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Abstract

The purpose of this paper is to investigate the
properties of partitioning scoring rules in the
bipartite ranking setup. We focus on ranking
rules based on scoring functions. General suf-
ficient conditions for the AUC consistency of
scoring functions that are constant on cells
of a partition of the feature space are pro-
vided. Rate bounds are obtained for cubic
histogram scoring rules under mild smooth-
ness assumptions on the regression function.
In this setup, it is shown how to penalize the
empirical AUC criterion in order to select a
scoring rule nearly as good as the one that
can be built when the degree of smoothness
of the regression function is known.

1 Introduction

In this paper, we consider the ranking problem with
classification data, also known as the bipartite ranking
problem (Freund et al. (2003), Agarwal et al. (2005),
Clémençon et al. (2008)). Our perspective follows
the scoring approach where ranking rules are based
on real-valued scoring functions. We focus here on
scoring functions which take discrete values. For the
sake of interpretability, it is indeed of practical impor-
tance in many ranking applications (medical diagnosis,
credit-risk screening, marketing) to segment the popu-
lation in ordered ”strata” with distinct features. Data-
dependent partitioning schemes have a long history in
the classical statistical problems like density estima-
tion, regression and classification (see Devroye et al.
(1996) and references therein). However the ranking
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problem presents some specific features due to the na-
ture of performance measures which are involved to
assess the quality of a ranking/scoring rule. Central
tools for the comparison of scoring functions are the
ROC curve and its scalar summary known as the AUC
(Huang and Ling (2005)). The present paper examines
the conditions under which data-dependent partition-
ing techniques yield an AUC consistent ranking. Note
that the AUC corresponds to the L1-distance in the
ROC space.

We first relate partitioning of the feature space to the
approximation/estimation issue of the optimal ROC
curve by piecewise constants in the L1-sense. As a pre-
liminary, it is proved that the scoring rule with max-
imum (empirical) AUC among the ones that are con-
stant on each cell of a given partition may be described
as a plug-in rule. The deficit of AUC is then related
to the approximation error of the regression estimate
in the L1-sense. Consistency results and rate bounds
are then established for regular histogram rules under
smoothness assumptions on the regression function. In
the work presented here, it is important to note that
optimal scoring functions are not assumed to be con-
tained in the class of candidate scoring rules, namely
the collection of piecewise constant scoring functions.
Eventually, we propose a penalization method for the
empirical AUC maximization in order to select the size
of the cubes forming the partition. The estimator ob-
tained by the penalized criterion adapts to the degree
of smoothness of the regression function.

The paper is structured as follows. In Section 2 nota-
tions are set out, important concepts of ROC analy-
sis are briefly recalled and preliminary results related
to partition-based scoring rules are established. The
main results of the paper are stated in Section 3. Con-
sistency of cubic histogram scoring rules is proved un-
der mild conditions, while a rate bound is established
in the ideal case when the degree of smoothness θ of the
regression function is known. A penalization approach
is considered in order to exhibit a data-driven method
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for selecting a scoring rule that exhibits the same rate
bound without the knowledge of θ. Technical proofs
are postponed to the Appendix.

2 Background and Preliminaries

The probabilistic framework is exactly the same as
the one in standard binary classification. We de-
note by (X,Y ) a pair of random variables where
Y ∈ {−1,+1} is a binary label and X models some
observation for predicting Y , taking its values in a
feature space X ⊂ Rd of high dimension. Here and
throughout, L denotes the joint distribution of (X,Y )
and p = P{Y = +1}. The probability distribution L
is entirely determined by the pair (µ, η) where µ de-
notes the marginal distribution ofX and the regression
function η(x) = P{Y = +1 | X = x}, x ∈ X . We also
introduce G(dx) and H(dx), the conditional distribu-
tions of X given Y = +1 and Y = −1 respectively.
Through the paper, these probability measures are as-
sumed to be equivalent. Observe that, with these nota-
tions, η(x) = p(dG/dH)(x)/(1− p+ p(dG(x)/dH)(x))
and µ(dx) = pG(dx) + (1− p)H(dx).

2.1 Bipartite ranking

We start off with a brief description of the bipartite
ranking task and recall the basic concepts related to
this statistical learning problem.

