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Abstract

The present paper examines how the aggregation and feature randomization principles underlying

the algorithm RANDOM FOREST (Breiman, 2001) can be adapted to bipartite ranking. The ap-

proach taken here is based on nonparametric scoring and ROC curve optimization in the sense of

the AUC criterion. In this problem, aggregation is used to increase the performance of scoring rules

produced by ranking trees, as those developed in Clémençon and Vayatis (2009c). The present work

describes the principles for building median scoring rules based on concepts from rank aggregation.

Consistency results are derived for these aggregated scoring rules and an algorithm called RANK-

ING FOREST is presented. Furthermore, various strategies for feature randomization are explored

through a series of numerical experiments on artificial data sets.

Keywords: bipartite ranking, nonparametric scoring, classification data, ROC optimization, AUC

criterion, tree-based ranking rules, bootstrap, bagging, rank aggregation, median ranking, feature

randomization

1. Introduction

Aggregating decision rules or function estimators has now become a folk concept in machine learn-

ing and nonparametric statistics. Indeed, the idea of combining decision rules with an additional

randomization ingredient brings a dramatic improvement of performance in various contexts. These

ideas go back to the seminal work of Amit and Geman (1997), Breiman (1996), and Nemirovski

(2000). However, in the context of the “learning-to-rank” problem, the implementation of this idea

is still at a very early stage. In the present paper, we propose to take one step beyond in the program

of boosting performance by aggregation and randomization for this problem. The present paper

explores the particular case of learning to rank high dimensional observation vectors in presence

of binary feedback. This case is also known as the bipartite ranking problem, see Freund et al.

(2003), Agarwal et al. (2005), Clémençon et al. (2005). The setup of bipartite ranking is useful

when considering real-life applications such as credit-risk or medical screening, spam filtering, or

recommender systems. There are two major approaches to bipartite ranking: the preference-based

approach (see Cohen et al. 1999) and the scoring-based approach (in the spirit of logistic regres-

sion methods, see, e.g., Hastie and Tibshirani 1990, Hilbe 2009). The idea of combining ranking
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CLÉMENÇON, DEPECKER AND VAYATIS

rules to learn preferences was introduced in Freund et al. (2003) with a boosting algorithm and the

consistency for this type of methods was proved in Clémençon et al. (2008) by reducing the bipar-

tite ranking problem to a classification problem over pairs of observations (see also Agarwal et al.

2005). Here, we will cast bipartite ranking in the context of nonparametric scoring and we will

consider the issue of combining randomized scoring rules. Scoring rules are real-valued functions

mapping the observation space with the real line, thus conveying an order relation between high

dimensional observation vectors.

Nonparametric scoring has received an increasing attention in the machine learning literature

as a part of the growing interest which affects ROC analysis. The scoring problem can be seen as

a learning problem where one observes input observation vectors X in a high dimensional space X

and receives only a binary feedback information through an output variable Y ∈ {−1,+1}. Whereas

classification only focuses on predicting the label Ỹ of a new observation X̃ , scoring algorithms

aim at recovering an order relation on X in order to predict the ordering over a new sample of

observation vectors X ′
1, . . . ,X

′
m so that there as many as possible positive instances at the top of

the list. From a statistical perspective, the scoring problem is more difficult than classification

but easier than regression. Indeed, in classification, the goal is to learn one single level set of the

regression function whereas, in scoring, one wants to recover the nested collection of all the level

sets of the regression function (without necessarily knowing the corresponding levels), but not the

regression function itself (see Clémençon and Vayatis 2009b). In previous work, we developed

a tree-based procedure for nonparametric scoring called TREERANK, see Clémençon and Vayatis

(2009c), Clémençon et al. (2010). The TREERANK algorithm and its variants produce scoring

rules expressed as partitions of the input space coupled with a permutation over the cells of the

partition. These scoring rules present the interesting feature that they can be stored in an oriented

binary tree structure, called a ranking tree. Moreover, their very construction actually implements

the optimization of the ROC curve which reflects the quality measure of the scoring rule for the

end-user.

The use of resampling in this context was first considered in Clémençon et al. (2009). A more

thorough analysis is developed throughout this paper and we show how to combine feature random-

ization and bootstrap aggregation techniques based on the ranking trees produced by the TREER-

ANK algorithm in order to increase ranking performance in the sense of the ROC curve. In the

classification setup, theoretical evidence has been recently provided for the aggregation of random-

ized classifiers in the spirit of random forests (see Biau et al. 2008). However, in the context of

ROC optimization, combining scoring rules through naive aggregation does not necessarily make

sense. Our approach builds on the advances in the rank aggregation problem. Rank aggregation was

originally introduced in social choice theory (see Barthélémy and Montjardet 1981 and the refer-

ences therein) and recently “rediscovered” in the context of internet applications (see Pennock et al.

2000). For our needs, we shall focus on metric-based consensus methods (see Hudry 2004 or Fagin

et al. 2006, and the references therein), which provide the key to the aggregation of ranking trees.

In the paper, we also discuss various aspects of feature randomization which can be incorporated

at various levels in ranking trees. Also a novel ranking methodology, called RANKING FOREST, is

introduced.

The article is structured as follows. Section 2 sets out the notations and shortly describes the

main notions for the bipartite ranking problem. Section 3 describes the elements from the theory of

rank aggregation and measures of consensus leading to the aggregation of scoring rules defined over

finite partitions of the input space. The next section presents the main theoretical results of the paper
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which are consistency results for scoring rules based on the aggregation of randomized piecewise

constant scoring rules. Section 5 presents RANKING FOREST, a new algorithm for nonparametric

scoring which implements the theoretical concepts developed so far. Section 6 presents an empirical

study of the RANKING FOREST algorithm with numerical results based on simulated data. Finally,

some concluding remarks are collected in Section 7. Reminders, technical details and proofs are

deferred to the Appendix.

2. Probabilistic Setup for Bipartite Ranking

ROC analysis is a popular way of evaluating the capacity of a given scoring rule to discriminate

between two populations, see Egan (1975). ROC curves and related performance measures such

as the AUC have now become of standard use for assessing the quality of ranking methods in a

bipartite framework. Throughout this section, we recall basic concepts related to bipartite ranking

from the angle of ROC analysis.

Modeling the data. The probabilistic setup is the same as in standard binary classification. The ran-

dom variable Y is a binary label, valued in {−1,+1}, while the random vector X = (X (1), . . . ,X (q))
models some multivariate observation for predicting Y , taking its values in a high-dimensional space

X ⊂ Rq, q ≥ 1. The probability measure on the underlying space is entirely described by the pair

(µ,η), where µ denotes the marginal distribution of X and η(x) = P{Y = +1 | X = x}, x ∈ X , the

posterior probability. With no restriction, here we assume that X coincides with the support of µ.

The scoring approach to bipartite ranking. An informal way of considering the ranking task under

this model is as follows. Given a a sample of independent copies of the pair (X ,Y ), the goal is to

learn how to order new data X1, . . . ,Xm without label feedback, so that positive instances are mostly

at the top of the resulting list with large probability. A natural way of defining a total order on

the multidimensional space X is to map it with the natural order on the real line by means of a

scoring rule, that is, a measurable mapping s : X → R. A preorder1 4s on X is then defined by:

∀(x,x′) ∈ X 2, x 4s x′ if and only if s(x)≤ s(x′).
Measuring performance. The capacity of a candidate s to discriminate between the positive and

negative populations is generally evaluated by means of its ROC curve (standing for “Receiver

Operating Characteristic” curve), a widely used functional performance measure which we recall

here.

Definition 1 (TRUE ROC CURVE) Let s be a scoring rule. The true ROC curve of s is the “probability-

probability” plot given by:

t ∈ R 7→ (P{s(X)> t | Y =−1} ,P{s(X)> t | Y = 1}) ∈ [0,1]2 .

By convention, when a jump occurs in the plot of the ROC curve, the corresponding extremities of

the curve are connected by a line segment, so that the ROC curve of s can be viewed as the graph

of a continuous mapping α ∈ [0,1] 7→ ROC(s,α).

We refer to Clémençon and Vayatis (2009c) for a list of properties of ROC curves (see the

Appendix section therein). The ROC curve offers a visual tool for assessing ranking performance

(see Figure 1): the closer to the left upper corner of the unit square [0,1]2 the curve ROC(s, .),
the better the scoring rule s. Therefore, the ROC curve conveys a partial order on the set of all

1. A preorder is a binary relation which is reflexive and transitive.
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Figure 1: ROC curves.

scoring rules: for all pairs of scoring rules s1 and s2, we say that s2 is more accurate than s1 when

ROC(s1,α) ≤ ROC(s2,α) for all α ∈ [0,1]. By a standard Neyman-Pearson argument, one may

establish that the most accurate scoring rules are increasing transforms of the regression function

which is equal to the conditional probability function η up to an affine transformation.

Definition 2 (OPTIMAL SCORING RULES) We call optimal scoring rules the elements of the set S ∗

of scoring functions s∗ such that ∀(x,x′) ∈ X 2, η(x)< η(x′)⇒ s∗(x)< s∗(x′).

The fact that the elements of S ∗ are optimizers of the ROC curve is shown in Clémençon and

Vayatis (2009c) (see Proposition 4 therein). When, in addition, the random variable η(X) is as-

sumed to be continuous, then S ∗ coincides with the set of strictly increasing transforms of η. The

performance of a candidate scoring rule s is often summarized by a scalar quantity called the Area

Under the ROC Curve (AUC) which can be considered as a summary of the ROC curve. In the

paper, we shall use the following definition of the AUC.

Definition 3 (AUC) Let s be a scoring rule. The AUC is the functional defined as:

AUC(s) = P{s(X1)< s(X2) | (Y1,Y2) = (−1,+1)}

+
1

2
P{s(X1) = s(X2) | (Y1,Y2) = (−1,+1)},

where (X1,Y1) and (X2,Y2) denote two independent copies of the pair (X ,Y ), for any scoring func-

tion s.

This functional provides a total order on the set of scoring rules and, equipped with the conven-

tion introduced in Definition 1, AUC(s) coincides with
∫ 1

0 ROC(s,α) dα (see, for instance, Propo-

sition 1 in Clémençon et al. 2011). We shall denote the optimal curve and the corresponding (maxi-

mum) value for the AUC criterion by ROC∗ =ROC(s∗, .) and AUC∗ =AUC(s∗), where s∗ ∈ S ∗. The
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statistical counterparts of ROC(s, .) and AUC(s) based on sampling data Dn = {(Xi,Yi) : 1 ≤ i ≤ n}
are obtained by replacing the class distributions by their empirical versions in the definitions. They

are denoted by R̂OC(s, .) and ÂUC(s) in the sequel.

Piecewise constant scoring rules. In the paper, we will focus on a particular subclass of scoring

rules.

