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Abstract

The purpose of the paper is to explore the connection between multivariate ho-
mogeneity tests and AUC optimization. The latter problem has recently received
much attention in the statistical learning literature. From the elementary observa-
tion that, in the two-sample problem setup, the null assumption corresponds to the
situation where the area under the optimal ROC curve is equal to 1/2, we pro-
pose a two-stage testing method based on data splitting. A nearly optimal scoring
function in the AUC sense is first learnt from one of the two half-samples. Data
from the remaining half-sample are then projected onto the real line and eventu-
ally ranked according to the scoring function computed at the first stage. The last
step amounts to performing a standard Mann-Whitney Wilcoxon test in the one-
dimensional framework. We show that the learning step of the procedure does
not affect the consistency of the test as well as its properties in terms of power,
provided the ranking produced is accurate enough in the AUC sense. The results
of a numerical experiment are eventually displayed in order to show the efficiency
of the method.

1 Introduction

The statistical problem of testing homogeneity of two samples arises in a wide variety of appli-
cations, ranging from bioinformatics to psychometrics through database attribute matching for in-
stance. Practitioners may rely upon a wide range of nonparametric tests for detecting differences in
distribution (or location) between two one-dimensional samples, among which tests based on lin-
ear rank statistics, such as the celebrated Mann-Whitney Wilcoxon test. Being a (locally) optimal
procedure, the latter is the most widely used in homogeneity testing. Such rank statistics were orig-
inally introduced because they are distribution-free under the null hypothesis, thus permitting to set
critical values in a non asymptotic fashion for any given level. Beyond this simple fact, the cru-
cial advantage of rank-based tests relies in their asymptotic efficiency in a variety of nonparametric
situations. We refer for instance to [15] for an account of asymptotically (locally) uniformly most
powerful tests and a comprehensive treatment of asymptotic optimality of R-statistics.

In a different context, consider data sampled from a feature space X ⊂ Rd of high dimension with
binary label information in {−1,+1}. The problem of ranking such data, also known as the bipartite
ranking problem, has recently gained an increasing attention in the machine-learning literature, see
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[5, 10, 19]. Here, the goal is to learn, based on a pooled set of labeled examples, how to rank
novel data with unknown labels, by means of a scoring function s : X → R, in order that positive
ones appear on top of the list. Over the last few years, this global learning problem has been the
subject of intensive research, involving issues related to the design of appropriate criteria reflecting
ranking performance or valid extensions of the Empirical Risk Minimization approach (ERM) to
this framework [2, 6, 11]. In most applications, the gold standard for measuring the capacity of a
scoring function s to discriminate between the class populations however remains the area under
the ROC curve criterion (AUC) and most ranking/scoring methods boil down to maximizing its
empirical counterpart. The empirical AUC may be viewed as the Mann-Whitney statistic based on
the images of the multivariate samples by s, see [13, 9, 12, 18].

The purpose of this paper is to investigate how ranking methods for multivariate data with binary
labels may be exploited in order to extend the rank-based test approach for testing homogeneity
between two samples to a multidimensional setting. Precisely, the testing principle promoted in this
paper is described through an extension of the Mann-Whitney Wilcoxon test, based on a preliminary
ranking of the data through empirical AUC maximization. The consistency of the test is proved to
hold, as soon as the learning procedure is consistent in the AUC sense and its capacity to detect
”small” deviations from the homogeneity assumption is illustrated by a simulation example.

The rest of the paper is organized as follows. In Section 2, the homogeneity testing problem is
formulated and standard approaches are recalled, with focus on the one-dimensional case. Section
3 highlights the connection of the two-sample problem with optimal ROC curves and gives some
insight to our appproach. In Section 4, we describe the testing procedure proposed and set prelimi-
nary grounds for its theoretical validity. Simulation results are presented in Section 5 and technical
details are deferred to the Appendix.

2 The two-sample problem

We start off by setting out the notations needed throughout the paper and formulate the two-sample
problem precisely. We recall standard approaches to homogeneity testing. In particular, special
attention is paid to the one-dimensional case, for which two-sample linear rank statistics allow for
constructing locally optimal tests in a variety of situations.