Based on the observation of i.i.d. examples Dn =
{(Xi, Yi) : 1 ≤ i ≤ n}, the goal is to learn how to order
all instances x ∈ X in a way that instances X such that
Y = +1 appear on top in the list with the largest pos-
sible probability . Clearly, the simplest way of defining
an order relationship on X is to transport the natural
order on the real line to the feature space through a
scoring rule s : X → R. The notion of ROC curve,
which we recall below, provides a functional criterion
for evaluating the performance of the ordering induced
by such a function. Here and throughout, we denote
by F−1(t) = inf{u ∈ R : F (u) ≥ t} the pseudo-inverse
of any càd-làg increasing function F : R → R and by
S the set of all scoring functions, i.e. the space of
real-valued measurable functions on X .

Definition 1 (ROC curve) Let s ∈ S. The ROC
curve of the scoring function s(x) is given by

α ∈ [0, 1] 7→ ROC(s, α) = 1−Gs ◦ F−1
s (1− α),

where Gs(dx) and Hs(dx) denote the conditional dis-
tributions of s(X) given Y = +1 and given Y = −1
respectively.

When Gs(du) and Hs(du) are both continuous distri-
butions, the ROC curve of s(x) is nothing else than

the PP-plot:

t 7→ (P{s(X) ≥ t | Y = −1},P{s(X) ≥ t | Y = +1}) .

It is a well-known result in ROC analysis that increas-
ing transforms of the regression function η(x) form the
class S∗ of optimal scoring functions in the sense that
their ROC curve, namely ROC∗ = ROC(η, .), dom-
inates the ROC curve of any other scoring function
s(x) everywhere:

∀α ∈ [0, 1[, ROC(s, α) ≤ ROC∗(α).

The proof of this fact is based on a simple applica-
tion of Neyman-Pearson’s lemma (see Clémençon and
Vayatis (2008b)). It is noteworthy that, when con-
tinuous, the curve ROC∗ is concave. More generally,
for any scoring function s(x), ROC(s, .) is a concave
curve as soon as Gs(du) and Hs(du) are continuous
distributions and the likelihood ratio dGs/dHs(s(X))
is monotone.

In practice, the functional performance measure de-
scribed above is generally summarized by a scalar fea-
ture, the Area Under the ROC Curve (AUC in abbre-
viated form).

Definition 2 (The AUC criterion) Let s(x) be a
scoring function. The Area Under the ROC Curve is
given by

AUC(s) =
∫ 1

α=0

ROC(s, α)dα.

Of course, S∗ corresponds to the set of scoring func-
tions with maximum AUC. We set:

∀s ∈ S∗, AUC∗ = AUC(s).

In Clémençon et al. (2008), it has been shown that,
when η(X) has a continuous distribution, the maximal
AUC may be related to η(X)’s dispersion through:

AUC∗ =
1
2

+
E (|η(X)− η(X ′)|)

4p(1− p)
,

where X ′ is an independent copy of X. The quantity
E (|η(X)− η(X ′)|) is known as the Gini mean differ-
ence of η(X). Hence, the more concentrated is η(X),
the more difficult the bipartite ranking problem.

The popularity of the AUC criterion mainly arises
from the fact that it may be interpreted in a prob-
abilistic manner.

Proposition 3 The AUC criterion may be viewed as
the rate of concordant pairs. For any scoring function
s(x), we have:

AUC(s) = P{s(X) > s(X ′) | (Y, Y ′) = (+1,−1)} ,

where (X ′, Y ′) denotes a copy of the pair (X,Y ), in-
dependent from the latter.
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2.2 Piecewise constant scoring functions

Here we focus on the simplest scoring functions,
namely real-valued piecewise constant functions on the
feature space X . Any scoring function s(x) of this
type, taking K ≥ 1 distinct values say, yields a rank-
ing/ordering of all instances x ∈ X entirely character-
ized by a partition P with K nonempty measurable
subsets C1, . . . , CK , together with a permutation σ
in the symmetric group ΣK of {1, . . . , K}.

Definition 4 ((P, σ)-representation) The (P, σ)-
representation of a piecewise constant scoring function
s(x) taking K distinct values λ1 > . . . > λK is given
by:

s(x) =
K∑
k=1

λk · I{x ∈ Cσ(k)}, (1)

where P = {Ck}1≤k≤K is a partition of X in K non
empty cells and σ a permutation of {1, . . . , K}.

