Extensions) In the procedure studied
above, the subdivision ∆ is known in advance. A nat-
ural extension of the method would be to consider a
flexible grid of the unit interval, which could be possi-
bly selected in an adaptive fashion, depending on the
local properties of the curve MV∗.
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6 CONCLUSION

Motivated by a wide variety of applications, we have
formulated the issue of learning how to rank observa-
tions in the same order as that induced by the den-
sity function, which we called anomaly scoring here.
For this problem, much less ambitious than estimation
of the local values taken by the density, a functional
performance criterion, the MV curve namely, is pro-
posed. Its statistical estimation has been investigated
from an asymptotic perspective and we have provided
a partition-based strategy to build a scoring function
with statistical guarantees in terms of rate of conver-
gence for the sup norm in the MV space. Its analysis
suggests a number of novel and important issues for
statistical learning, such as extension of the approach
promoted here to the case where the support of the
distribution of interest is of infinite Lebesgue measure.

APPENDIX - TECHNICAL PROOFS

Proof of Proposition 4

Assume that convexity does not hold for MV∗. It
means that there exist α and ε in (0, 1) such that
MV∗(α)−MV∗(α− ε) > MV∗(α+ ε)−MV∗(α). This
is in contradiction with Proposition 3. Indeed, con-
sider then the scoring function f̃(x) equal to f(x) on
Ω∗α−ε ∪ (X \ Ω∗α+ε), to

Q∗(α+ ε)−Q∗(α)
Q∗(α)−Q∗(α− ε)

f(x)+
Q∗(α− ε)Q∗(α+ ε)−Q∗(α2)

Q∗(α− ε)−Q∗(α)

on Ω∗α \ Ω∗α−ε and to

Q∗(α)−Q∗(α− ε)
Q∗(α+ ε)−Q∗(α)

f(x)+
Q∗(α2)−Q∗(α− ε)Q∗(α+ ε)

Q∗(α)−Q∗(α+ ε)

on Ω∗α+ε \Ω∗α. One may then check easily that Eq. (1)
is not fulfilled at α for s = f̃ . The formula for MV∗′

is a particular case of that given in Proposition 5.

Proof of Proposition 5

Applying the co-area formula (see [Federer, 1969,
p.249, th.3.2.12]) for Lipschitz functions to g(x) =
(1/|∇f(x)|)I{x : |∇f(x)| > 0, s(x) ≥ t} yields
λs(t) =

∫ +∞
t

du
∫
s−1(u)

(1/|∇f(y)|)µ(dy), and thus
λ′s(t) = −

∫
s−1({t}) 1/|∇f(y)|µ(dy). And the desired

formula follows from the composite differentiation rule.

Proof of Theorem 8

By virtue of Theorem 3 in Csorgo and Revesz [1978],
under Assumption A3, there exists a sequence of inde-
pendent Brownian bridges {W (n)(α)}α∈(0,1) such that,

we a.s. have:
√
n
{
α̂−1
s (α)− α−1

s (α)
}

=
W (n)(α)
fs(α−1

s (α))
+ o (vn) ,

uniformly over [0, 1− ε], as n→ +∞. Now the desired
results can be immediately derived from the Law of
Iterated Logarithm for the Brownian Bridge, combined
with a Taylor expansion of λs.

Proof of Theorem 9

Observe that it results from Proposition 9.7 in Mallat
[1990] that there exists a constant c < +∞ such that:

min
Ω∈GJ , P{X∈Ω}≥α

λ(Ω)− λ(Ω∗α) ≤ c× per(∂Ω∗α)× J−d,

where GJ denotes the collection of subsets obtained by
union of cubes Cj . When combined with Proposition
3 in Scott and Nowak [2006], this yields the result.

Proof of Theorem 10

For 1 ≤ k ≤ K, let α̃k = P{X ∈ ΩJ,k},
α̃0 = 0 and α̃K+1 = 1 and consider the ”hat func-
tions” ψ̃k(·) = ψ(·; (α̃k−1, α̃k)) − ψ(·; (α̃k, α̃k+1)) and
ψ̃K+1(·) = ψ(·, (α̃K , 1)). We have MVbsJ,∆(α) =∑K
k=1 λ(ΩJ,k)ψ̃k(α) and we may write:

MVbsJ,∆(α)−MV∗(α) =
K+1∑
k=1

MV∗(α̃k)ψ̃k(α)−MV∗(α)

+
K+1∑
k=1

(λ(ΩJ,k)−MV∗(α̃k)) ψ̃k(α). (4)

Therefore, it results from Theorem 9 combined with
the union bound that, with probability at least 1− δ,
we have the following bounds: ∀k ∈ {1, . . . , K},

α̃k ≥ αk − 2φn(δ/K) and λ(ΩJ,k) ≤ MV∗(αk) +
cM

Jd
,

which also implies that α̃k ≤ αk + cM/(θ0J
d).

Hence, for k ≤ K, we have (α̃k+1 − α̃k)2 ≤
3((C/K)2 + 2(max{2φn(δ/K), (cM)/(θ0J

d)})2) and
thus |

∑K+1
k=1 MV∗(α̃k)ψ̃k(α)−MV∗(α)| is bounded by

κ

8

((
C

K

)2

+ 2
(

max
{

2φn(δ/K),
cM

θ0Jd

})2
)
, (5)

using Eq. (2). In addition, for 1 ≤ k ≤ K, the quan-
tity |λ(ΩJ,k)−MV∗(α̃k)| is bounded by

cM

Jd
+ |MV∗(αk)−MV∗(α̃k)| ≤ cM

Jd

+ θ1 max
{

2φn(δ/K), (cM)/(θ0J
d)
}
, (6)

by virtue of the finite increment theorem. Now,
bounds (4), (5) and (6) combined with the specific
choices made for K and J yield the desired rate bound.
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