Probabilistic setup. The problem considered in this paper is to test the hypothesis that two inde-
pendent i.i.d. random samples, valued in Rd with d ≥ 1, X+

1 , . . . , X
+
n and X−1 , . . . , X

−
m are

identical in distributions. We denote by G(dx) the distribution function of the X+
i ’s, while the one

of the X−j ’s is denoted by H(dx). We also denote by P(G,H) the probability distribution on the
underlying space. The testing problem is tackled here from a nonparametric perspective, meaning
that the distributions G(dx) and H(dx) are assumed to be unknown. We suppose in addition that
G(dx) and H(dx) are continuous distributions and the asymptotics are described as follows: we set
N = m + n and suppose that n/N → p ∈ (0, 1) as n, m tend to infinity. Formally, the problem
is to test the null hypothesis H0 : G = H against the alternative H1 : G 6= H , based on the two
data sets. In this paper, we place ourselves in the difficult case where G and H have same support,
X ⊂ Rd say.

Measuring dissimilarity. A possible approach is to consider a probability (pseudo)-metricD on the
space of probability distributions on Rd. Based on the simple observation that D(G,H) = 0 under
the null hypothesis, possible testing procedures consist of computing estimates Ĝn and Ĥm of the
underlying distributions and rejecting H0 for ”large” values of the statistic D(Ĝn, Ĥm), see [3] for
instance. Beyond computational difficulties and the necessity of identifying a proper standardization
in order to make the statistic asymptotically pivotal (i.e. its limit distribution is parameter free), the
major issue one faces when trying to implement such plug-in procedures is related to the curse of
dimensionality. Indeed, plug-in procedures involve the consistent estimation of distributions on a
feature space of possibly very large dimension d ∈ N∗.

Various metrics or pseudo-metrics can be considered for measuring dissimilarity between two proba-
bility distributions. We refer to [17] for an excellent account of metrics in spaces of probability mea-
sures and their applications. Typical examples include the chi-square distance, the Kullback-Leibler
divergence, the Hellinger distance, the Kolmogorov-Smirnov distance and its generalizations of the
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following type

MMD(G,H) = sup
f∈F

∣∣∣∣∫
x∈X

f(x)G(dx)−
∫

f(x)H(dx)
∣∣∣∣ , (1)

where F denotes a supposedly rich enough class of functions f : X ⊂ Rd → R, so that
MMD(G,H) = 0 if and only if G = H . The quantity (1) is called the Maximum Mean Dis-
crepancy in [1], where a unit ball of a reproducing kernel Hilbert space H is chosen for F in order
to allow for efficient computation of the supremum (1), see also [23]. The view promoted in the
present paper for the two-sample problem is very different in nature and is inspired from traditional
procedures in the particular one-dimensional case.

The one-dimensional case. A classical approach to the two-sample problem in the one-dimensional
setup lies in ordering the observed data using the natural order on the real line R and then basing the
decision depending on the ranks of the positive instances among the pooled sample:

∀i ∈ {1, . . . , n}, Ri = NFn,m(X+
i ),

where Fn,m(t) = (n/N)Ĝn(t) + (m/N)Ĥm(t), and denoting by Ĝn(t) = n−1
∑
i≤n I{X+

i ≤ t}
and Ĥn(t) = m−1

∑
i≤n I{X−i ≤ t} the empirical counterparts of the cumulative distribution

functions G and H respectively. This approach is grounded in invariance considerations, practical
simplicity and optimality of tests based on R-estimates for this problem, depending on the class
of alternative hypotheses considered. Assuming the distributions G and H continuous, the idea
underlying such tests lies in the simple fact that, under the null hypothesis, the ranks of positive
instances are uniformly distributed over {1, . . . , N}. A popular choice is to consider the sum of
”positive ranks”, leading to the well-known rank-sum Wilcoxon statistic [22]

Ŵn,m =
n∑
i=1

Ri,

which is distribution-free under H0, see Section 6.9 in [15] for further details. We also recall that,
the validity framework of the rank-sum test classically extends to the case where some observations
are tied (i.e. whenG and/orH may be degenerate at some points), by assigning the mean rank to ties
[4]. We shall denote byWn,m the distribution of the (average rank version of the) Wilcoxon statistic
Ŵn,m under the homogeneity hypothesis. Since tables for the distributionsWn,m are available, no
asymptotic approximation result is thus needed for building a test of appropriate level. As it will be
recalled below, the test based on theR-statistic Ŵn,m has appealing optimality properties for certain
classes of alternatives. Although R-estimates (i.e. functions of theRi’s) form a very rich collection
of statistics, but, for lack of space, we restrict our attention to the two-sample Wilcoxon statistic in
this paper.