Reciprocally, a partition P = {C1, . . . , CK} with
#P = K non empty cells combined with a permuta-
tion σ ∈ ΣK defines a scoring function with (P, σ)-
representation:

sP,σ(x) =
K∑
k=1

(K − k + 1) · I{x ∈ Cσ(k)}.

The ordering induced by (1) is entirely characterized
by the pair (P, σ), in the sense that its ROC curve
coincides with ROC(sP,σ, .)

Remark 1 (A global learning problem) In con-
trast to binary classification, the bipartite ranking
problem is of global nature. Indeed, in classification, a
decision rule may be immediately derived from a par-
tition P of the feature space through a majority vote
scheme. Here, the local properties of the regression
function on a given cell are useless, since cells of P
have somehow to be compared one to each other.

The next results provide some basic properties of
piecewise constant scoring functions. In order to for-
mulate them precisely, we introduce the following no-
tations. We set

α(C) = P{X ∈ C | Y = −1},
β(C) = P{X ∈ C | Y = +1},

for any a measurable subset C ⊂ X . In the following
proposition, the ROC curve of a piecewise constant
scoring function and the corresponding AUC are made
explicit.

Proposition 5 Let s(x) be a piecewise constant
scoring function with (P, σ)-representation s(x) =

∑K
k=1 λk · I{x ∈ Cσ(k)}. Its ROC curve is the step-

wise function

ROC(s, α) =
K−1∑
k=1

βk(s) · I{α ∈ [αk(s), αk+1(s)[}, (2)

where: ∀k ∈ {1, . . . , K},

αk(s) =
k∑
l=1

α(Cσ(l)) and βk(s) =
k∑
l=1

β(Cσ(l)),

with α0(s) = β0(s) = 0 by convention. Its AUC is:

AUC(s) =
K−1∑
k=1

(αk+1(s)− αk(s)) · βk(s). (3)

Remark 2 (Piecewise linear ROC curves) We
point out that in the case of a piecewise constant scor-
ing function (i.e. when the distributions Gs and Hs

are degenerate), another usual convention for repre-
senting its ROC curve consists in plotting the bro-
ken line R̃OC(s, .) that connects the knots {(αk, βk) :
k = 0, . . . ,K}, see Clémençon and Vayatis (2008b,a).
With this convention, the area under the ROC curve
may be expressed as

∫ 1

α=0
R̃OC(s, α)dα = P{s(X) >

s(X ′) | (Y, Y ′) = (1,−1)} + 1
2P{s(X) = s(X ′) |

(Y, Y ′) = (1,−1)}.

The next result result describes the best scoring func-
tion in the AUC sense among all piecewise constant
scoring functions that may be represented by means
of a given partition P. We denote by SP the set of
scoring functions with a (P, σ)-representation for some
σ ∈ S#P .

Theorem 6 (AUC optimality) Consider a parti-
tion of X with K ≥ 1 non empty cells: P =
{Ck}1≤k≤K . Let σ∗ ∈ ΣK such that

β(Cσ∗(1))
α(Cσ∗(1))

≥ . . . ≥
β(Cσ∗(K))
α(Cσ∗(K))

.

Then, s∗P(x) = sP,σ∗(x) maximizes the AUC over SP :

AUC(s∗P) = max
s∈SP

AUC(s).

In the case where the cells are equivalent with respect to
the false positive rate, i.e. ∀k ∈ {1, . . . ,K}: α(Ck) =
1/K, we also have

∀α ∈ [0, 1], ROC(s, α) ≤ ROC(s∗P , α),

for all s ∈ SP . The latter result also holds when cells
are equivalent with respect to the true positive rate.

Remark 3 (On concavity) It is noteworthy that σ∗

corresponds to the permutation which makes the linear-
by-part curve R̃OC(sP,σ, .) concave.
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To any partition P = {Ck}1≤k≤K of X also corre-
spond piecewise constant approximants of the regres-
sion function, which may serve as scoring functions.
For instance,

ηP(x) =
K∑
k=1

pβ(Ck)
µ(Ck)

· I{x ∈ Ck}, (4)

is the best approximant among functions that are con-
stant on the cells Ck in the L2(µ)-sense, i.e. ||ηP(X)−
η(X)||2L2(µ) = mins∈SP E[(s(X) − η(X))2]. It follows
from the fact that µ(Ck) = pα(Ck) + (1− p)β(Ck) for
all k that the plug-in scoring function ηP(x) yields the
same ranking as s∗P(x). Hence, the next result imme-
diately derives from Theorem 6.

