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Abstract

ROC curves are one of the most widely used displays to evaluate performance
of scoring functions. In the paper, we propose a statistical method for directly
optimizing the ROC curve. The target is known to be the regression function up
to an increasing transformation and this boils down to recovering the level sets of
the latter. We propose to use classifiers obtained by empirical risk minimization of
a weighted classification error and then to construct a scoring rule by overlaying
these classifiers. We show the consistency and rate of convergence to the optimal
ROC curve of this procedure in terms of supremum norm and also, as a byproduct
of the analysis, we derive an empirical estimate of the optimal ROC curve.

1 Introduction

In applications such as medical diagnosis, credit risk screening or information retrieval, one aims at
ordering instances under binary label information. The problem of ranking binary classification data
is known in the machine learning literature as the bipartite ranking problem ([FISS03], [AGH+05],
[CLV08]). A natural approach is to find a real-valued scoring function which mimics the order
induced by the regression function. A classical performance measure for scoring functions is the
Receiver Operating Characteristic (ROC) curve which plots the rate of true positive against false
positive ([vT68], [Ega75]). The ROC curve offers a graphical display which permits to judge rapidly
how a scoring rule discriminates the two populations (positive against negative). A scoring rule
whose ROC curve is close to the diagonal line does not discriminate at all, while the one lying above
all others is the best possible choice. From a statistical learning perspective, risk minimization (or
performance maximization) strategies for bipartite ranking have been based mostly on a popular
summary of the ROC curve known as the Area Under a ROC Curve (AUC - see [CLV08], [FISS03],
[AGH+05]) which corresponds to the L1-metric on the space of ROC curves. In the present paper,
we propose a statistical methodology to estimate the optimal ROC curve in a stronger sense than
the AUC sense, namely in the sense of the supremum norm. In the same time, we will explain how
to build a nearly optimal scoring function. Our approach is based on a simple observation: optimal
scoring functions can be represented from the collection of level sets of the regression function.
Hence, the bipartite ranking problem may be viewed as a ’continuum’ of classification problems
with asymmetric costs where the targets are the level sets. In a nonparametric setup, regression
or density level sets can be estimated with plug-in methods ([Cav97], [RV06], [AA07], [WN07],
...). Here, we take a different approach based on a weighted empirical risk minimization principle.
We provide rates of convergence with which an optimal point of the ROC curve can be recovered
according to this principle. We also develop a practical ranking method based on a discretization of
the original problem. From the resulting classifiers and their related empirical errors, we show how
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to build a linear-by-part estimate of the optimal ROC curve and a quasi-optimal piecewise constant
scoring function. Rate bounds in terms of the supremum norm on ROC curves for these procedures
are also established.

The rest of the paper is organized as follows: in Section 2, we present the problem and give some
properties of ROC curves, in Section 3, we provide a statistical result for the weighted empirical risk
minimization, and in Section 4, we develop the main results of the paper which describe the statisti-
cal performance of a scoring rule based on overlaying classifiers as well as the rate of convergence
of the empirical estimate of the optimal ROC curve.

2 Bipartite ranking, scoring rules and ROC curves

Setup. We study the ranking problem for classification data with binary labels. The data are assumed
to be generated as i.i.d. copies of a random pair (X,Y ) ∈ X × {−1,+1} where X is a random
descriptor living in the measurable space X and Y represents its binary label (relevant vs. irrelevant,
healthy vs. sick, ...). We denote by P = (µ, η) the distribution of (X,Y ), where µ is the marginal
distribution of X and η is the regression function (up to an affine transformation): η(x) = P{Y =
1 | X = x}, x ∈ X . We will also denote by p = P{Y = 1} the proportion of positive labels.
In the sequel, we assume that the distribution µ is absolutely continuous with respect to Lebesgue
measure.

Optimal scoring rules. We consider the approach where the ordering can be derived by the means
of a scoring function s : X → R: one expects that the higher the value s(X) is, the more likely the
event ”Y = +1” should be observed. The following definition sets the goal of learning methods in
the setup of bipartite ranking.

Definition 1 (Optimal scoring functions) The class of optimal scoring functions is given by the set

S∗ = { s∗ = T ◦ η | T : [0, 1]→ R strictly increasing }.

Interestingly, it is possible to make the connection between an arbitrary (bounded) optimal scoring
function s∗ ∈ S∗ and the distribution P (through the regression function η) completely explicit.

Proposition 1 (Optimal scoring functions representation, [CV08]) A bounded scoring function
s∗ is optimal if and only if there exist a nonnegative integrable function w and a continuous random
variable V in (0, 1) such that:

∀x ∈ X , s∗(x) = inf
X
s∗ + E (w(V ) · I{η(x) > V }) .