Heuristics. We may now give a first insight into the way we shall tackle the problem in the multi-
dimensional case. Suppose that we are able to ”project” the multivariate sampling data onto the real
line through a certain scoring function s : Rd → R in order to preserve the possible dissimilarity
(considered in a certain specific sense, which we shall discuss below) between the two populations,
leading then to ”large” values of the score s(x) for the positive instances and ”small” values for the
negative ones with high probability. Now that the dimension of the problem has been brought down
to 1, observations can be ranked and one may perform for instance a basic two-sample Wilcoxon
test based on the data sets s(X+

1 ), . . . , s(X+
n ) and s(X−1 ), . . . , s(X−m).

Remark 1 (LEARNING A STUDENT t TEST.) We point out that it is precisely the task Linear
Discriminant Analysis (LDA) tries to performs, in a restrictive Gaussian framework however (when
G andH are normal distributions with same covariance structure namely). In order to test deviations
from the homogeneity hypothesis on the basis of the original samples, one may consider applying a
univariate Student t test based on the ”projected” data {δ̂(X+

i ) : 1 ≤ i ≤ n} and {δ̂(X−i ) : 1 ≤
i ≤ m}, where δ̂ denotes the empirical discriminant function, this may be shown as an appealing
alternative to multivariate extensions of the standard t test [14].

The goal of this paper is to show how to exploit recent advances in ROC/AUC optimization for
extending this heuristics to more general situations than the parametric one mentioned above.
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3 Connections with bipartite ranking

ROC curves are among the most widely used graphical tools for visualizing the dissimilarity be-
tween two one-dimensional distributions in a large variety of applications such as anomaly detection
in signal analysis, medical diagnosis, information retrieval, etc. As this concept is at the heart of
the ranking issue in the binary setting, which forms the first stage of the testing procedure sketched
above, we recall its definition precisely.

Definition 1 (ROC curve) Let g and h be two cumulative distribution functions on R. The ROC
curve related to the distributions g(dt) and h(dt) is the graph of the mapping:

ROC ((g,h), ·) : α ∈ [0, 1] 7→ 1− g ◦ h−1(1− α),

denoting by f−1(u) = inf{t ∈ R : f(t) ≥ u} the generalized inverse of any càd-làg function
f : R→ R. When the distributions g(dt) and h(t) are continuous, it can alternatively be defined as
the parametric curve t ∈ R 7→ (1− h(t), 1− g(t)).

One may show that ROC ((g,h), ·) is above the diagonal ∆ : α ∈ [0, 1] 7→ α of the ROC space if
and only if the distribution g is stochastically larger than h and it is concave as soon as the likelihood
ratio dg/dh is increasing. When g(dt) and h(dt) are both continuous, the curves ROC((g,h), .) and
ROC((h, g), .) are symmetric with respect to the diagonal of the ROC space with slope equal to one.
Refer to [9] for a detailed list of properties of ROC curves.

The notion of ROC curve provides a functional measure of dissimilarity between distributions on
R: the closer to the corners of the unit square the curve ROC ((g,h), ·) is, the more dissimilar the
distributions g and h are. For instance, it exactly coincides with the upper left-hand corner of the unit
square, namely the curve α ∈ [0, 1] 7→ I{α ∈]0, 1]}, when there exists l ∈ R such that the support
of distribution g(dt) is a subset of [l, ∞[, while ]l,−∞, ] contains the support of h. In contrast, it
merges with the diagonal ∆ when g = h. Hence, distance of ROC ((g,h), ·) to the diagonal may
be naturally used to quantify departure from the homogeneous situation. The L1-norm provides a
convenient way of measuring such a distance, leading to the classical AUC criterion (AUC standing
for area under the ROC curve):

AUC(g,h) =
∫ 1

α=0

ROC ((g,h), α) dα.