Corollary 7 (Plug-in scoring rule) As a scor-
ing function, the approximant ηP(x) of the regression
function is optimal in the AUC sense among all scor-
ing rules in SP :

AUC(ηP) = max
s∈SP

AUC(s).

2.3 Approximation of the optimal ROC curve
by piecewise constants

Consider the following approximant of the curve
ROC∗, which is piecewise constant with breakpoints
from a given subdivision π : α0 = 0 < α1 < . . . <
αK−1 < αK = 1 of [0, 1]:

Rπ(α) =
∑
k=0

ROC∗(αk) · I{α ∈ [αk, αk+1[} . (5)

Assuming that ROC∗ is Lipschitz with constant κ (i.e.
∀(α, α′), |ROC∗(α′)−ROC∗(α)| ≤ κ|α− α′|) and the
meshgrid is such that max1≤k≤K{αk−αk−1} ≤M/K
for some constant M < ∞, the L1-error ||Rπ −
ROC∗||1 =

∫ 1

α=0
|Rπ(α) − ROC∗(α)|dα is less than

Mκ/K, which corresponds, in absence of further hy-
pothesis about the curve ROC∗, to the optimal ap-
proximation rate, in the minimax sense, using step-
wise constant approximants with K pieces, see Devore
(1998).

Remark 4 (On the Lipschitz condition) It is
noteworthy that the Lipschitz assumption for ROC∗

is guaranteed, as soon as Gη (respectively, Hη) has a
density that is bounded (resp., bounded by below by a
strictly positive constant).

We point out that Rπ actually corresponds to the
ROC curve of the piecewise constant scoring func-
tion ηPπ (x), where Pπ is the partition defined by:
∀k ∈ {1, . . . ,K},

C∗π,k = {Q∗(αk) < η(x) < Q∗(αk−1)},

denoting by Q∗(α) the (1 − α)-quantile of the condi-
tional distribution of η(X) given Y = −1. The bound
for the L1-approximation error mentioned above may
be then rewritten:

AUC∗ −AUC(s∗Pπ ) ≤ Mκ

K
. (6)

The following result describes the performance of the
ROC curve of a piecewise constant scoring function
as an approximant of the optimal curve ROC∗ in the
ROC space in terms of L1-distance.

Theorem 8 Suppose that the random variable η(X)
is continuous. Consider a piecewise constant scoring
function with (P, σ)-representation s(x) =

∑K
k=1 λk ·

I{x ∈ Cσ(k)}. Then, we have

AUC∗ −AUC(s) =
E[|η(X)− η(X ′)|]I{(X,X ′) ∈ Γs}

2p(1− p)

+
1

4p(1− p)

K∑
k=1

Gk +
1
2

K∑
k=1

α(Ck)β(Ck) ,

where Γs ⊂ X 2 denotes the set of couples (x, x′) such
that (η(x)− η(x′)) · (s(x)− s(x′)) < 0 and Gk denotes
the Gini mean difference of η(X) with the expectation
restricted to the domain {(X,X ′) ∈ Ck × Ck}.

Remark 5 (On ranking accuracy) We point out
that the term Gk involved in the AUC deviation mea-
sures to which extent η(X) may be accurately approx-
imated by a constant over the cell Ck. Observe also
that, when applied to the scoring rule s∗Pπ , the first
term on the right hand side of the equation vanishes.

The first part of the next result relates the deficit of
AUC for optimal piecewise constant scoring functions
s∗P to the L1 error of the corresponding plug-in estima-
tor ηP in estimating the regression function η. In the
second part, a precise rate bound is given in the case
where µ has a bounded support and the partition con-
sidered is uniform. For simplicity, we take X = [0, 1]d

and consider the partition Pj , made of dyadic cubes
with side length 2−j (in this case #Pj = 2jd). As-
sumptions related to the smoothness properties of η
with respect to µ are naturally required to establish
an approximation rate. As will be seen in the sub-
sequent analysis, this permits to control the bias of
grid-based ranking rules. Following in the footsteps of
Binev et al. (2005), consider the space Aθ(µ) consist-
ing of all functions f ∈ L2(µ) for which there exists
M <∞ such that:

∀j ∈ N, ||f − fPj ||L2(µ) ≤M · (#Pj)−θ,

where fPj the orthogonal projection of f onto SPj ,
viewed as a subspace of the Hilbert space L2(µ). We
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denote by |f |Aθ(µ) the smallest constant M for which
this bound holds for all j ≥ 0. We point out that,
when µ is the Lebesgue measure, this approximation
space corresponds to the usual Besov space Bθd2,∞(X )1.