A crucial consequence of the last proposition is that solving the bipartite ranking problem amounts
to recovering the collection {x ∈ X | η(x) > u}u∈(0,1) of level sets of the regression function η.
Hence, the bipartite ranking problem can be seen as a collection of overlaid classification problems.
This view was first introduced in [CV07] and the present paper is devoted to the description of a
statistical method implementing this idea.

ROC curves. We now recall the concept of ROC curve and explain why it is a natural choice of
performance measure for the ranking problem with classification data. We consider here only true
ROC curves which correspond to the situation where the underlying distribution is known. First,
we need to introduce some notations. For a given scoring rule s, the conditional cdfs of the random
variable s(X) are denoted by Gs and Hs. We also set, for all z ∈ R:

Ḡs(z) = 1−Gs(z) = P {s(X) > z | Y = +1} ,
H̄s(z) = 1−Hs(z) = P {s(X) > z | Y = −1} .

to be the residual conditional cdfs of the random variable s(X). When s = η, we shall denote the
previous functions by G∗, H∗, Ḡ∗, H̄∗ respectively.

We introduce the notation Q(Z,α) to denote the quantile of order 1 − α for the distribution of a
random variable Z conditioned on the event Y = −1. In particular, the following quantile will be
of interest:

Q∗(α) = Q(η(X), α) = H̄∗−1(α) ,
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where we have used here the notion of generalized inverse F−1 of a càdlàg function F : F−1(z) =
inf{t ∈ R | F (t) ≥ z}. We now turn to the definition of the ROC curve.

Definition 2 (True ROC curve) The ROC curve of a scoring function s is the parametric curve:
z 7→

(
H̄s(z), Ḡs(z)

)
for thresholds z ∈ R. It can also be defined as the plot of the function:

ROC(s, · ) : α ∈ [0, 1] 7→ Ḡs ◦ H̄−1
s (α) = Ḡs (Q(s(X), α)) .

By convention, points of the curve corresponding to possible jumps (due to possible degenerate
points of Hs or Gs) are connected by line segments, so that the ROC curve is always continuous.
For s = η, we take the notation ROC∗(α) = ROC(η, α).

The residual cdf Ḡs is also called the true positive rate while H̄s is the false positive rate, so that
the ROC curve is the plot of the true positive rate against the false positive rate.

Note that, as a functional criterion, the ROC curve induces a partial order over the space of all scor-
ing functions. Some scoring function might provide a better ranking on some part of the observation
space and a worst one on some other. A natural step to take is to consider local properties of the
ROC curve in order to focus on best instances but this is not straightforward as explained in [CV07].

We expect optimal scoring functions to be those for which the ROC curve dominates all the others
for all α ∈ (0, 1). The next proposition highlights the fact that the ROC curve is relevant when
evaluating performance in the bipartite ranking problem.

Proposition 2 The class S∗ of optimal scoring functions provides the best possible ranking with
respect to the ROC curve. Indeed, for any scoring function s, we have:

∀α ∈ (0, 1) , ROC∗(α) ≥ ROC(s, α) ,
and ∀s∗ ∈ S∗, ∀α ∈ (0, 1) , ROC(s∗, α) = ROC∗(α).

The following result will be needed later.

Proposition 3 We assume that the optimal ROC curve is differentiable. Then, we have, for any α
such that Q∗(α) < 1:

d

dα
ROC∗(α) =

1− p
p
· Q∗(α)

1−Q∗(α)
.

For proofs of the previous propositions and more details on true ROC curves, we refer to [CV08].

3 Recovering a point on the optimal ROC curve

We consider here the problem of recovering a single point of the optimal ROC curve from a sample
of i.i.d. copies {(Xi, Yi)}i=1,...,n of (X,Y ). This amounts to recovering a single level set of the
regression function η but we aim at controlling the error in terms of rates of false positive and true
positive. For any measurable set C ⊂ X , we set the following notations:

α(C) = P(X ∈ C | Y = −1) and β(C) = P(X ∈ C | Y = +1) .
We also define the weighted classification error:

Lω(C) = 2p(1− ω) (1− β(C)) + 2(1− p)ω α(C) ,
with ω ∈ (0, 1) being the asymmetry factor.

Proposition 4 The optimal set for this error measure is C∗ω = {x : η(x) > ω}. We have indeed,
for all C ⊂ X :

Lω(C∗ω) ≤ Lω(C) .
Also the optimal error is given by:

Lω(C∗ω) = 2E min{ω(1− η(X)), (1− ω)η(X)} .
The excess risk for an arbitrary set C can be written:

Lω(C)− Lω(C∗ω) = 2E (| η(X)− ω | I{X ∈ C∆C∗ω}) ,
where ∆ stands for the symmetric difference between sets.
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The empirical counterpart of the weighted classification error can be defined as:

L̂ω(C) =
2ω
n

n∑
i=1

I{Yi = −1, Xi ∈ C}+
2(1− ω)

n

n∑
i=1

I{Yi = +1, Xi /∈ C} .