The popularity of this summary quantity arises from the fact that it can be interpreted in a proba-
bilistic fashion, and may be viewed as a distance between the locations of the two distributions. In
this respect, we recall the following result.

Proposition 1 Let g and h be two distributions on R. We have:

AUC(g,h) = P {Z > Z ′}+
1
2

P {Z = Z ′} =
1
2

+ E[h(Z)]− E[g(Z ′)],

where Z and Z ′ denote independent random variables, drawn from g(dt) and h(dt) respectively.

We recall that the homogeneous situation corresponds to the case where AUC(g,h) = 1/2 and the
Mann-Withney statistic [16]

Un,m =
1
nm

n∑
i=1

m∑
j=1

(
I{X−j < X+

i }+
1
2

I{X−j = X+
i }
)

is exactly the empirical counterpart of AUC(g,h). It yields exactly the same statistical decisions as
the two-sample Wilcoxon statistic, insofar they are related as follows:

Wn,m = nmÛn,m + n(n+ 1)/2.

For this reason, the related test of hypotheses is called Mann-Whitney Wilcoxon test (MWW).

Multidimensional extension. In the multivariate setup, the notion of ROC curve can be extended
the following way. Let H(dx) and G(dx) be two given distributions on Rd and S = {s : X → R |
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s Borel measurable}. For any scoring function s ∈ S , we denote by Hs(dt) and Gs(t) the images
of H(dx) and G(x) by the mapping s(x). In addition, we set for all s ∈ S:

ROC(s, .) = ROC((Gs,Hs), .) and AUC(s) = AUC(Gs,Hs).

Clearly, the families of univariate distributions {Gs}s∈S and {Hs}s∈S entirely characterize the
multivariate probability measures G and H . One may thus consider evaluating the dissimilarity
between H(dx) and G(dx) on Rd through the family of curves {ROC(s, .)}s∈S or through the
collection of scalar values {AUC(s)}s∈S . Going back to the homogeneity testing problem, the null
assumption may be reformulated as

”H0 : ∀s ∈ S,AUC(s) = 1/2” versus ”H1 : ∃s ∈ S such that AUC(s) > 1/2”.

The next result, following from standard Neyman-Pearson type arguments, shows that the supremum
sups∈S AUC(s) is attained by increasing transforms of the likelihood ratio φ(x) = dG/dH(x),
x ∈ X . Scoring functions with largest AUC are natural candidates for detecting the alternativeH1.

Theorem 1 (OPTIMAL ROC CURVE.) The set of S∗ = {T ◦ φ | T : R→ R strictly increasing }
defines the collection of optimal scoring functions in the sense that: ∀s ∈ S,

∀α ∈ [0, 1], ROC(s, α) ≤ ROC∗(α) and AUC(s) ≤ AUC∗,

with the notations ROC∗(.) = ROC(s∗, .) and AUC∗ = AUC(s∗) for s∗ ∈ S∗.

Refer to Proposition 4’s proof in [9] for a detailed argument. Notice that, as dG/dH(X) =
dGφ(X)/dHφ(φ(X)), replacing X by s∗(X) with s∗ ∈ S∗ leaves the optimal ROC curve un-
touched. The following corollary is straightforward.

Corollary 1 For any s ∈ S∗, we have: sups∈S |AUC(s)− 1/2| = AUC(s∗)− 1/2.

Consequently, the homogeneity testing problem may be seen as closely related to the problem of
estimating the optimal AUC∗, since it may be re-formulated as follows:

”H0 : AUC∗ = 1/2” versus ”H1 : AUC∗ > 1/2”.

Knowing how a single optimal scoring function s∗ ∈ S∗ ranks observations drawn from a mixture
ofG andH is sufficient for detecting departure from the homogeneity hypothesis in an optimal fash-
ion, the MWW statistic computed from the (s∗(X+

i ), s∗(X−j ))’s being an asymptotically efficient
estimate of AUC∗ and thus yields an asymptotically (locally) uniformly most powerful test.