Corollary 9 Assume that η(X) has a continuous dis-
tribution.

(i) For any partition P = {Ck}1≤k≤K with K ≥ 2
non empty cells, we have:

AUC∗ −AUC(s∗P) ≤
||ηP(X)− η(X)||L1(µ)

p(p− 1)

+
1

4p(1− p)

K∑
k=1

Gk +
1
2

K∑
k=1

α(Ck)β(Ck) .

(ii) Assume that X = [0, 1]d. Suppose in addi-
tion µ(dx) has a bounded density with respect to
Lebesgue measure and that η(x) belongs to Aθ(µ)
with 0 < θ ≤ 1. Then, there exists a constant
c <∞ independent from j such that: ∀j ≥ 1,

AUC∗ −AUC(s∗Pj ) ≤ c · (#Pj)
−θ .

In the case θ = 1, the scoring function s∗Pj (x) achieves
the same approximation rate as sPπ when the subdi-
vision π has cardinality 2jd, see Eq. (6), even though
the assumptions guaranteeing these rate bounds are
not exactly of the same nature. However, we point
out that one may exhibit conditions related to η(x)
and to the smoothness properties of H and G ensur-
ing the Lipschitz property of ROC∗, see Remark 5 in
Clémençon and Vayatis (2007).

3 Empirical partitioning techniques.

We now turn to the statistical problem. From a practi-
cal perspective, the selection of a scoring function s(x)
is based on training data Dn = {(Xi, Yi); 1 ≤ i ≤ n}.
The relevance of a candidate s(x) is thus evaluated by
plotting the empirical version of its ROC curve. We
set:

α̂i(s) =
1
n−

∑
j/ Yj=−1

I{s(Xj) ≥ s(Xi)} ,

β̂i(s) =
1
n+

∑
j/ Yj=+1

I{s(Xj) ≥ s(Xi)} ,

1Recall that the Besov space Bθd2,∞(X ) is the set of Borel

functions f : X ⊂ Rd → R for which there exists M < ∞
such that: ∀h ∈ X , (

R
x∈X : x+h∈X(f(x+h)−f(x))2dx)1/2 ≤

M |h|θd, where |.| denotes the euclidian norm on Rd. The
smallest constant M for which the latter bound holds is
the norm ||f ||Bθ2,∞(X ).

for all i ∈ {1, . . . , n} where n+ =
∑
i≤n I{Yi = +1} =

n− n−. The empirical ROC curve of s(x) is the step-
wise function given by: ∀α ∈ [0, 1],

R̂OC(s, α) =
n∑
i=1

β̂σ(i)(s) · I{α ∈ [α̂σ(i)(s), α̂σ(i+1)(s)[},

where σ ∈ Sn is such that: α̂σ(1) ≤ . . . ≤ α̂σ(n),
with the convention that α̂σ(0)(s) = β̂σ(0)(s) = 0 and
α̂σ(n+1)(s) = β̂σ(n+1)(s) = 1.

By definition, the empirical AUC of s(x) is the area
under its empirical ROC curve, namely the rate of con-
cordant pairs:

ÂUC(s) =
∫ 1

α=0

R̂OC(s, α)dα,

=
1

n+n−

∑
i/ Yi=+1

∑
j/ Yj=−1

I{s(Xi) > s(Xj)}.

All results established when considering true ROC
curves extend to their empirical versions, replacing
G, H and p by their counterparts calculated from
the sample Dn. In particular, given a partition P =
{Ck}1≤k≤K of the feature space X , the ordering of
the cells with maximum empirical AUC corresponds
to permutations σ̂∗ such that,

β̂(Cbσ∗(1))
α̂(Cbσ∗(1)) ≥ . . . ≥

β̂(Cbσ∗(K))
α̂(Cbσ∗(K))

,

where for all measurable subset C ⊂ X :

α̂(C) =
1
n−

n∑
i=1

I{Xi ∈ C, Yi = −1},

β̂(C) =
1
n+

n∑
i=1

I{Xi ∈ C, Yi = +1}.