Definition 4 (PIECEWISE CONSTANT SCORING RULE) A scoring rule s is piecewise constant if

there exists a finite partition P of X such that for all C ∈ P , there exists a constant kC ∈R such that

∀x ∈ C , s(x) = kC .

This definition does not provide a unique characterization of the underlying partition. The

partition P is minimal if, for any two of its elements C 6= C ′, we have kC 6= kC ′ . The scoring rule

conveys an ordering on the cells of the minimal partition.

Definition 5 (RANK OF A CELL) Let s be a scoring rule and P the associated minimal partition.

The scoring rule induces a ranking �s over the cells of the partition. For a given cell C ∈ P , we

define its rank R�s
(C ) ∈ {1, . . . , |P |} as the rank affected by the ranking �s over the elements of the

partition. By convention, we set rank 1 to correspond to the highest score.

The advantage of the class of piecewise constant scoring rules is that they provide finite rankings

on the elements of X and they will be the key for applying the aggregation procedure.

3. Aggregation of Scoring Rules

In recent years, the issue of summarizing or aggregating various rankings has been a topic of grow-

ing interest in the machine-learning community. This evolution was mainly motivated by practical

problems in the context of internet applications: design of meta-search engines, collaborative filter-

ing, spam-fighting, etc. We refer for instance to Pennock et al. (2000), Dwork et al. (2001), Fagin

et al. (2003) and Ilyas et al. (2002). Such problems have led to a variety of results, ranging from

the generalization of the mathematical concepts introduced in social choice theory (see Barthélémy

and Montjardet 1981 and the references therein) for defining relevant notions of consensus between

rankings (Fagin et al., 2006), to the development of efficient procedures for computing such “con-

sensus rankings” (Betzler et al., 2008; Mandhani and Meila, 2009; Meila et al., 2007) through the

study of probabilistic models over sets of rankings (Fligner and Verducci , Eds.; Lebanon and Laf-

ferty, 2003). Here we consider rank aggregation methods in the perspective of extending the bagging

approach to ranking trees.

3.1 The Case of Piecewise Constant Scoring Rules

The ranking rules considered in this paper result from the aggregation of a collection of piecewise

constant scoring rules. Since each of these scoring rules is related to a possibly different partition,

we are lead to consider a collection of partitions of X . Hence, the aggregated rule needs to be

defined on the least fine subpartition of this collection of partitions.

Definition 6 (SUBPARTITION OF A COLLECTION OF PARTITIONS) Consider a collection of B par-

titions of X denoted by Pb, b = 1, . . . ,B. A subpartition of this collection is a partition PB made
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CLÉMENÇON, DEPECKER AND VAYATIS

of nonempty subsets C ⊂ X which satisfy the following constraint : for all C ∈ PB, there exists

(C1, . . . ,CB) ∈ P1 ×·· ·×PB such that

C ⊆
B⋂

b=1

Cb .

We denote P ∗
B =

⋂
b≤B Pb.

One may easily see that P ∗
B is a subpartition of any of the Pb’s, and the largest one in the sense

that any partition P which is a subpartition of Pb for all b ∈ {1, . . . ,B} is a subpartition of P ∗
B . The

case where the partitions are obtained from a binary tree structure is of particular interest as we

shall consider tree-based piecewise constant scoring rules later on. Incidentally, it should be noticed

that, from a computational perspective, the underlying tree structures considerably help in getting

the cells of P ∗
B explicitly. We refer to Appendix D for further details.

Now consider a collection of piecewise constant scoring rules sb, b = 1, . . . ,B, and denote their

associated (minimal) partitions by Pb. Each scoring rule sb naturally induces a ranking (or a pre-

order) �∗
b on the partition P ∗

B . Indeed, for all (C ,C ′) ∈ P ∗2
B , one writes by definition C �∗

b C ′

(respectively, C ≺∗
b C ′) if and only if Cb �∗

b C ′
b (respectively, Cb ≺∗

b C ′
b) where (Cb,C

′
b) ∈ P 2

b are

such that C ×C ′ ⊂ Cb ×C ′
b.

The collection of scoring rules leads to a collection of B rankings on P ∗
B . Such a collection

is called a profile in voting theory. Now, based on this profile, we would like to define a “central

ranking” or a consensus. Whereas the mean, or the median, naturally provides such a summary when

considering scalar data, various meanings can be given to this notion for rankings (see Appendix

B).

3.2 Probabilistic Measures of Scoring Agreement

The purpose of this subsection is to extend the concept of measures of agreement for rankings to

scoring rules defined over a general space X which is not necessarily finite. In practice, however,

we will only consider the case of piecewise constant scoring rules and we shall rely on the definition

of the probabilistic Kendall tau.

Notations. We already introduced the notation �s for the preorder relation over the cells of a parti-

tion P as induced by a piecewise scoring rule s. We shall use the ’curly’ notation for the preorder

relation 4s on X which is described through the following condition: ∀C ,C ′ ∈ P , we have x 4s x′,

∀x ∈ C , ∀x′ ∈ C ′, if and only if C �s C ′. This is also equivalent to s(x) ≤ s(x′), ∀x ∈ C , ∀x′ ∈ C ′.

We now introduce a measure of similarity for preorders on X induced by scoring rules s1 and s2.

We recall here the definition of the theoretical Kendall τ between two random variables.

Definition 7 (PROBABILISTIC KENDALL τ) Let (Z1,Z2) be two random variables defined on the

same probability space. The probabilistic Kendall τ is defined as

τ(Z1,Z2) = 1−2dτ(Z1,Z2) ,

with:

dτ(Z1,Z2) = P{(Z1 −Z′
1) · (Z2 −Z′

2)< 0}+
1

2
P{Z1 = Z′

1, Z2 6= Z′
2}

+
1

2
P{Z1 6= Z′

1, Z2 = Z′
2}.
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where (Z′
1,Z

′
2) is an independent copy of the pair (Z1,Z2).

As shown by the following result, whose proof is left to the reader, the Kendall τ for the pair

(s(X),Y ) is related to AUC(s).

Proposition 8 We use the notation p = P{Y = 1}. For any real-valued scoring rule s, we have:

1

2
(1− τ(s(X),Y )) = 2p(1− p)(1−AUC(s))+

1

2
P{s(X) 6= s(X ′) , Y = Y ′} .

For given scoring rules s1 and s2 and considering the probabilistic Kendall tau for random vari-

ables s1(X) and s2(X), we can set: dX(s1,s2) = dτ(s1(X),s2(X)). One may easily check that dX

defines a distance between the orderings 4s1
and 4s2

induced by s1 and s2 on the set X (which is

supposed to coincide with the support of the distribution of X). The following proposition shows

that the deviation between scoring rules in terms of AUC is controlled by a quantity involving the

probabilistic agreement based on Kendall tau.

Proposition 9 (AUC AND KENDALL τ) Assume p ∈ (0,1). For any scoring rules s1 and s2 on X ,

we have:

|AUC(s1)−AUC(s2)| ≤
dX(s1,s2)

2p(1− p)
=

1− τX(s1,s2)

4p(1− p)
.

The converse inequality does not hold in general. Indeed, scoring rules with same AUC may

yield to different rankings. However, the following result guarantees that a scoring rule with a nearly

optimal AUC is close to the optimal scoring rules in the sense of Kendall tau, under the additional

assumption that the noise condition introduced in Clémençon et al. (2008) is fulfilled.

Proposition 10 (KENDALL τ AND OPTIMAL AUC) Assume that the random variable η(X) is con-

tinuous and that there exist c < ∞ and a ∈ (0,1) such that:

∀x ∈ X , E
[
|η(X)−η(x)|−a

]
≤ c . (1)

Then, we have, for any scoring rule s and any optimal scoring rule s∗ ∈ S ∗:

1− τX(s
∗,s)≤C · (AUC∗−AUC(s))a/(1+a) ,

with C = 3 · c1/(1+a) · (2p(1− p))a/(1+a) .

Remark 11 (ON THE NOISE CONDITION) As shown in previous work, the condition (1) is rather

weak. Indeed, it is fulfilled for any a ∈ (0,1) as soon the probability density function of η(X) is

bounded (see Corollary 8 in Clémençon et al. 2008).

The next result shows the connection between the Kendall tau distance between preorders on X

induced by piecewise constant scoring rules s1 and s2 and a specific notion of distance between the

rankings �s1
and �s2

on P .

Lemma 12 Let s1, s2, two piecewise constant scoring rules. We have:

dX(s1,s2) = 2 ∑
1≤k<l≤K

µ(Ck)µ(Cl) ·Uk,l(�s1
,�s2

) , (2)
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where, for two orderings �, �′ on a partition of cells {Ck : k = 1, . . . ,K}, we have:

Uk,l(�,�′) = I{(R�(Ck)−R�(Cl))(R�′(Ck)−R�′(Cl))< 0}

+
1

2
I{R�(Ck) = s�(Cl), R�′(Ck) 6= R�′(Cl)}

+
1

2
I{R�′(Ck) = R�′(Cl), R�(Ck) 6= R�(Cl)} .

The proof is straightforward and thus omitted.

Notice that the term Uk,l(�s1
,�s2

) involved in Equation (2) is equal to 1 when the cells Ck and

Cl are not sorted in the same order by s1 and s2 (in absence of ties), to 1/2 when they are tied for one

ranking but not for the other, and to 0 otherwise. As a consequence, the agreement τX(s1,s2) may

be viewed as a “weighted version” of the rate of concordant pairs of the cells of P measured by the

classical Kendall τ (see the Appendix B). A statistical version of τX(s1,s2) is obtained by replacing

the values of µ(Ck) by their empirical counterparts in Equation (2). We thus set:

τ̂X(s1,s2) = 1−2d̂X(s1,s2), (3)

where d̂X(s1,s2) = 2/(n(n− 1))∑i< j K(Xi,X j) is a U-statistic of degree 2 with symmetric kernel

given by:

K(x,x′) = I{(s1(x)− s1(x
′)) · (s2(x)− s2(x

′))< 0}+
1

2
I{s1(x) = s1(x

′), s2(x) 6= s2(x
′)}

+
1

2
I{s1(x) 6= s1(x

′), s2(x) = s2(x
′)} .

Remark 13 Other measures of agreement between 4s1
and 4s2

could be considered alternatively.

For instance the definitions previously stated can easily be extended to the Spearman correlation

coefficient ρX(s1,s2) (see Appendix B), that is the linear correlation coefficient between the random

variables Fs1
(s1(X)) and Fs2

(s2(X)), where Fsi
denotes the cdf of si(X), i ∈ {1, 2}.