Let F (dx) = pG(dx) + (1 − p)H(dx) and denote by Fs(dt) the image of the distribution F by
s ∈ S . Notice that, for any s∗ ∈ S∗, the scoring function S∗ = Fs∗ ◦ s∗ is still optimal and the
score variable S∗(X) is uniformly distributed on [0, 1] under the mixture distribution F (in addition,
it may be easily shown to be independent from s∗ ∈ S∗). Observe in addition that AUC∗ − 1/2
may be viewed as the Earth Mover’s distance between the class distributions HS∗ and GS∗ for this
”normalization”:

AUC∗ − 1/2 =
∫ 1

t=0

{HS∗(t)−GS∗(t)}dt.

Empirical AUC maximization. A natural way of inferring the value of AUC∗ and/or selecting
a scoring function ŝ with AUC nearly as large as AUC∗ is to maximize an empirical version of
the AUC criterion over a set S0 of scoring function candidates. We assume that the class S0 is
sufficiently rich in order to guarantee that the bias AUC∗ − sups∈S0 AUC(s) is small, and its com-
plexity is controlled (when measured for instance by the VC dimension of the collection of sets
{{x ∈ X : s(x) ≥ t}, (s, t) ∈ S0 × R} as in [7] or by the order of magnitude of conditional
Rademacher averages as in [6]). We recall that, under such assumptions, universal consistency
results have been established for empirical AUC maximizers, together with distribution-free gener-
alization bounds, see [2, 6] for instance. We point out that this approach can be extended to other
relevant ranking criteria. The contours of a theory guaranteeing the statistical performance of the
ERM approach for empirical risk functionals defined by R-estimates have been sketched in [8].
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4 The two-stage testing procedure

Assume that data have been split into two subsamples: the first data set Dn0,m0 =
{X+

1 , . . . , X
+
n0
} ∪ {X−1 , . . . , X−m0

} will be used for deriving a scoring function on X and
the second data set D′n1,m1

= {X+
n0+1, . . . , X

+
n0+n1

} ∪ {X−m0+1, . . . , X
−
m0+m1

} will serve to
compute a pseudo- two-sample Wilcoxon test statistic from the ranked data. We set N0 = n0 +m0

and N1 = n1 +m1 and suppose that ni/Ni → p as ni and mi tend to infinity for i ∈ {0, 1}.
Let α ∈ (0, 1). The testing procedure at level α is then performed in two steps, as follows.

SCORE-BASED RANK-SUM WILCOXON TEST

1. Ranking. From dataset Dn0,m0 , perform empirical AUC maximization over S0 ⊂ S, yielding
the scoring function ŝ(x) = ŝn0,m0(x). Compute the ranks of data with positive labels among
the sample D′n1,m1 , once sorted by increasing order of magnitude of their score:

bRi = N1Ŝ(X+
n0+i) for 1 ≤ i ≤ n1,

where bFŝ(t) = N−1
1

“Pn1
i=1 I{ŝ(X+

n0+i) ≤ t}+
Pm1

j=1 I{ŝ(X−m0+j) ≤ t}
”

and Ŝ = bFŝ ◦ ŝ.

2. Rank-sum Wilcoxon test. Reject the homogeneity hypothesisH0 when:cWn1,m1 ≥ Qn1,m1(α),

wherecWn1,m1 =
Pn1

i=1
bRi andQn1,m1(α) denotes the (1−α)-quantile of distributionWn1,m1 .

The next result shows that the learning step does not affect the consistency property, provided it
outputs a universally consistent scoring rule.

Theorem 2 Let α ∈ (0, 1/2) and suppose that the ranking/scoring method involved at step 1 yields
a universally consistent scoring rule ŝ in the AUC sense. The score-based rank-sum Wilcoxon test

Φ = I
{
Ŵn1,m1 ≥ Qn1,m1(α)

}
is universally consistent as ni and mi tend to∞ for i ∈ {0, 1} at level α, in the following sense.

1. It is of level α for all ni and mi, i ∈ {0, 1}: P(H,H) {Φ = +1} ≤ α for any H(dx).

2. Its power converges to 1 as ni and mi, i ∈ {0, 1}, tend to infinity for every alternative:
limni, mi→∞ P(G,H) {Φ = +1} = 1 for every pair of distinct distributions (G,H).