It renders the empirical ROC curve concave and corre-
sponds to the same ranking induced by the estimator
of the regression function

η̂P(x) =
K∑
k=1

n+β̂(Ck)

n−α̂(Ck) + n+β̂(Ck)
· I{x ∈ Ck},

meaning that η̂P = arg maxs∈SP ÂUC(s).

3.1 Histogram ranking rules

The next result shows how general consistency results
may be typically established for a large class of piece-
wise constant scoring rules, when the partitions are
fixed in advance.
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Theorem 10 (Histogram scoring rules) Con-
sider X = [0, 1]d and Pj the partition composed with
dyadic cubes. Assume that η(X) has a continuous dis-
tribution and that µ(dx) has a bounded density with re-
spect to Lebesgue measure. For the piecewise constant
scoring function defined as ŝ∗Pj = sPj ,bσ∗ , we have the
following properties:

(i) (Consistency) If j(n) tends to infinity so that
n2−j(n)d → 0 as n → ∞, the scoring rule ŝ∗Pj(n)

is consistent in the AUC sense:

E[AUC(ŝ∗Pj(n)
)]→ AUC∗.

(ii) (Rate bound) Suppose that η ∈ Aθ(µ). If j(n)
is picked in a way that 2j(n)d ∼ n

1
1+2θ , then there

exists a constant c <∞ such that for all δ ∈]0, 1[,
we have with probability at least 1− δ: ∀n ≥ 1,

AUC(ŝ∗Pj(n)
)−AUC∗ ≤ c

√
log(n/δ)
n2θ/(1+2θ)

. (7)

The main drawback of choosing in advance the side
length 2j(n) of the cells of the partition lies in the fact
that the smoothness class which η belongs to has to be
known in order to achieve the optimal rate. In the next
subsection, we tackle the problem of building a scoring
rule that achieves the same rate without knowing the
exact amount of smoothness of η.

Remark 6 (Optimality) Although no lower bound
result is available for this problem, we point out that,
up to our knowledge, the best possible rate (up to a
logarithmic factor) is of the order n1/3 for θ = 1.

3.2 Selecting the best partition for scoring

Model selection procedures have been successfully de-
veloped in the statistical learning setup for binary clas-
sification (Massart (2006); Boucheron et al. (2005)).
We propose here a similar strategy for selecting the
partition Pbj among all dyadic partitions {Pj}j in a
data-driven fashion and with best possible rate. In
our setup, the model selection procedure takes the fol-
lowing form:

ĈPAUC(Pj) = ÂUC(ŝ∗Pj )− pen(j, n) ,

where pen(j, n) is a penalty term. We set

ĵ(n) = arg max
j≥1

ĈPAUC(Pj(n)) and ŝ = ŝ∗Pbj(n)

The argument invoked in this analysis could be ap-
plied to more flexible partitions and serve as a basis for
investigating the pruning stage of the TreeRank al-
gorithm proposed by Clémençon and Vayatis (2008b).

The key to the study of the AUC performance of the
selected scoring rule is the following oracle inequality.

Proposition 11 (Oracle inequality) Suppose
that the penalty term is picked so that: ∀j ≥ 1,

pen(j, n) ≥ 1
p(1−p)

√
log(2jd+1!)

2n . Then we have:

E[AUC∗ −AUC(ŝ)] ≤ inf
j≥1
B(j, n), (8)

where for all j ≥ 1,

B(j, n) = AUC∗ −AUC(s∗Pj ) + 2pen(j, n) .

Remark 7 (On the penalty) The penalty can be
rendered independent of the distribution if it is as-
sumed that the proportion p belongs to an interval [p, p̄]
with 0 < p < p̄ < 1.

Remark 8 (On sharper bounds) Under the spe-
cific noise condition proposed by Clémençon et al.
(2008) in the ranking setup, the rate stated above could
be refined, using a Bernstein’s type inequality for U -
statistics (see the proof in the Appendix). Due to space
limitations, here we leave this question aside.

The next result reveals that the scoring rule achieves
almost the same rate of convergence. It results from
Proposition 11 and Theorem 10 combined with Stir-
ling’s formula.