3.3 Median Rankings

The method for aggregating rankings we consider here relies on the so-called median procedure,

which belongs to the family of metric aggregation procedures (see Barthélémy and Montjardet

1981 for further details). Let d(., .) be some metric or dissimilarity measure on the set of rankings

on a finite set Z. By definition, a median ranking among a profile Π = {�k: 1 ≤ k ≤ K} with

respect to d is any ranking �med on Z that minimizes the sum ∆Π(�)
de f
= ∑K

k=1 d(�,�k) over the set

R(Z) of all rankings � on Z:

∆Π(�med) = min
�: ranking on Z

∆Π(�).

Notice that, when Z is of cardinality N < ∞, there are

#R(Z) =
N

∑
k=1

(−1)k
k

∑
m=1

(−1)m

(
k

m

)
mN

possible rankings on Z (that is the sum over k of the number of surjective mappings from {1, . . . ,N}
to {1, . . . ,k}) and in most cases, the computation of (metric) median rankings leads to NP-hard
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combinatorial optimization problems (see Wakabayashi 1998, Hudry 2004, Hudry 2008 and the

references therein). It is worth noticing that a median ranking is far from being unique in general.

One may immediately check for instance that any ranking among the profile made of all rankings on

Z = {1, 2} is a median in Kendall sense, that is, for the metric dτ. From a practical perspective, ac-

ceptably good solutions can be computed in a reasonable amount of time by means of metaheuristics

such as simulated annealing, genetic algorithms or tabu search (see Spall 2003). The description of

these computational aspects is beyond the scope of the present paper (see Charon and Hudry 1998

or Laguna et al. 1999 for instance). We also refer to recent work in Klementiev et al. (2009).

When it comes to preorders on a set X of infinite cardinality, defining a notion of aggregation

becomes harder. Given a pseudo-metric such as dτ and B ≥ 1 scoring rules s1, . . . , sB on X , the

existence of s̄ in S such that ∑B
b=1 dτ(s̄,sb) = mins ∑B

b=1 dτ(s,sb) is not guaranteed in general. How-

ever, when considering piecewise constant scoring rules with corresponding finite subpartition P

of X , the corresponding preorders are in one-to-one correspondence with rankings on P and the

minimum distance is thus effectively attained.

Aggregation of piecewise constant scoring rules. Consider a finite collection of piecewise constant

scoring rules ΣB = {s1, . . . , sB} on X , with B ≥ 1.

Definition 14 (TRUE MEDIAN SCORING RULE). Let S be a collection of scoring rules. We call s̄B

a median scoring rule for ΣB with respect to S if

s̄B = argmin
s∈S

∆B(s),

where ∆B(s) = ∑B
b=1 dX(s,sb) for s ∈ S .

The empirical median scoring rule is obtained in a similar way, but the true distance dX is

replaced by its empirical counterpart dτ̂X
, see Equation (3).

The ordinal approach. Metric aggregation procedures are not the only way to summarize a profile of

rankings. The so-called “ordinal approach” provides a variety of alternative techniques for combin-

ing rankings (or, more generally, preferences), returning to the famous “Arrow’s voting paradox”.

The ordinal approach consists of a series of duels (i.e., pairwise comparisons) as in Condorcet’s

method or successive tournaments as in the proportional voting Hare system, see Fishburn (1973).

Such approaches have recently been the subject of a good deal of attention in the context of pref-

erence learning (also referred to as methods for ranking by pairwise comparison, see Hüllermeier

et al. 2008 for instance).

Ranks vs. Rankings. Let ΣB = {s1, . . . , sB}, B ≥ 1, be a collection of piecewise constant scoring

rules and X′(m) = {X ′
1, . . . ,X

′
m} a collection of m ≥ 1 i.i.d. copies of the input variable X . When

it comes to rank the observations X ′
i “consensually”, two strategies can be considered: (i) compute

a “median ranking rule” based on the B rankings of the cells for the largest subpartition and use

it for ranking the new data as previously described, or (ii) compute, for each scoring rule sb, the

related rank vector of the data set X′(m)
, and then a “median rank vector”, that is, a median ranking

on the set X′(m)
(data lying in a same cell of the largest subpartition being tied). Although they

are not equivalent, these two methods generally produce similar results, especially when m is large.

Indeed, considering medians in the sense of probabilistic Kendall τ, it is sufficient to notice that the

Kendall τ distance dτ between rankings on X′(m)
induced by two piecewise constant rules s1 and s2

can be viewed as an empirical estimate of dX(s1,s2) based on the data set X′(m)
. Now assume the
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collection ΣB is obtained from training data Dn. The difference between (i) and (ii) is that (i) does

not use the data to be ranked X′(m)
but only relies on training data Dn. However, when both the

size of the training sample Dn and of the test data set X′(m)
are large, the two approaches lead to the

optimization of related quantities.

4. Consistency of Aggregated Scoring Rules

We now provide statistical results for the aggregated scoring rules in the spirit of random forests

(Breiman, 2001). In the context of classification, consistency theorems were derived in Biau et al.

(2008). Conditions for consistency of piecewise constant scoring rules have been studied in

Clémençon and Vayatis (2009c) and Clémençon et al. (2011). Here, we address the issue of AUC

consistency of scoring rules obtained as medians over a profile of consistent randomized scoring

rules for the (probabilistic) Kendall τ distance. A randomized scoring rule is a random element of

the form ŝn(·,Z), depending on both the training sample Dn = {(X1,Y1), . . . , (Xn,Yn)} and a ran-

dom variable Z, taking values over a measurable space Z, independent of Dn, which describes the

randomization mechanism.

The AUC of a randomized scoring rule ŝn(·,Z) is given by:

AUC(ŝn(·,Z)) = P{ŝn(X ,Z)< ŝn(X
′,Z) | (Y,Y ′) = (−1,+1)}

+
1

2
P{ŝn(X ,Z) = ŝn(X

′,Z) | (Y,Y ′) = (−1,+1)},

where the conditional probabilities are taken over the joint probability of independent copies (X ,Y )
and (X ,Y ′) and Z, given the training data Dn.

Definition 15 (AUC-CONSISTENCY) The randomized scoring rule ŝn is said to be AUC-consistent

(respectively, strongly AUC-consistent) when the convergence

AUC(ŝn(·,Z))→ AUC∗ as n → ∞ ,

holds in probability (respectively, almost-surely).

Let B ≥ 1. Given Dn, one may draw B i.i.d. copies Z1, . . . , ZB of Z, yielding the collection Σ̂B

of scoring rules ŝn(·,Z j), 1 ≤ j ≤ B. Let S be a collection of scoring rules and suppose that s̄B is a

median scoring rule for the profile Σ̂B with respect to S in the sense of Definition 14. The next result

shows that AUC-consistency is preserved for a median scoring rule of AUC-consistent randomized

scoring rules.

Theorem 16 (CONSISTENCY AND AGGREGATION) Set B ≥ 1. Consider a class S of scoring rules.

Assume that:

• the assumptions on the distribution of (X ,Y ) in Proposition 10 are fulfilled.

• the randomized scoring rule ŝn(·,Z) is AUC-consistent (respectively, strongly AUC-consistent).

• for all n,B ≥ 1, and for any sample Dn, there exists a median scoring rule s̄B ∈ S for the

collection {ŝn(·,Z j),1 ≤ j ≤ B} with respect to S .
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• we have S ∗∩S 6= /0.

Then, the aggregated scoring rule s̄B is AUC-consistent (respectively, strongly AUC-consistent).

We point out that the last assumption which states that the class S of candidate median scoring

rules contains at least one optimal scoring function can be removed at the cost of an extra bias

term in the rate bound. Consistency results are then derived by picking the median scoring rule, for

each n, in a class Sn such that there exists a sequence s̃n ∈ Sn which fulfills AUC(s̃n) → AUC∗ as

n → ∞. This remark covers the special case where ŝn(·,Z) is a piecewise constant scoring rule with

a range of cardinality kn ↑ ∞ and the median is taken over the set Sn of scoring functions with range

of cardinality less than kB
n . The bias is then of order 1/k2B

n under mild smoothness conditions on

ROC∗, as shown by Proposition 7 in Clémençon and Vayatis (2009b).

From a practical perspective, median computation is based on empirical versions of the proba-

bilistic Kendall τ involved (see Equation (3)). The following result shows the existence of scoring

rules that are asymptotically median with respect to dX , provided that the class S over which the

median is computed is not too complex. Here we formulate the result in terms of a VC major class

of functions of finite dimension (see Dudley 1999 for instance). We first introduce the following

notation, for any s ∈ S :

∆̂B,m(s) =
B

∑
j=1

d̂X(s,s j) ,

where the estimate d̂X of dX is based on m ≥ 1 independent copies of X .

Theorem 17 (EMPIRICAL MEDIAN COMPUTATION) Fix B ≥ 1. Let ΣB = {s1, . . . , sB} be a finite

collection scoring rules and S a class of scoring rules which is a VC major class. We consider the

empirical median scoring rule s̃m = argmins∈S ∆̂B,m(s). Then, as m → ∞, we have

∆B(s̃m)→ min
s∈S

∆B(s) with probability one .

The empirical aggregated scoring rule we consider in the next result relies on two data samples.

The training sample Dn, completed by the randomization on Z, leads to a collection of scoring rules

which are instances of the randomized scoring rule. Then a sample X′(m) = {X ′
1, . . . ,X

′
m} is used

to compute the empirical median. Combining the two preceding theorems, we finally obtain the

consistency result for the aggregated scoring rule.

Corollary 18 Fix B ≥ 1 and S a VC major class of scoring rules. Consider a training sample Dn

of size n with i.i.d. copies of (X ,Y ) and a sample X′(m)
of size m with i.i.d. copies of X. We consider

the collection Σ̂B of randomized scoring rules ŝn(·,Z j) in S built out of Dn and we introduce the

empirical median of Σ̂B with respect to S obtained by using the test set X′(m)
. We denote this fully

empirical median scoring rule by ŝn,m. If the assumptions of Theorem 16 are satisfied, then we have:

AUC(ŝn,m)
P
−→ AUC∗ as n,m → ∞ .

The results stated above can be extended to any median scoring rule based on a pseudo-metric

d on the set of preorders on S which is equivalent to dX , that is, such that c1dX ≤ d ≤ c2dX , with

0< c1 ≤ c2 <∞. Moreover, other complexity assumptions about the class S over which optimization

is performed could be considered (see Clémençon et al. 2008). The present choice of VC major

classes captures the complexity of scoring rules which will be considered in the next section (see

Proposition 6 in Clémençon et al. 2011).
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CLÉMENÇON, DEPECKER AND VAYATIS

5. Ranking Forests

In this section, we introduce an implementation of the principles described in the previous sections

for the aggregation of scoring rules. Here we focus on specific piecewise constant scoring rules

based on ranking trees (Clémençon and Vayatis, 2009c; Clémençon et al., 2011). We propose var-

ious schemes for randomizing the features of these trees. We eventually describe the RANKING

FOREST algorithm which extends to bipartite ranking the celebrated RANDOM FORESTS algorithm

(Breiman, 1996; Amit and Geman, 1997; Breiman, 2001).