Remark 2 (CONVERGENCE RATES.) Under adequate complexity assumptions on the set S0 over
which empirical AUC maximization or one of its variants is performed, distribution-free rate bounds
for the generalization ability of scoring rules may be established in terms of AUC, see Corollary 6 in
[2] or Corollary 3 in [6]. As shown by a careful examination of Theorem 2, this permits to derive a
convergence rate for the decay of the score-based type II error of MWW under any given alternative
(G,H), when combined with the Berry-Esseen theorem for two-sample U -statistics. For instance,
if a typical 1/

√
N0 rate bound holds for ŝ(x), one may show that choosing N1 ∼ N0 then yields a

rate of order OP(G,H)(1/
√
N0).

Remark 3 (INFINITE-DIMENSIONAL FEATURE SPACE.) We point out that the method presented
here is by no means restricted to the case where X is of finite dimension, but may be applied to
functional input data, provided an AUC-consistent ranking procedure can be applied in this context.

5 Numerical examples

The procedure proposed above is extremely simple once the delicate AUC maximization stage is
performed. A stunning property is the fact that critical thresholds are set automatically, with no ref-
erence to the data. We firts consider a low-dimensional toy experiment and display some numerical
results. Two independent i.i.d. samples of equal size m = n = N/2 have been generated from
two conditional 4-dimensional gaussian distributions on the hypercube [−2, 2]4. Their parameters
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are denoted by µ+ and µ− for the means and Γ is their common covariance matrix. Three cases
have been considered. The first example corresponds to a homogeneous situation: µ+ = µ− = µ1

where µ1 = (−0.96,−0.83, 0.29,−1.34) and the upper diagonals of Γ1 are (6.52, 3.84, 4.72, 3.1),
(−1.89, 3.56, 1.52), (−3.2, 0.2) and (−2.6). In the second example, we test homogeneity under an
alternative, ”fairly far” fromH0, where µ− = µ1, µ+ = (0.17,−0.24, 0.04,−1.02) and Γ as before.
Eventually, the third example corresponds to a much more difficult problem, ”close” to H0, where
µ− = (1.19,−1.20,−0.02,−0.16), µ+ = (1.08,−1.18,−0.1,−0.06) and the upper diagonals of
Γ are (1.83, 6.02, 0.69, 4.99), (−0.65,−0.31, 1.03), (−0.54,−0.03) and (−1.24). The difficulty of
each of these examples is illustrated by Fig. 2 in terms of (optimal) ROC curve. The table in Fig.
2 gives Monte-Carlo estimates of the power of three testing procedures when α = 0.05 (averaged
over B = 150 replications): 1) the score-based MWW test, where ranking is performed using the
scoring function output by a run of the TREERANK algorithm [9] on a training sample Dn0,m0 , 2)
the LDA-based Student test sketched in Remark 1 and 3) a bootstrap version of the MMD-test with
a Gaussian RBF Kernel proposed in [1].

DataSet Sample size (m0,m1) LDA-Student Score-based MWW MMD
Ex. 1 (500,500) 6% 1% 5%
Ex. 2 (500,500) 99% 99% 99%

Ex. 3
(2000,1000) 75% 45% 30%
(3000,2000) 98% 73% 65%

Figure 1: Powers and ROC curves describing the ”distance” to H0 for each situation: example 1
(red), example 2 (black) and example 3 (blue).

In the second series of experimental results, gaussian distributions with same covariance matrix
on Rd are generated, with larger values for the input space dimension d ∈ {10, 30}. We
considered several problems at given toughness. The increasing difficulty of the testing problems
considered is controlled through the euclidian distance between the means ∆µ = ||µ+ − µ−|| and
is described by Fig. 2, which depicts the related ROC curves, corresponding to situations where
∆µ ∈ {0.2, 0.1, 0.08, 0.05}. On these examples, we compared the performance of four methods at
level α = 0.05: the score-based MWW test, where ranking is again performed using the scoring
function output by a run of the TREERANK algorithm on a training sample Dn0,m0 , the KFDA
test proposed in [23], a bootstrap version of the MMD-test with a Gaussian RBF Kernel (MMD)
and another version, with moment matching to Pearson curves (MMDmom), using also with a
Gaussian RBF kernel (see [1]). Monte-Carlo estimates of the corresponding powers are given in the
Table displayed in Fig. 2.