Theorem 12 (Model selection) Suppose that as-
sumptions of part (ii) of Corollary 9 and Proposition
11 are fulfilled. Then, there exists a constant c > 0
such that for all δ ∈]0, 1[, we have, with probability at
least 1− δ: ∀n ≥ 1,

AUC∗ −AUC(ŝ) ≤ c
√

log(n/δ)
n2θ/(1+2θ)

. (9)

An alternative to model selection is to use adaptive
partitioning algorithms. Owing to space limitations,
they will be studied in a future work.

Appendix - Technical proofs

Proof of Theorem 6

The proof is based on the next lemma.

Lemma 13 Let P = {Ck}1≤k≤K be a partition with
K ≥ 2 non empty cells. Consider σ ∈ ΣK , fix k ∈
{1, . . . , K − 1} and let τk ∈ ΣK be the transposition
exchanging k and k + 1.Then, if (σ(k)− σ(k + 1)) ·
(σ∗(k)− σ∗(k + 1)) > 0, we have

AUC(sP,σ) ≥ AUC(sP,σ◦τk).



         103
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proof. Without loss of generality, one may suppose
that σ(k) − σ(k + 1) and σ∗(k) − σ∗(k + 1) are both
nonnegative. It follows from the expression of the AUC
stated in Proposition 5 that

AUC(sP,σ)−AUC(sP,σ◦τk) =
β(Cσ(k+1))α(Cσ(k))− β(Cσ(k))α(Cσ(k+1)) ,

and the latter quantity is negative by definition of σ∗.
�
proof of the theorem. Observing that any per-
mutation σ may be decomposed as σ∗ ◦ τ , where τ is
a compound of a finite number of transpositions τk,
k ∈ {1, . . .K − 1}, the proof of the first part of the
theorem immediately follows from the lemma stated
above. The second part straightforwardly results from
Eq. (3) in Proposition 5. �

Proof of Theorem 8

Observe first that, for all scoring function s:

AUC(s) = −P{s(X) = s(X ′) | (Y, Y ′) = (1,−1)}

+1− L(s)
2p(1− p)

, (10)

where L(s) = P{(s(X) − s(X ′)) · (Y − Y ′) < 0}. As
L(s) may be expressed as the expectation of η(X)(1−
η(X ′))I{s(X) < s(X ′)} + (1 − η(X))η(X ′)I{s(X) >
s(X ′)} and η(X) has a continuous distribution, one
may check that

L(s)− L(η) = E [|η(X)− η(X ′)|I{(X,X ′) ∈ Γs}]

+
1
2

E[I{s(X) = s(X ′)}|η(X)− η(X ′)|]

− P{s(X) = s(X ′), (Y, Y ′) = (1,−1)}.

Observe in addition that, when s(x) admits a (P, σ)-
representation, one may write the second and third
terms on the right hand side of the equation above
as 1

2

∑
C∈P E(|η(X) − η(X ′)|I{(X,X ′) ∈ C2}) and∑

C∈P α(C)β(C) respectively, which eventually con-
cludes the proof. �

Proof of Corollary 9

Concerning the first assertion, observe that:
if (X,X ′) ∈ Γs, then

|η(X)− η(X ′)| ≤ |η(X)− η̂(X)|+ |η(X ′)− η̂(X ′)|.

Combined to Theorem 8, this establishes (i).

Turning to the second assertion, it follows from the
hypothesis on µ and the smoothness assumption with
respect to µ for η(x) that: ∀j ≥ 1,

||η − ηPj ||L2(µ) ≤ |η|Aθ(µ) · 2−jdθ.

Observe additionally that, for all C ∈ Pj , the quantity
G(η(X)I{X ∈ C}) is bounded by µ(C)2 and that µ(C)
(and a fortiori (1 − p)α(C) and pβ(C)) is bounded
by ||dµ/dx||∞2−jd. Combined to (i), this yields the
desired result. �

Proof of Theorem 10

Recall that

AUC∗ −AUC(η̂Pj ) =
1

p(1− p)
E[|η̂Pj (X)− η(X)|]

+

∑
C∈Pj G(η(X)I{X ∈ C})

4p(1− p)
+

1
2

∑
C∈Pj

α(C)β(C) .

By assumption, for all C ∈ Pj , α(C)β(C) is bounded
by ||dµ/dx||2∞2−2jd/(p(1 − p)). In addition, following
line by line the argument of Theorem 6.2 in Devroye
et al. (1996), we obtain that η̂Pj(n) converges to η in
the L1(µ) sense, which proves (i).