5.1 Tree-structured Scoring Rules

We consider piecewise constant scoring rules which can be represented in a left-right oriented binary

tree. We recall that, in the context of classification, decision trees are very useful as they offer the

possibility of interpretation for the selected classification rule. In the presence of classification data,

one may entirely characterize a classification rule by means of a partition P of the input space X

and a training set Dn = {(Xi,Yi) : 1 ≤ i ≤ n} of i.i.d. copies of the pair (X ,Y ) through a majority

voting scheme. Indeed, a new instance x ∈ X would receive the label corresponding to the most

frequent one among the data points Xi within the cell C ∈ P such that x ∈ C . However, in bipartite

ranking, the notion of local majority vote makes no sense since the ranking problem is of global

nature. As a matter of fact, the issue is to rank the cells of the partition with respect to each other.

It is assumed that ties among the ordered cells can be observed in the subsequent analysis and the

usual MID-RANK convention is adopted. We refer to the Appendix A for a rigorous definition of the

notion of ranking in the case of ties. We also point out that the term partial ranking is often used in

this context (see Diaconis 1989, Fagin et al. 2006).

By restricting the search of candidates to the collection of piecewise constant scoring rules, the

learning problem boils down here to finding a partition P = {Ck}1≤k≤K of X , with 1 ≤ K < ∞,

together with a ranking �P of the Ck’s (i.e., a preorder on P ), so that the ROC curve of the scoring

rule given by

sP ,�P
(x) =

K

∑
k=1

(K −R�P
(Ck)+1) · I{x ∈ Ck}

be as close as possible of ROC∗, where R�P
(Ck) denotes the rank of Ck, 1 ≤ k ≤ K, among all cells

of P according to �P .

We now describe such scoring rules in the case where the partition arises from a tree structure.

For such a partition, a ranking of the cells can be simply defined by equipping the tree with a left-

right orientation. In order to describe how a ranking tree can be built so as to maximize AUC, further

concepts are required. By master ranking tree TD, here we mean a complete, left-right oriented,

rooted binary tree with depth D ≥ 1. At depth d = 0, the entire input space C0,0 = X forms its root.

Every non terminal node (d,k), with 0 ≤ d < D and 0 ≤ k < 2d , is in correspondence with a subset

Cd,k ⊂ X , and has two siblings, each one corresponding to a subcell obtained by splitting Cd,k: the

left sibling Cd+1,2k is related to the leaf (d+1,2k), while the right sibling Cd+1,2k+1 =Cd,k \Cd+1,2k

is related to the leaf (d+1,2k+1) in the tree structure. We point out that an asymmetry is introduced

at this point as the left sibling is assumed to have a lower rank (or higher score) than the right sibling

in the ranking of the partition’s cells. With this convention, it is easy to use any subtree T ⊂ TD

as a ranking rule. A ranking of the terminal cells naturally results from the left-right orientation of

the tree, the top of the list being represented by the cell in the bottom left corner of the tree, and is
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related to the scoring rule defined by: ∀x ∈ X ,

sT (x) = ∑
(d,k): terminal node of T

(2D −2D−dk) · I{x ∈Cd,k} .

The score value sT (x) can be computed in a top-down manner, using the underlying “heap” struc-

ture. Starting from the initial value 2D at the root node, at each subsequent inner node (d,k),
2D−(d+1) is subtracted to the current value of the score if x moves down to the right sibling (d +
1,2k+1), whereas one leaves the score unchanged if x moves down to the left sibling. The proce-

dure is depicted in Figure 2.

Figure 2: Ranking tree - the ranks can be read on the leaves of the tree from left (8 is the highest

rank/score) to right (1 corresponds to the smallest rank/score). In case of a pruned tree

(such as the one with leaves taken to be the shaded nodes), the orientation is conserved.

5.2 Feature Randomization in TREERANK

The concept of bagging (for bootstrap aggregating technique) was introduced in Breiman (1996).

The major novelty in the RANDOM FOREST method (Breiman, 2001) consisted in randomizing the

features used for recursively splitting the nodes of the classification/regression trees involved in the

committee-based prediction procedure. Our reference method for aggregating tree-based scoring

rules is the TREERANK procedure (we refer to the Appendix and the papers Clémençon and Vayatis

2009c, Clémençon et al. 2011 for a full description). Beyond the specific structure of the master

ranking tree, an additional ingredient in the growing stage is the splitting criterion. It turns out

that a natural choice is a data-dependent and cost-sensitive classification error functional and its

optimization can be performed with any binary classification method. This procedure for node

splitting is called LEAFRANK. We point out that LEAFRANK implements a classifier and when this
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classifier is chosen to be a decision tree, this permits an additional randomization step. We thus

propose two possible feature randomization schemes FT for TREERANK and FL for LEAFRANK.

FT : At each node (d,k) of the master ranking tree TD, draw at random a set of q0 ≤ q indexes

{i1, . . . , iq0
} ⊂ {1, . . . ,q}. Implement the LEAFRANK splitting procedure based on the de-

scriptor (X (i1), . . . ,X (iq0
)) to split the cell Cd,k.

FL: For each node (d,k) of the master ranking tree TD, at each node of the cost-sensitive clas-

sification tree describing the split of the cell Cd,k into two children, draw at random a set of

q1 ≤ q indexes { j1, . . . , jq1
}⊂ {1, . . . ,q} and perform an axis-parallel cut using the descriptor

(X ( j1), . . . ,X ( jq1
)).

We underline that, of course, the randomization strategy FT can be applied to the TREERANK

algorithm whatever the classification technique chosen for the splitting step. In addition, when the

latter is itself a tree-based method, these randomization procedures do not exclude each other. At

each node (d,k) of the ranking tree, one may first draw at random a collection Fd,k of q0 features

and then, when growing the cost-sensitive classification tree describing Cd,k’s split, divide each node

based on a sub-collection of q1 ≤ q0 features drawn at random among Fd,k.

5.3 The RANKING FOREST Algorithm

Now that the rationale behind the RANKING FOREST procedure has been given, we describe its

successive steps in detail. Based on a training sample Dn = {(X1,Y1), . . . ,(Xn,Yn)}, the algorithm is

performed in three stages, as follows.

RANKING FOREST

1. Parameters. B number of bootstrap replicates, n∗ bootstrap sample size, TREERANK

tuning parameters (depth D and presence/absence of pruning), (FT ,FL) feature random-

ization strategy, d pseudo-metric.

2. Bootstrap profile makeup.

(a) (RESAMPLING STEP.) Build B independent bootstrap samples D∗
1 , . . . , D∗

B, by

drawing with replacement n∗ ·B pairs among the original training sample Dn.

(b) (RANDOMIZED TREERANK.) For b = 1, . . . , B, run TREERANK combined with

the feature randomization method (FT ,FL) based on the sample D∗
b , yielding the

ranking tree T ∗
b , related to the partition P ∗

b of the space X .

3. Aggregation. Compute the largest subpartition partition P ∗ =
⋂B

b=1 P ∗
b . Let �∗

b be the

ranking of the cells of P ∗ induced by T ∗
b , b = 1, . . . , B. Compute a median ranking �∗

related to the bootstrap profile Π∗ = {�∗
b: 1 ≤ b ≤ B} with respect to the metric d on

R(P ∗):
�∗= argmin

�∈R(P ∗)

dΠ∗(�),

as well as the scoring rule s�∗,P ∗(x).
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Remark 19 (ON TUNING PARAMETERS.) As mentioned in 3.3, aggregating ranking rules is com-

putationally expensive. The empirical results displayed in Section 6 suggest to aggregate several

dozens of randomized ranking trees of moderate, or even small, depth built from bootstrap samples

of size n∗ ≤ n.

Remark 20 (“PLUG-IN” BAGGING.) As pointed out in Clémençon and Vayatis (2009c) (see Re-

mark 6 therein), given an ordered partition (P ,RP ) of the feature space X , a “plug-in” estimate of

the (optimal scoring) function S = Hη ◦η can be automatically deduced from any ordered partition

(or piecewise constant scoring rule equivalently) and the data Dn, where Hη denotes the condi-

tional cdf of η(X) given Y = −1. This scoring rule is somehow canonical in the sense that, given

Y = −1, H(X) is distributed as a uniform r.v. on [0,1], with H being the conditional distribution

of X. Considering a partition P = {Ck}1≤k≤K equipped with a ranking RP , the plug-in estimate is

given by

ŜP ,RP
(x) =

K

∑
k=1

α̂(Rk) · I{x ∈ Ck}, x ∈ X ,

where Rk =
⋃

l: R (k)≤R (l)Cl . Notice that, as a scoring rule, ŜP ,RP
yields the same ranking as sP ,RP

,

provided that α̂(Ck)> 0 for all k = 1, . . . , K. Adapting the idea proposed in Section 6.1 of Breiman

(1996) in the classification context, an alternative to the rank aggregation approach proposed here

naturally consists in computing the average of the piecewise-constant scoring rules S̃∗
T ∗

b
thus defined

by the bootstrap ranking trees and consider the rankings induced by the latter. This method we call

“plug-in bagging” is however less effective in many situations, due to the inaccuracy/variability of

the probability estimates involved.

Ranking stability. Let Θ = X ×{−1,+1}. From the view developed in this paper, a ranking algo-

rithm is a function S that maps any data sample Dn ∈ Θn, n ≥ 1, to a scoring rule ŝn. In the ranking

context, we will say that a learning algorithm is “stable” when the preorder on X it outputs is not

much affected by small changes in the training set. We propose a natural way of measuring ranking

(in)stability, through the computation of the following quantity:

Instabn(S) = E
(
dX

(
ŝn, ŝ

′
n

))
, (4)

where the expectation is taken over two independent training samples Dn and D ′
n, both made of n

i.i.d. copies of the pair (X ,Y ), and ŝn = S(Dn), ŝ′n = S(D ′
n). Incidentally, we highlight the fact that

the bootstrap stage of RANKING FOREST can be used for assessing the stability of the base ranking

algorithm. Indeed, set ŝ
(b)
n∗ = S(D∗

b ) and ŝ
(b′)
n∗ = S(D∗

b′) obtained from two bootstrap samples. Then,

the quantity:

Înstabn(S) =
2

B(B−1) ∑
1≤b<b′≤B

d̂X

(
ŝ
(b)
n∗ , ŝ

(b′)
n∗

)
,

can be possibly interpreted as a bootstrap estimate of (4).

We finally underline that the outputs of the RANKING FOREST can also be used for monitoring

ranking performance, in an analogous fashion to RANDOM FOREST in the classification/regression

context (see Section 3.1 in Breiman 2001 and the references therein). An out-of-bag estimate of

the AUC criterion can be obtained by considering, for all pairs (X ,Y ) and (X ′,Y ′) in the original

training sample, those ranking trees that are built from bootstrap samples containing neither of them,

avoiding this way the use of a test data set.
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6. Numerical Experiments

The purpose of this section is to measure the impact of aggregation with resampling and feature

randomization on the performance of the TREERANK/LEAFRANK procedure.