This leads to consider the weighted empirical risk minimizer over a class C of candidate sets:

Ĉω = arg min
C∈C

L̂ω(C).

The next result provides rates of of convergence of the weighted empirical risk minimizer Ĉω to the
best set in the class in terms of the two types of error α and β.

Theorem 1 Let ω ∈ (0, 1). Assume that C is of finite VC dimension V and contains C∗ω . Suppose
also that both G∗ and H∗ are twice continuously differentiable with strictly positive first derivatives
and that ROC∗ has a bounded second derivative. Then, for all δ > 0, there exist constants c(V )
independent of ω such that, with probability at least 1− δ:

|α(Ĉω)− α(C∗ω)| ≤ c(V )√
p(1− ω)

·
(

log(1/δ)
n

) 1
3

.

The same result also holds for the excess risk of Ĉω in terms of the rate β of true positive with a
factor term of

√
(1− p)ω in the denominator instead .

It is noteworthy that, while convergence in terms of classification error is expected to be of the order
of n−1/2, its two components corresponding to the rate of false positive and true positive present
slower rates.

4 Nearly optimal scoring rule based on overlaying classifiers

Main result. We now propose to collect the classifiers studied in the previous section in order to
build a scoring function for the bipartite ranking problem. From Proposition 1, we can focus on
optimal scoring rules of the form:

s∗(x) =
∫

I{x ∈ C∗ω} ν(dω), (1)

where the integral is taken w.r.t. any positive measure ν with same support as the distribution of
η(X).

Consider a fixed partition ω0 = 0 < ω1 ≤ . . . ≤ ωK ≤ 1 = ωK+1 of the interval (0, 1). We can
then construct an estimator of s∗ by overlaying a finite collection of (estimated) density level sets
Ĉω1 , . . . , ĈωK :

ŝ(x) =
K∑
i=1

I{x ∈ Ĉωi},

which may be seen as an empirical version of a discrete version of the target s∗.

In order to consider the performance of such an estimator, we need to compare the ROC curve of ŝ to
the optimal ROC curve. However, if the sequence {Ĉωi}i=1,...,K is not decreasing, the computation
of the ROC curve as a function of the errors of the overlaying classifiers becomes complicated.

The main result of the paper is the next theorem which is proved for a modified sequence which
yields to a different estimator. We introduce: {C̃ωi}1≤i≤K defined by:

C̃ω1 = Ĉω1 and C̃ωi+1 = C̃ωi ∪ Ĉωi+1 for all i ∈ {1, . . . ,K − 1} .

The corresponding scoring function is then given by:

s̃K(x) =
K∑
i=1

I{x ∈ C̃ωi} . (2)
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Hence, the ROC curve of s̃K is simply the broken line that connects the knots (α(C̃ωi), β(C̃ωi)),
0 ≤ i ≤ K + 1.

The next result offers a rate bound in the ROC space, equipped with a sup-norm. Up to our knowl-
edge, this is the first result on the generalization ability of decision rules in such a functional space.

Theorem 2 Under the same assumptions as in Theorem 1 and with the previous notations, we set
K = Kn ∼ n1/8. Fix ε > 0. Then, there exists a constant c such that, with probability at least
1− δ, we have:

sup
α∈[ε,1−ε]

|ROC∗(α)− ROC(s̃K, α)| ≤ c log(1/δ)
εn1/4

.

Remark 1 (PERFORMANCE OF CLASSIFIERS AND ROC CURVES.) In the present paper, we have
adopted a scoring approach to ROC analysis which is somehow related to the evaluation of the
performance of classifiers in ROC space. Using combinations of such classifiers to improve perfor-
mance in terms of ROC curves has also been pointed out in [BDH06] and [BCT07].

Remark 2 (PLUG-IN ESTIMATOR OF THE REGRESSION FUNCTION.) Note that taking ν = λ
the Lebesgue measure over [0, 1] in the expression of s∗ leads to the regression function η(x) =∫

I{x ∈ C∗ω} dω. An estimator for the regression function could be the following: η̂K(x) =∑K+1
i=1 (ωi − ωi−1)I{x ∈ C̃ωi}.