We now turn to the second assertion. With a slight
abuse of notation, we set for all measurable C ⊂ X :

η(C) =
pβ(C)
µ(C)

and η̂(C) =
n+β̂(C)
nµ̂(C)

,

with µ̂(C) = n−1
∑
i≤n I{Xi ∈ C} and the convention:

0/0 = 0. It follows from Corollary 9 that:

AUC∗ −AUC(η̂P) ≤ c ·#P−θj +
||η̂Pj − ηPj ||L1(µ)

p(1− p)
.

Therefore, we have

||η̂Pj − ηPj ||L1(µ) = E[
∑
C∈Pj

|η(C)− η̂(C)|I{X ∈ C}]

≤ max
C∈Pj

(√
µ(C) · |η(C)− η̂(C)|

)
×
(∑

C∈Pj

√
µ(C)

)
.

We have
∑
C∈Pj

√
µ(C) ≤ 2jd/2 by Cauchy-Schwarz

inequality and for all C ∈ Pj :

|η(C)− η̂(C)| ≤ |bµ(C)−µ(C)|
µ(C) + |pβ(C)−n+ bβ(C)/n|

pβ(C) .

By virtue of the relative deviation results stated
in Theorem 5.1 in Boucheron et al. (2005),
for all δ ∈]0, 1[, we have with probability
at least 1 − δ that ∀n ≥ 1, ∀j ≥ 1,
the quantities maxC∈Pj |µ̂(C) − µ(C)|/

√
µ(C) and

maxC∈Pj |n+β̂(C)/n − pβ(C)|/
√
pβ(C) are bounded

by
√

(2d log(2n+ 1) + log(8/δ))/n. Combined with
the previous bounds and the fact that 2j(n)d ∼
n1/(1+2θ), this yields the claimed rate bound. �
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Proof of Proposition 11

We first establish the following result.

Lemma 14 Assume that the hypotheses of the propo-
sition are fulfilled. Then, ∀j ≥ 1, we have, for n suf-
ficiently large:

E[ sup
s∈SPj

|ÂUC(s)−AUC(s)|] ≤ 1
p(1− p)

√
log(2jd+1!)

2n
.

proof. We first express the ÂUC(s) as:

ÂUC(s) =
n(n− 1)
2n+n−

Ûn(s) ,

where Ûn(s) = 2
n(n−1)

∑
1≤i<j≤n hs((Xi, Yi), (Xj , Yj))

is a U -statistic of order 2 with bounded symmetric ker-
nel hs((x1, y1), (x2, y2)) = I{(y1−y2)(s(x1)−s(x2)) >
0} and expectation U(s) = 2p(1−p)AUC(s). Then the
bound may be proved for the process (Û−U)(s) by ap-
plying Hoeffding’s inequality for U -statistics combined
with the union bound. There is an implicit multiplica-
tive factor of 2 in the bound to remove the part com-
ing from the estimation of the proportion for n large
enough. Owing to space limitations, details are left to
the reader. �
By virtue of the definition of ĵ, we have: ∀j ≥ 1,

AUC∗ −AUC(ŝ) ≤ AUC∗ −AUC(s∗Pj )

+AUC(s∗Pj )− ÂUC(s∗Pj )−AUC(ŝ) + ÂUC(ŝ)

+pen(j, n)− pen(ĵ, n) .

Taking expectations and using Lemma 14 combined
with the previous bound, we deduce that: ∀j ≥ 1,

E[AUC∗ −AUC(ŝ∗Pbj )] ≤ AUC∗ −AUC(s∗Pj )

+E[AUC(s∗Pj )− ÂUC(s∗Pj )] + pen(j, n)− pen(ĵ, n)

+
1

p(1− p)

√
log(2bjd+1!)

2n
.

As we choose the penalty so that: ∀j′ ≥ 1,

pen(j′, n) ≥ 1
p(1− p)

√
log(2j′d+1!)

2n
,

we obtain:

E[AUC∗ −AUC(ŝ∗Pbj )] ≤ AUC∗ −AUC(s∗Pj )

+E[AUC(s∗Pj )− ÂUC(s∗Pj )] + pen(j, n) .

Moreover, for n large enough and for any j ≥ 1:

E[AUC(s∗Pj )− ÂUC(s∗Pj )] ≤ pen(j, n) ,

since the expected deviation of the empirical AUC
from its expectation for a single scoring function is
of the order of n−1/2. This concludes the proof. �
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