Data sets. We have considered artificial data sets where class-conditional distributions of X goven

Y =±1 are gaussian in dimensions 10 and 20. Three examples are considered here:

• RF 10 - class-conditional distributions have the same means (µ+ = µ− = 0) but different

covariance matrices (Σ+ = Id10 and Σ− = 1.023 · Id10); optimal AUC is AUC∗ = 0.76;

• RF 20 - class-conditional distributions have different mean vectors (||µ+− µ−|| = 0.9) and

covariance matrices (Σ+ = Id20 and Σ− = 1.23 · Id20); optimal AUC is AUC∗ = 0.77;

• RF 10 sparse - class-conditional distributions have a 6-dimensional marginal distribution in

common, and the regression function η(x) depends on four components of the input vector X

onlyoptimal AUC is AUC∗ = 0.89.

With these data sets, the series of experiments below capture the influence on ranking performance

of separability, dimension, and sparsity.

Sample sizes. In order to quantify the impact of bagging and random feature selection on the accu-

racy/stability of the resulting ranking rule, the algorithm has been run under various configurations

for each data set on 30 independent training samples for each sample size ranging from n = 250 to

n = 3000. The test sample was taken of size 3000 in all experiments.

Variants of TREERANK and parameters. In the intensive comparisons we have performed, we have

considered the following variants:

• Plain TREERANK/LEAFRANK - in this version, all input dimensions are involved in the split-

ting stage; the maximum depth of the master ranking tree is 10, and the maximum depth of

the ranking tree using orthogonal splits in the LEAFRANK procedure is 8 for the use case RF

10 sparse and also 10 for the two others.

• BAGGING RANKING TREES - the bagging version uses the plain TREERANK/LEAFRANK

as described above with bootstrap samples of size B = 20, B = 50, and B = 100.

• RANKING FORESTS - the forest version involves additional parameters for feature random-

ization which can affect both the master ranking tree (FT for TREERANK) and the splitting

rule (FL for LEAFRANK); these parameters indicate the number of dimensions randomly cho-

sen along which the best split is chosen ; we have tried six different sets of parameters (Cases

1 to 6) where FT takes values 3, 5, and 10 (or 20 for the data set RF 20), and FL takes values

1, 3, and 5 (plus 10 for the data set RF 20); bootstrap samples are chosen of size B = 1 (single

tree with feature randomization), B = 20, B = 50, and B = 100.

In the case of bagging and forests, aggregation is performed by taking the pointwise median value

of ranks for the collection of ranking trees which have been estimated on each bootstrap sample.

This choice allows for very fast evaluations of the aggregated scoring rule (see the last paragraph of

Section 3.3 for a justification).

Performance. For each variant and each set of parameters and sample size, we performed 30 repli-

cations using independent training sets. These replications are used to derive performance results

on a same test set. Performance is measured through a collection of indicators:
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• AUC and σ̂2 - Average AUC and standar type error are computed based on the test sample

results over the 30 replications;

• ∆Env - this indicator quantifies the accuracy of the variant through the relative improvement

of the envelope on the ROC curve over the 30 replications compared to the plain TREER-

ANK/LEAFRANK (e.g., if ∆Env=−30% for BAGGING it means that the envelope of the ROC

curve is 30% narrower than with TREERANK); the more negative the better the performance

accuracy;

• Instabτ - Instability measure applied to the ranking algorithm (e.g., Ranking Forest), estimate

of (4), which reproduces the quantity Înstabn(S) using the Kendal τ as a distance; the smaller

the quantity the more stable the method;

• DCG and AVE - the Discounted Cumulative Gain and the Average Precision provide mea-

sures which are sensitive to the top ranked instances; they can both be expressed as conditional

linear rank statistics (see Clémençon and Vayatis 2007 and Clémençon and Vayatis 2009a)

with score-generating function given by 1/(ln(1+ x)) (DCG) or 1/x (AP);

• HR@u% - the Hit Ratio at u% is a relative count of positive instances among a proportion u

of best scored instances.

These indicators capture the most important properties as far as quality assessment for scoring rules

is concerned: average and local performance, stability of the rule, accuracy of ROC performance.

Results and comments. Results are collected in a series of Tables 1, 2, 3, 4, 5, 6. We also report

enveloppes on ROC curves over the series of replications of the experiments with the same parame-

ters (see Figures 3 and 4). We study in particular the impact of mixed effects of randomization with

sample size (Tables 1, 2, 3) or aggregation (Tables 4, 5, 6). Our main observations are the following:

• The sample size of the training set has a moderate impact on performance of RANKING

FOREST while it helps significantly single trees in the plain TREERANK;

• In the case of small sample sizes, RANKING FOREST with little randomization (Cases 2 and

5) boost performance compared to the plain TREERANK;

• Increasing the amount of aggregation always improves performance and accuracy except in

some situations in the non-sparse data sets (little randomization FT = d, B large);

• BAGGING with B = 20 ranking trees already improves plain TREERANK dramatically;

• Randomization reveals its power in the sparse data set; when all input variables are relevant,

highly randomized strategies (Cases 4 and 6) may fail to capture good scoring rules unless a

large amount of ranking trees are aggregated (B above 50).

These empirical results aim at illustrating the effect of the combination of rank aggregation and

random feature selection on ranking accuracy/stability. A complete and detailed empirical analysis

of the merits and limitations of RANKING FOREST is beyond the scope of this paper and it will be

the object of future work.
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Figure 3: Comparison of envelopes on ROC curves - Results obtained with RANKING FORESTS

with B = 50 (blue, double dashed) and 100 (red, solid, dashed). The upper display shows

results on the data set RF 10 while the lower display corresponds to the curves obtained

on the data set RF 10 sparse. RANKING FORESTS used correspond to Case 3, training

size is 2000, and optimal ROC curve is in thick red.

7. Conclusion

The major contribution of the paper was to show how to apply the principles of the RANDOM FOR-

EST approach to the ranking/scoring task. Several ways of randomizing and aggregating ranking
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Figure 4: Comparison of envelopes on ROC curves - Results obtained with BAGGING (red, solid

and dashed) and RANKING FORESTS (blue, double dashed) with B = 50. The upper

display shows results on the data set RF 10 while the lower display corresponds to the

curves obtained on the data set RF 10 sparse. RANKING FORESTS used correspond to

Case 3, training size is 2000, and optimal ROC curve is in thick red.

trees, such as those produced by the TREERANK algorithm, have been rigorously described. We

proposed a specific notion of stability in the ranking setup and provided some preliminary back-
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RF 10 - AUC∗ = 0.756 - dependence on aggregation

FT FL B AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

TreeRank - - - 0.628 (±0.013) - 0.013 1.574 0.59 66% 64%

Bagging - -

20 0.678 (±0.010) −25% 0.010 1.708 0.64 77% 74%

50 0.686 (±0.008) −29% 0.009 1.745 0.64 78% 74%

100 0.689 (±0.009) −29% 0.009 1.819 0.65 78% 74%

1 0.508 (±0.027) +65% 0.016 1.563 0.50 49% 50%

Forest
5 5

20 0.550 (±0.026) +55% 0.015 2.059 0.53 57% 55%

Case 1
50 0.567 (±0.025) +46% 0.015 2.210 0.55 59% 57%

100 0.642 (±0.016) −7% 0.011 2.288 0.61 71% 67%

1 0.525 (±0.025) +68% 0.015 1.564 0.51 52% 52%

Forest
10 5

20 0.577 (±0.024) +22% 0.014 2.012 0.56 61% 59%

Case No. 2
50 0.615 (±0.020) +21% 0.013 2.187 0.58 67% 64%

100 0.585 (±0.025) +34% 0.014 2.357 0.56 62% 60%

1 0.512 (±0.024) +61% 0.016 1.564 0.50 49% 49%

Forest
5 3

20 0.546 (±0.024) +35% 0.015 2.047 0.53 56% 54%

Case 3
50 0.577 (±0.025) +35% 0.014 2.215 0.56 61% 59%

100 0.648 (±0.019) +23% 0.011 2.294 0.61 72% 68%

1 0.512 (±0.023) +51% 0.015 1.570 0.50 47% 49%

Forest
3 3

20 0.537 (±0.026) +27% 0.015 2.067 0.52 54% 53%

Case 4
50 0.563 (±0.028) +42% 0.015 2.249 0.54 58% 57%

100 0.595 (±0.019) 0% 0.014 2.345 0.57 64% 61%

1 0.516 (±0.029) +95% 0.016 1.564 0.51 51% 51%

Forest
10 3

20 0.582 (±0.022) +32% 0.014 2.016 0.56 62% 59%

Case 5
50 0.616 (±0.022) +11% 0.013 2.161 0.59 67% 64%

100 0.579 (±0.023) +30% 0.014 2.423 0.56 61% 59%

1 0.517 (±0.028) +81% 0.016 1.567 0.51 51% 52%

Forest
3 1

20 0.545 (±0.026) +38% 0.015 2.075 0.53 56% 55%

Case 6
50 0.565 (±0.024) +28% 0.015 2.224 0.55 59% 57%

100 0.647 (±0.016) +3% 0.011 2.306 0.61 70% 67%

Table 1: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with aggregation (B) on the data set RF 10

with training sample size n = 2000.

ground theory for ranking rule aggregation. Encouraging experimental results based on artificial

data have also been obtained, demonstrating how bagging combined with feature randomization

may significantly enhance ranking accuracy and stability both at the same time. Truth be told, the-

oretical explanations for the success of RANKING FOREST in these situations are left to be found.