6 Conclusion

We have provided a sound strategy, involving a preliminary bipartite ranking stage, to extend clas-
sical approaches for testing homogeneity based on ranks to a multidimensional setup. Consistency
of the extended version of the popular MWW test has been established, under the assumption of
universal consistency of the ranking method in the AUC sense. This principle can be applied to
otherR-statistics, standing as natural criteria for the bipartite ranking problem [8]. Beyond the illus-
trative preliminary simulation example displayed in this paper, we intend to investigate the relative
efficiency of such tests with respect to other tests standing as natural candidates in this setup.

Appendix - Proof of Theorem 2

Observe that, conditioned upon the first sampleDn0,m0 , the statistic Ŵn1,m1 is distributed according
toWn1,m1 under the null hypothesis. For any distribution H , we thus have: ∀α ∈ (0, 1/2),

P(H,H)

{
Ŵn1,m1 > Qn1,m1(α) | Dn0,m0

}
≤ α.

Taking the expectation, we obtain that the test is of level α for all n, m.
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Dim. d MMDboot MMDmom Kfda Sc.based MWW
case 1 :∆µ = 0.2

d = 10 86% 86% 64% 90%
d = 30 54% 58% 36% 85%

case 1 :∆µ = 0.1

d = 10 20% 20% 20% 58%
d = 30 9% 7% 15% 47%

case 3 :∆µ = 0.08

d = 10 19% 19% 16% 42%
d = 30 5% 7% 9% 32%

case 4 :∆µ = 0.05

d = 10 11% 13% 13% 18%
d = 30 6% 6% 8% 16%

Figure 2: Power estimates and ROC curves describing the ”distance” toH0 for each situation: case
1 (black), case 2 (blue), case 3 (green) and case 4 (red).

For any s ∈ S, denote by Un1,m1(s) the empirical AUC of s evaluated on the sample D′n1,m1
.

Recall first that it follows from the two-sample U -statistic theorem (see [20]) that:

√
N{Un1,m1(s)−AUC(s)} =

√
N1

n1

n1∑
i=1

{
Hs(s(X+

i+n0
))− E[Hs(s(X+

1 ))]
}

−
√
N1

m1

m1∑
j=1

{
Gs(s(X−j+m0

))− E[Gs(s(X−1 ))]
}

+ oP(G,H)(1),

as n, m tend to infinity. In particular, for any pair of distributions (G,H), the centered random
variable

√
N{Un1,m1(s) − AUC(s)} is asymptotically normal with limit variance σ2

s(G,H) =
Var(Hs(s(X+

1 )))/p+Var(Gs(s(X−1 )))/(1−p) under P(G,H). Notice that σ2
s(H,H) = 1/(12p(1−

p)) for any s ∈ S such that the distribution Hs(dt) is continuous. Refer to Theorem 12.4 in [21] for
further details.

We now place ourselves under an alternative hypothesis described by a pair of distinct distribution
(G,H), so that AUC∗ > 1/2. Setting Ûn1,m1 = Un1,m1(ŝ) and decomposing AUC∗ − Ûn1,m1 as
the sum of the deficit of AUC of ŝ(x), AUC∗−AUC(ŝ) namely, and the deviation AUC(ŝ)−Ûn1,m1

evaluated on the sample D′n1,m1
, type II error of Φ given by P(G,H)

{
Ŵn1,m1 ≤ Qn1,m1(α)

}
may

be bounded by:

P(G,H)

{√
N1

(
Ûn1,m1 −AUC(̂s)

)
≤ εn1,m1(α)

}
+ P(G,H)

{√
N1 (AUC(̂s)−AUC∗) ≤ εn1,m1(α)

}
,

where

εn1,m1(α) =
√
N1

(
Qn1,m1(α)
n1m1

− n1 + 1
2m1

− 1
2

)
−
√
N1(AUC∗ − 1

2
).

Observe that, by virtue of the CLT recalled above,
√
N1(Qn1,m1(α)/(n1m1) − (n1 + 1)/(2m1))

converges to zα/
√

12p(1− p). Now, the fact that type II error of Φ converges to zero as ni and
mi tend to ∞ for i ∈ {0, 1} immediately follows from the assumption in regards to the AUC of
ŝ(x) universal consistency and the CLT for two-sample U -statistics combined with the theorem of
dominated convergence. Due to space limitations, details are omitted.
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