Results obtained by Friedman and Hall (2007) or Grandvalet (2004) for the bagging approach in the

classification/regression context suggest possible lines of research in this regard. At the same time,

further experiments, based on real data sets in particular, will be carried out in a dedicated article in

order to determine precisely the situations in which RANKING FOREST is competitive compared to

alternative ranking methods.
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RF 20 - AUC∗ = 0.773 - dependence on aggregation

FT FL B AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

TreeRank - - - 0.613 (±0.013) - 0.013 1.614 0.59 67% 64%

Bagging - -
20 0.691 (±0.009) −32% 0.009 1.715 0.66 80% 75%

50 0.699 (±0.006) −43% 0.008 1.816 0.66 81% 76%

1 0.534 (±0.033) +120% 0.015 1.599 0.53 56% 56%

Forest
10 10

20 0.623 (±0.028) +78% 0.013 2.017 0.60 68% 65%

Case 1
50 0.667 (±0.021) +33% 0.011 2.017 0.63 73% 70%

100 0.726 (±0.011) −25% 0.007 2.160 0.67 80% 77%

1 0.551 (±0.033) +114% 0.015 1.599 0.54 58% 57%

Forest
20 10

20 0.673 (±0.019) +28% 0.011 1.989 0.64 73% 70%

Case 2
50 0.706 (±0.012) −15% 0.009 2.104 0.66 77% 74%

100 0.693 (±0.014) 0% 0.009 2.250 0.65 76% 73%

1 0.534 (±0.030) +100% 0.015 1.599 0.53 56% 55%

Forest
10 5

20 0.625 (±0.025) +64% 0.013 2.077 0.60 68% 65%

Case 3
50 0.675 (±0.013) −6% 0.011 2.179 0.64 75% 71%

100 0.726 (±0.009) −35% 0.007 2.171 0.67 80% 77%

1 0.516 (±0.038) +138% 0.016 1.599 0.52 53% 53%

Forest
5 5

20 0.585 (±0.030) +93% 0.014 2.050 0.57 63% 61%

Case 4
50 0.625 (±0.026) +50% 0.013 2.217 0.60 67% 65%

100 0.702 (±0.013) −16% 0.009 2.247 0.66 78% 74%

1 0.547 (±0.034) +123% 0.015 1.598 0.54 58% 56%

Forest
20 5

20 0.666 (±0.020) +25% 0.011 2.007 0.63 74% 70%

Case 5
50 0.705 (±0.011) −23% 0.009 2.128 0.66 78% 74%

100 0.658 (±0.021) +24% 0.011 2.329 0.62 71% 69%

1 0.510 (±0.040) +157% 0.016 1.597 0.51 52% 52%

Forest
5 1

20 0.574 (±0.035) +97% 0.015 2.120 0.56 61% 59%

Case 6
50 0.614 (±0.027) +64% 0.014 2.238 0.59 67% 64%

100 0.710 (±0.011) −19% 0.009 2.261 0.66 78% 75%

Table 2: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with aggregation (B) on the data set RF 20

with training sample size n = 2000.

Appendix A. Axioms for Ranking Rules

Throughout this paper, we call a ranking of the elements of a set Z any total preorder on Z, that is,

a binary relation � for which the following axioms are checked.

1. (TOTALITY) For all (z1,z2) ∈ Z2, either z1 � z2 or else z2 � z1 holds.

2. (TRANSITIVITY) For all (z1,z2,z3): if z1 � z2 and z2 � z3, then z1 � z3.

When the assertions z1 � z2 and z2 � z1 hold both at the same time, we write z1 ≍ z2 and z1 ≺ z2

when solely the first one is true. Assuming in addition that Z has finite cardinality #Z < ∞, the rank
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RF 10 sparse - AUC∗ = 0.89 - dependence on aggregation B

FT FL B AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

TreeRank - - - 0.826 (±0.007) - 0.007 1.622 0.70 84% 83%

Bagging - -

20 0.865 (±0.004) −30% 0.004 1.643 0.74 89% 88%

50 0.867 (±0.003) −35% 0.004 1.650 0.74 89% 88%

100 0.868 (±0.003) −36% 0.004 1.708 0.74 89% 88%

1 0.630 (±0.071) +502% 0.014 1.632 0.58 66% 63%

Forest
5 5

20 0.814 (±0.018) +61% 0.008 1.977 0.71 86% 84%

Case 1
50 0.832 (±0.012) +22% 0.006 2.163 0.72 88% 85%

100 0.858 (±0.006) −30% 0.004 2.110 0.74 90% 88%

1 0.636 (±0.083) +588% 0.014 1.598 0.59 71% 66%

Forest
10 5

20 0.845 (±0.010) −12% 0.005 1.893 0.73 89% 86%

Case 2
50 0.863 (±0.005) −43% 0.004 1.918 0.74 90% 88%

100 0.869 (±0.003) −51% 0.003 1.956 0.74 91% 89%

1 0.622 (±0.071) +553% 0.014 1.607 0.57 64% 60%

Forest
5 3

20 0.809 (±0.010) +72% 0.008 2.060 0.71 86% 83%

Case 3
50 0.844 (±0.009) −15% 0.005 2.089 0.73 89% 87%

100 0.859 (±0.005) −38% 0.004 2.133 0.74 90% 88%

1 0.580 (±0.083) +672% 0.015 1.612 0.55 61% 59%

Forest
3 3

20 0.772 (±0.036) +195% 0.010 2.056 0.68 83% 79%

Case 4
50 0.829 (±0.015) +39% 0.007 2.211 0.72 88% 85%

100 0.849 (±0.008) −10% 0.005 2.253 0.73 90% 87%

1 0.661 (±0.069) +480% 0.014 1.602 0.60 69% 66%

Forest
10 3

20 0.840 (±0.010) −9% 0.006 1.926 0.73 88% 86%

Case 5
50 0.863 (±0.005) −41% 0.004 1.974 0.74 90% 88%

100 0.868 (±0.010) −54% 0.003 1.990 0.74 91% 89%

1 0.593 (±0.073) +566% 0.015 1.611 0.55 63% 60%

Forest
3 1

20 0.745 (±0.036) +228% 0.011 2.162 0.66 79% 76%

Case 6
50 0.807 (±0.026) +108% 0.008 2.252 0.70 86% 83%

100 0.835 (±0.010) −6% 0.006 2.318 0.72 88% 85%

Table 3: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with aggregation (B) on the data set RF 10

sparse with training sample size n = 2000.

of any element z ∈ Z is given by

R�(z) = ∑
z′∈Z

{
I{z′ ≺ z}+

1

2
I{z′ ≍ z}

}
,

when using the standard MID-RANK convention (Kendall, 1945), that is, by assigning to tied ele-

ments the average of the ranks they cover.

Any scoring rule s : Z → R naturally defines a ranking �s on Z: ∀(z1,z2) ∈ Z2, z1 �s z2 iff

s(z1) ≤ s(z2). Equipped with these notations, it is clear that �R�
coincides with � for any ranking

� on a finite set Z.
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RF 10 - AUC∗ = 0.76 - dependence on sample size

FT FL n AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

250 0.573 (±0.024) - 0.014 1.673 0.54 60% 58%

500 0.576 (±0.018) - 0.014 1.607 0.54 59% 58%

TreeRank - - 1000 0.595 (±0.018) - 0.014 1.583 0.56 62% 60%

2000 0.628 (±0.013) - 0.013 1.574 0.59 66% 64%

3000 0.632 (±0.011) - 0.013 1.560 0.59 66% 65%

Bagging - -
2000 0.678 (±0.010) −25% 0.010 1.708 0.64 77% 74%

3000 0.678 (±0.010) −25% 0.010 1.708 0.64 77% 74%

250 0.546 (±0.023) −16% 0.015 2.034 0.53 56% 54%

500 0.544 (±0.028) +40% 0.015 2.032 0.53 56% 55%

Case 1 5 5 1000 0.547 (±0.026) +10% 0.015 2.009 0.53 57% 55%

2000 0.550 (±0.026) +55% 0.015 2.059 0.53 57% 55%

3000 0.549 (±0.019) +33% 0.015 2.034 0.53 55% 55%

250 0.571 (±0.025) +11% 0.015 1.990 0.55 60% 58%

500 0.571 (±0.030) +34% 0.015 1.984 0.55 60% 59%

Case 2 10 5 1000 0.578 (±0.028) +41% 0.014 1.999 0.56 60% 59%

2000 0.577 (±0.024) +22% 0.014 2.012 0.56 61% 59%

3000 0.585 (±0.028) +76% 0.014 1.998 0.56 62% 60%

250 0.546 (±0.031) +7% 0.015 2.049 0.53 56% 55%

500 0.556 (±0.029) +40% 0.015 1.993 0.54 58% 57%

Case 3 5 3 1000 0.563 (±0.023) +8% 0.015 2.024 0.54 58% 57%

2000 0.546 (±0.024) +35% 0.015 2.047 0.53 56% 54%

3000 0.549 (±0.019) +30% 0.015 2.026 0.53 56% 55%

250 0.546 (±0.023) +15% 0.015 2.090 0.53 55% 55%

500 0.536 (±0.028) +36% 0.015 2.071 0.52 54% 53%

Case 4 3 3 1000 0.540 (±0.027) +15% 0.015 2.075 0.53 55% 54%

2000 0.537 (±0.026) +27% 0.015 2.067 0.52 54% 53%

3000 0.536 (±0.022) +55% 0.015 2.063 0.52 54% 54%

250 0.588 (±0.027) +5% 0.014 1.984 0.56 62% 60%

500 0.570 (±0.030) +65% 0.015 1.970 0.55 59% 58%

Case 5 10 3 1000 0.587 (±0.023) +16% 0.014 1.971 0.56 63% 60%

2000 0.582 (±0.022) +32% 0.014 2.016 0.56 62% 59%

3000 0.587 (±0.026) +83% 0.014 1.991 0.57 63% 60%

250 0.546 (±0.028) +8% 0.015 2.085 0.53 56% 55%

500 0.543 (±0.024) +11% 0.015 2.077 0.53 55% 54%

Case 6 3 1 1000 0.549 (±0.026) +13% 0.015 2.066 0.53 56% 55%

2000 0.545 (±0.026) +38% 0.015 2.075 0.53 56% 55%

3000 0.546 (±0.026) +71% 0.015 2.065 0.53 56% 55%

Table 4: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with sample size (n) on the data set RF 10

for B = 20.

Appendix B. Agreement Between Rankings

The most widely used approach to the rank aggregation issue relies on the concept of measure of

agreement between rankings which uses pseudo-metrics. Since the seminal contribution of Kemeny
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CLÉMENÇON, DEPECKER AND VAYATIS

RF 20 - AUC∗ = 0.77 - dependence on sample size

FT FL n AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

250 0.561 (±0.019) - 0.014 1.742 0.55 57% 58%

500 0.579 (±0.018) - 0.014 1.666 0.56 60% 59%

TreeRank - - 1000 0.593 (±0.014) - 0.014 1.626 0.57 63% 62%

2000 0.613 (±0.013) - 0.013 1.614 0.59 67% 65%

3000 0.621 (±0.013) - 0.013 1.597 0.59 67% 65%

Bagging - -
2000 0.691 (±0.009) −32% 0.009 1.715 0.66 80% 75%

3000 0.691 (±0.009) −32% 0.009 1.715 0.66 80% 75%

250 0.612 (±0.026) +25% 0.014 2.019 0.59 67% 64%

500 0.630 (±0.029) +41% 0.013 2.018 0.61 69% 66%

Case 1 10 10 1000 0.628 (±0.025) +44% 0.013 2.024 0.60 68% 66%

2000 0.623 (±0.028) +78% 0.013 2.017 0.60 68% 65%

3000 0.636 (±0.029) +54% 0.012 2.012 0.61 67% 65%

250 0.646 (±0.027) +27% 0.012 1.964 0.62 71% 68%

500 0.660 (±0.018) +6% 0.012 1.945 0.63 72% 69%

Case 2 20 10 1000 0.666 (±0.019) +23% 0.011 1.984 0.63 73% 70%

2000 0.673 (±0.019) +28% 0.011 1.989 0.64 73% 70%

3000 0.665 (±0.017) +17% 0.011 1.997 0.63 73% 70%

250 0.610 (±0.030) +69% 0.014 2.039 0.59 66% 63%

500 0.617 (±0.033) +56% 0.013 2.027 0.59 66% 64%

Case 3 10 5 1000 0.621 (±0.024) +44% 0.013 2.035 0.60 67% 65%

2000 0.625 (±0.025) +64% 0.013 2.077 0.60 68% 65%

3000 0.631 (±0.025) +55% 0.013 2.039 0.61 69% 66%

250 0.568 (±0.036) +82% 0.015 2.088 0.56 61% 59%

500 0.579 (±0.018) +47% 0.014 2.064 0.58 63% 61%

Case 4 5 5 1000 0.585 (±0.041) +155% 0.014 2.060 0.57 63% 61%

2000 0.585 (±0.030) +93% 0.014 2.050 0.57 63% 61%

3000 0.585 (±0.030) +88% 0.014 2.052 0.57 63% 61%

250 0.631 (±0.018) −4% 0.013 1.962 0.61 69% 67%

500 0.658 (±0.021) +4% 0.012 1.941 0.62 72% 69%

Case 5 20 5 1000 0.659 (±0.022) +25% 0.012 1.988 0.63 72% 69%

2000 0.666 (±0.020) +25% 0.011 2.007 0.63 74% 70%

3000 0.670 (±0.021) +46% 0.011 1.978 0.63 73% 70%

250 0.561 (±0.033) +57% 0.015 2.099 0.55 59% 57%

500 0.570 (±0.028) +32% 0.015 2.061 0.56 61% 59%

Case 6 5 1 1000 0.571 (±0.031) +119% 0.015 2.066 0.56 60% 59%

2000 0.574 (±0.035) +97% 0.015 2.120 0.56 61% 59%

3000 0.570 (±0.032) +88% 0.015 2.053 0.56 61% 60%

Table 5: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with sample size (n) on the data set RF 10

for B = 20.

(1959), numerous ways of measuring agreement have been proposed in the literature. Here we re-
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RF 10 sparse - AUC∗ = 0.89 - dependence on sample size

FT FL n AUC (±σ̂) ∆Env Instabτ DCG AVE
HR HR

@10% @20%

250 0.749 (±0.022) - 0.010 1.739 0.63 74% 74%

500 0.771 (±0.015) - 0.008 1.662 0.65 76% 76%

TreeRank - - 1000 0.806 (±0.009) - 0.008 1.637 0.68 80% 80%

2000 0.827 (±0.007) - 0.007 1.622 0.70 84% 83%

3000 0.836 (±0.006) - 0.007 1.602 0.70 85% 84%

Bagging - -
2000 0.865 (±0.004) −30% 0.004 1.643 0.74 89% 88%

3000 0.865 (±0.004) −30% 0.004 1.643 0.74 89% 88%

250 0.808 (±0.020) −28% 0.008 2.010 0.71 87% 36%

500 0.814 (±0.024) +32% 0.008 1.958 0.71 86% 83%

Case 1 5 5 1000 0.862 (±0.005) −49% 0.004 1.701 0.74 89% 88%

2000 0.814 (±0.018) +61% 0.008 1.977 0.71 86% 84%

3000 0.870 (±0.005) −19% 0.004 1.670 0.74 90% 88%

250 0.835 (±0.012) −57% 0.006 1.869 0.72 89% 86%

500 0.841 (±0.011) −36% 0.006 1.839 0.73 89% 86%

Case 2 10 5 1000 0.845 (±0.009) −30% 0.006 1.853 0.73 90% 86%

2000 0.845 (±0.010) −12% 0.005 1.893 0.73 89% 86%

3000 0.848 (±0.011) +12% 0.006 1.851 0.73 89% 86%

250 0.795 (±0.027) −13% 0.009 2.014 0.70 86% 82%

500 0.810 (±0.023) +17% 0.008 1.984 0.71 86% 83%

Case 3 5 3 1000 0.811 (±0.020) +40% 0.008 1.966 0.71 86% 83%

2000 0.809 (±0.020) +72% 0.008 2.060 0.71 86% 83%

3000 0.809 (±0.023) +110% 0.008 1.979 0.70 86% 83%

250 0.764 (±0.042) +27% 0.010 2.114 0.68 82% 78%

500 0.773 (±0.038) +115% 0.010 2.068 0.68 83% 79%

Case 4 3 3 1000 0.780 (±0.031) +105% 0.009 2.063 0.69 83% 80%

2000 0.772 (±0.036) +195% 0.010 2.056 0.68 83% 79%

3000 0.783 (±0.036) +280% 0.009 2.044 0.69 83% 80%

250 0.828 (±0.016) −48% 0.007 1.931 0.72 87% 85%

500 0.836 (±0.014) −21% 0.006 1.883 0.72 88% 86%

Case 5 10 3 1000 0.841 (±0.012) −9% 0.006 1.876 0.73 89% 86%

2000 0.840 (±0.010) +9% 0.006 1.926 0.73 88% 86%

3000 0.843 (±0.008) +5% 0.006 1.893 0.73 89% 86%

250 0.724 (±0.049) +32% 0.012 2.149 0.65 77% 74%

500 0.757 (±0.035) +76% 0.011 2.085 0.67 81% 78%

Case 6 3 1 1000 0.742 (±0.045) +198% 0.011 2.096 0.66 79% 76%

2000 0.745 (±0.036) +228% 0.011 2.162 0.66 79% 76%

3000 0.728 (±0.049) +350% 0.012 2.079 0.65 78% 75%

Table 6: Comparison of TREERANK/LEAFRANK and BAGGING with RANKING FORESTS - Im-

pact of randomization (FT ,FL) and resampling with sample size (n) on the data set RF 10

sparse for B = 20.

view three popular choices, originally introduced in the context of nonparametric statistical testing

(see Fagin et al. 2003 for instance).
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Let � and �′ be two rankings on a finite set Z = {z1, . . . , zK}. The notation R�(z) is used for

the rank of the element z according to the ranking �.

Kendall τ. Consider the quantity dτ(�,�′), obtained by summing up all the terms

Ui, j(�,�′) = I{(R�(zi)−R�(z j))(R�′(zi)−R�′(z j))< 0}

+
1

2
I{R�(zi) = s�(z j), R�′(zi) 6= R�′(z j)}

+
1

2
I{R�′(zi) = R�′(z j), R�(zi) 6= R�(z j)}

over all pairs (zi,z j) such that 1 ≤ i < j ≤ K. It counts, among the K(K −1) pairs of Z’s elements,

how many are “discording”, assigning the weight 1/2 when two elements are tied in one ranking

but not in the other. The Kendall τ is obtained by renormalizing this distance:

τ(�,�′) = 1−
4

K(K −1)
dτ(�,�′).

Large values of τ(�,�′) indicate agreement (or similarity) between � and �′: it ranges from

−1 (full disagreement) to 1 (full agreement). It is worth noticing that it can be computed in

O((K logK)/ log logK) time (see Bansal and Fernandez-Baca 2009).

Spearman footrule. Another natural distance between rankings is defined by considering the l1-

metric between the corresponding rank vectors:

d1(�, �′) =
K

∑
i=1

|R�(zi)−R�′(zi)|.

The affine transformation given by

F(�,�′) = 1−
3

K2 −1
d1(�, �′).

is known as the Spearman footrule measure of agreement and takes its values in [−1,+1].
Spearman rank-order correlation. Considering instead the l2-metric

d2(�, �′) =
K

∑
i=1

(R�(zi)−R�′(zi))
2

leads to the Spearman ρ coefficient:

ρ(�, �′) = 1−
6

K(K2 −1)
d2(�, �′).

Remark 21 (EQUIVALENCE.) It should be noticed that these three measures of agreement are

equivalent in the sense that:

c1

(
1−ρ(�, �′)

)
≤ (1−F(�, �′))2 ≤ c2

(
1−ρ(�, �′)

)
,

c3

(
1− τ(�, �′)

)
≤ 1−F(�, �′)≤ c4

(
1− τ(�, �′)

)
,

with c2 = K2/(2(K2 − 1)) = Kc1 and c4 = 3K/(2(K + 1)) = 2c3; see Theorem 13 in Fagin et al.

(2006).

64



RANKING FORESTS

We point out that many fashions of measuring agreement or distance between rankings have

been considered in the literature, see Mielke and Berry (2001). Well-known alternatives to the

measures recalled above are the Cayley/Kemeny distance (Kemeny, 1959) and variants for top k-

lists (Fagin et al., 2006), in order to focus on the “best instances” (see Clémençon and Vayatis 2007).

Many other distances between rankings could naturally be deduced through suitable extensions of

word metrics on the symmetric groups on finite sets (see Howie 2000 or Deza and Deza 2009).

Appendix C. The TREERANK Algorithm

Here we briefly review the TREERANK method, on which the procedure we call RANKING FOREST

crucially relies. One may refer to Clémençon and Vayatis (2009c) and Clémençon et al. (2011)

for further details as well as rigorous statistical foundations for the algorithm. As for most tree-

based techniques, a greedy top-down recursive partitioning stage based on a training sample Dn =
{(Xi,Yi) : 1 ≤ i ≤ n} is followed by a pruning procedure, where children of a same parent node are

recursively merged until an estimate of the AUC performance criterion is maximized. A package

for R statistical software (see http://www.r-project.com) implementing TREERANK is available at

http://treerank.sourceforge.net (see Baskiotis et al. 2009).

C.1 Growing Stage

The goal is here to grow a master ranking tree of large depth D ≥ 1 with empirical AUC as large

as possible. In order to describe this first stage, we introduce the following quantities. Let C ⊂ X ,

consider the empirical rate of negative (respectively, positive) instances lying in the region C :

α̂(C ) =
1

n

n

∑
i=1

I{Xi ∈ C , Yi =−1} and β̂(C ) =
1

n

n

∑
i=1

I{Xi ∈ C , Yi =+1},

as well as n(C ) = n(α̂(C )+ β̂(C )) the number of data falling in C .

One starts from the trivial partition P0 = {X } at root node (0,0) (we set C0,0 = X ) and proceeds

recursively as follows. A tree-structured scoring rule s(x) described by an oriented tree, with outer

leaves forming a partition P of the input space, is refined by splitting a cell C ∈ P into two sub-

cells: C ′ denoting the left child and C ′′ = C \C ′ the right one. Let s′(x) be the scoring rule thus

obtained. From the perspective of AUC maximization, one seeks a subregion C ′ maximizing the

gain ∆
ÂUC

(C ,C ′) in terms of empirical AUC induced by the split, which may be written as:

ÂUC(s′)− ÂUC(s) =
1

2
{α̂(C )β̂(C ′)− β̂(C )α̂(C ′)}.

Therefore, taking the rate of positive instances within the cell C , p̂(C ) = α̂(C ) ·n/n(C ) namely, as

cost for the type I error (i.e., predicting label +1 when Y =−1) and 1− p̂(C ) as cost for the type II

error, the quantity 1−∆
ÂUC

(C ,C ′) may be viewed as the cost-sensitive empirical misclassification

error of the classifier C(X) = 2 · I{X ∈ C ′}−1 on C up to a multiplicative factor, 4 p̂(C )(1− p̂(C ))
precisely. Hence, once the local cost p̂(C ) is computed, any binary classification method can be

straightforwardly adapted in order to perform the splitting step. Here, splits are obtained using

empirical-cost sensitive versions of the standard CART algorithm with axis-parallel splits, this one-

step procedure for AUC maximization being called LEAFRANK in Clémençon et al. (2011). As

depicted by Figure 5, the growing stage appears as a recursive implementation of a cost-sensitive
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CART procedure with a cost updated at each node of the ranking tree, equal to the local rate of

positive instances within the node to split, see Section 3 of Clémençon et al. (2011).

C.2 Pruning Stage

The way the master ranking tree TD obtained at the end of the growing stage is pruned is entirely

similar to the one described in Breiman et al. (1984), the sole difference lying in the fact that here,

for any λ > 0, one seeks a subtree T ⊂ TD that maximizes the penalized empirical AUC

ÂUC(sT )−λ · |T |,

where |T | denotes the number of terminal leaves of T , the constant being next picked using N-fold

cross validation.

The fact that alternative complexity-based penalization procedures, inspired from recent non-

parametric model selection methods and leading to the concept of structural AUC maximization, can

be successfully used for pruning ranking trees has also been pointed up in Section 4.2 of Clémençon

et al. (2011). However, the resampling-based technique previously mentioned is preferred to such

pruning schemes in practice, insofar as it does not require, in contrast, to specify any tuning con-

stant. Following in the footsteps of Arlot (2009) in the classification setup, estimation of the ideal

penalty through bootstrap methods could arise as the answer to this issue. This question is beyond

the scope of the present paper but will soon be tackled.

C.3 Some Practical Considerations

Like other types of decision trees, ranking trees (based on perpendicular splits) have a number of

crucial advantages. Concerning interpretability first, it should be noticed that they produce ranking

rules that can be easily visualized through the binary tree graphic, see Figure 5, the rank/score of

an instance x ∈ X being obtained through checking of a nested combination of simple rules of the

form “X (k) ≥ t” or “X (k) < t”. In addition, ranking trees can adapt straightforwardly to situations

where some data are missing and/or some predictor variables are categorical and some monitoring

tools helping to evaluate the relative importance of each predictor variable X (k) or to depict the

partial dependence of the prediction rule on a subset of input variables are readily available. These

facets are described in section 5 of Clémençon et al. (2011). From a computational perspective now,

we also underline that the tree structure makes the computation of consensus rankings much more

tractable, we refer to Appendix D for further details.

Appendix D. On Computing the Largest Subpartition

We now briefly explain how to make crucial use of the fact that the partitions of X we consider

here are tree-structured to compute the largest subpartition they induce. Let P1 = {C
(1)
k }1≤k≤K1

and

P2 = {C
(2)
k }1≤k≤K2

be two partitions of X , related to (ranking) trees T1 and T2 respectively. For

any k ∈ {1, . . . ,K1}, the collection of subsets of the form C
(1)
k ∩C

(2)
l , 1 ≤ l ≤ K2, can be obtained

by extending the T1 tree structure the following way. At the T1’s terminal leave defining the cell

C
(1)
k , add a subtree corresponding to T2 with root C

(1)
k : the terminal nodes of the resulting subtree,

starting at the global root X , correspond to the desired collection of subsets (notice that some of

these can be empty), see Figure 6 below. Of course, this scheme can be iterated in order to recover
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Ranking tree output by TreeRank

Node split output by LeafRank

Figure 5: The TREERANK algorithm as a recursive implementation of cost-sensitive CART.

all the cells of the subpartition induced by B > 2 tree-structured partitions. For obvious reasons of

computational nature, one should start with the most complex tree and bind progressively less and

less complex trees as one goes along.

Figure 6: Characterizing the largest subpartition induced by tree-structured partitions.
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Appendix E. Proofs

This section contains the proofs of the theoretical results presented in the core of the paper.

E.1 Proof of Proposition 9

Recall that τX(s1,s2) = 1−2dX(s1,s2), where dX(s1,s2) is given by:

P{(s1(X)− s1(X
′)) · (s2(X)− s2(X

′))< 0}+
1

2
P{s1(X) = s1(x

′), s2(X) 6= s2(X
′)}

+
1

2
P{s1(X) 6= s1(x

′), s2(X) = s2(X
′)}.

Observe first that, for all s, AUC(s) may be written as:

P{(s(X) − s(X ′)) · (Y − Y ′) > 0}/(2p(1 − p)) + P{s(X) = s(X ′), Y 6= Y ′}/(4p(1 − p)).

Notice also that, using Jensen’s inequality, one easily obtain that 2p(1− p)|AUC(s1)−AUC(s2)| is

bounded by the expectation of the random variable

I{(s1(X)− s1(X
′)) · (s2(X)− s2(X

′))> 0}+
1

2
I{s1(X) = s1(X

′)} · I{s2(X) 6= s2(X
′)}+

1

2
I{s1(X) 6= s1(X

′)} · I{s2(X) = s2(X
′)},

which is equal to dX(s1,s2) = (1− τX(s1,s2))/2.

E.2 Proof of Proposition 10

Recall first that, for all s ∈ S , the AUC deficit 2p(1− p){AUC∗−AUC(s)} may be written as

E
[
|η(X)−η(X ′)| · I{(X ,X ′) ∈ Γs}

]
+P{s(X) = s(X ′), (Y,Y ′) = (−1,+1)},

with

Γs = {(x,x′) ∈ X 2 : (s(x)− s(x′)) · (η(x)−η(x′))< 0},

refer to Example 1 in Clémençon et al. (2008) for instance. Now, Hölder inequality combined with

noise condition (1) shows that P{(X ,X ′) ∈ Γs} is bounded by

(
E
[
|η(X)−η(X ′)| · I{(X ,X ′) ∈ Γs}

])a/(1+a)
× c1/(1+a).

Therefore, we have for all s∗ ∈ S ∗:

dX(4s,4s∗) = P{(X ,X ′) ∈ Γs}+
1

2
P{s(X) = s(X ′)}.

Notice that p(1− p)P{s(X) = s(X ′) | (Y,Y ′) = (−1,+1)} can be rewritten as

E[I{s(X) = s(X ′)} ·η(X ′)(1−η(X))] =
1

2
E[I{s(X) = s(X ′)} · (η(X ′)+η(X)−2η(X)η(X ′))],

which term can be easily shown to be larger than 1
2
E[I{s(X) = s(X ′)} · |η(X ′)−η(X)|]. Using the

same argument as above, we obtain that P{s(X) = s(X ′)} is bounded by

(
E
[
|η(X)−η(X ′)| · I{s(X) = s(X ′)}

])a/(1+a)
× c1/(1+a).

Combined withe the bound previously established, this leads to the desired result.
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E.3 Proof of Theorem 16

By virtue of Proposition 9, we have:

AUC∗−AUC(s̄B)≤
dX(s

∗, s̄B)

2p(1−p)
,

for any s∗ ∈ S ∗. Using now triangular inequality applied to the distance dX between preorders on

X , one gets

dX(s
∗, s̄B)≤ dX(s

∗, ŝn(.,Z j))+dX(ŝn(.,Z j), s̄B),

for all j ∈ {1, . . . , B}. Averaging then over j and using the fact that, if one chooses s∗ in S ,

B

∑
j=1

dX(ŝn(.,Z j), s̄B)≤
B

∑
j=1

dX(ŝn(.,Z j),s
∗),

one obtains that

dX(s
∗, s̄B)≤

2

B

B

∑
j=1

dX(ŝn(.,Z j),s
∗).

The desired result finally follows from Proposition 10 combined with the consistency assumption

of the randomized scoring rule.

Remark 22 Observe that, in the case where S is allowed to depend on n and one only assumes the

existence of s̃∗n ∈ Sn such that AUC(s̃∗n)→AUC∗ as n→∞ (relaxing thus the assumption S ∩S ∗ 6= /0),

the argument above leads to

AUC∗−AUC(s̄B)≤
1

2p(1−p)

{
2

B

B

∑
j=1

dX(̂sn(.,Zj),s
∗)+dX(s̃

∗
n,s

∗)

}
.

which shows that AUC consistency of the median still holds true.

E.4 Proof of Theorem 17

Observe that we have:

∆B(s̃m)−min
s∈S

∆B(s) ≤ 2 · sup
s∈S

|∆̂B,m(s)−∆B(s)|

≤ 2
B

∑
j=1

sup
s∈S

|d̂X(s,s j)−dX(s,s j)|.

Now, it results from the strong Law of Large Numbers for U-processes stated in Corollary 5.2.3 in

de la Pena and Giné (1999) that sups∈S |d̂X(s,s j)− dX(s,s j)| → 0 as N → ∞, for all j = 1, . . . , B.

The convergence rate OP(m
−1/2) follows from the Central Limit Theorem for U-processes given in

Theorem 5.3.7 in de la Pena and Giné (1999).
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E.5 Proof of Corollary 18

Reproducing the argument of Theorem 16, one gets:

dX(s
∗, ŝn,m)≤

1

B

B

∑
j=1

dX(ŝn(.,Z j),s
∗)+

1

B

B

∑
j=1

dX(ŝn(.,Z j), ŝn,m).

As in Theorem 17’s proof, we also have:

1

B

B

∑
j=1

{dX(ŝn(.,Z j), ŝn,m) − dX(ŝn(.,Z j), s̄B)} ≤ 2 · sup
(s,s′)∈S 2

|d̂X(s,s
′) − dX(s,s

′)|.

Using again Corollary 5.2.3 in de la Pena and Giné (1999), we obtain that the term on the right

hand side of the bound above vanishes as m → ∞. Now the desired result immediately follows from

Theorem 16.
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S. Clémençon, M. Depecker, and N. Vayatis. Adaptive partitioning schemes for bipartite ranking.

Machine Learning, 83(1):31–69, 2011.

W.W. Cohen, R.E. Schapire, and Y. Singer. Learning to order things. Journal of Artificial Intelli-

gence Research, 10:243–270, 1999.
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