Remark 3 (ADAPTIVITY OF THE PARTITION.) A natural extension of the approach would be to
consider a flexible partition (ωi)i which could possibly be adaptively chosen depending on the local
regularity of the ROC curve. For now, it is not clear how to extend the method of the paper to
take into account adaptive partitions, however we have investigated such partitions corresponding
to different approximation schemes of the optimal ROC curve elsewhere ([CV08]), but the rates of
convergence obtained in the present paper are faster.

Optimal ROC curve approximation and estimation. We now provide some insights on the pre-
vious result. The key for the proof of Theorem 2 is the idea of a piecewise linear approximation of
the optimal ROC curve.

We introduce some notations. Let ω0 = 0 < ω1 < . . . < ωK < ωK+1 = 1 be a given partition
of [0, 1] such that maxi∈{0,...,K}{ωi+1 − ωi} ≤ δ. Set: ∀i ∈ {0, . . . ,K + 1}, α∗i = α(C∗ωi) and
β∗i = β(C∗ωi).

The broken line that connects the knots {(α∗i , β∗i ); 0 ≤ i ≤ K + 1} provides a piecewise linear
(concave) approximation/interpolation of the optimal ROC curve ROC∗. In the spirit of the finite
element method (FEM, see [dB01] for instance), we introduce the ”hat functions” defined by:

∀i ∈ {1, . . . ,K − 1}, φ∗i ( · ) = φ( · ; (α∗i−1, α
∗
i ))− φ( · ; (α∗i , α

∗
i+1)),

with the notation φ(α, (α1, α2)) = (α − α1)/(α2 − α1) · I{α ∈ [α1, α2]} for all α1 < α2. We
also set φ∗K( · ) = φ( · ; (α∗K , 1)) for notational convenience. The piecewise linear approximation
of ROC∗ may then be written as:

R̃OC
∗
(α) =

K∑
i=1

β∗i φ
∗
i (α) .

In order to obtain an empirical estimator of R̃OC
∗
(α), we propose: i) to find an estimate Ĉωi of the

true level set C∗ωi based on the training sample {(Xi, Yi)}i=1,...,n as in Section 3, ii) to compute the
corresponding errors α̂i and β̂i using a test sample {(X ′i, Y ′i )}i=1,...,n. Hence we define:

α̂i(C) =
1
n−

n∑
i=1

I{X ′i ∈ C, Y ′i = −1} and β̂i(C) =
1
n+

n∑
i=1

I{X ′i ∈ C, Y ′i = +1},

with n+ =
∑n
i=1 I{Y ′i = +1} = n − n−. We set α̂i = α̂i(Ĉωi) and β̂i = β̂i(Ĉωi). We propose

the following estimator of R̃OC
∗
(α):

R̂OC∗(α) =
K∑
i=1

β̂iφ̂i(α),
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where φ̂K(α) = φ(.; (α̂K , 1)) and φ̂i(α) = φ(.; (α̂i−1, α̂i)) − φ(.; (α̂i, α̂i+1)) for 1 ≤ i < K.
Hence, R̂OC is the broken line connecting the empirical knots {(α̂i, β̂i); 0 ≤ i ≤ K + 1}.
The next result takes the form of a deviation bound for the estimation of the optimal ROC curve.
It quantifies the order of magnitude of a confidence band in supremum norm around an empirical
estimate based on the previous approximation scheme with empirical counterparts.

Theorem 3 Under the same assumptions as in Theorem 1 and with the previous notations, set K =
Kn ∼ n1/6. Fix ε > 0. Then, there exists a constant c such that, with probability at least 1− δ,

sup
α∈[ε,1−ε]

|R̂OC∗(α)− ROC∗(α)| ≤ cε−1

(
log(n/δ)

n

)1/3

.

5 Conclusion

We have provided a strategy based on overlaid classifiers to build a nearly-optimal scoring function.
Statistical guarantees are provided in terms of rates of convergence for a functional criterion which
is the ROC space equipped with a supremum norm. This is the first theoretical result of this nature.
To conclude, we point out that ROC analysis raises important and novel issues for statistical learning
and we hope that the present contribution gives a flavor of possible research directions.

Appendix - Proof section

Proof of Theorem 1. The idea of the proof is to relate the excess risk in terms of α-error to the excess
risk in terms of weighted classification error. First we re-parameterize the weighted classification
error. Set C(α) = {x ∈ X | η(x) > Q∗(α)} and:

`ω(α) = Lω(C(α)) = 2(1− p)ω α+ 2p(1− ω)(1− ROC∗(α))

Since ROC∗ is assumed to be differentiable and using Proposition 3, it is easy to check that the
value α∗ = α(C∗ω) minimizes `ω(α). Denote by `∗ω = `ω(α∗). It follows from a Taylor expansion
of `ω(α) around α∗ at the second order that there exists α0 ∈ [0, 1] such that:

`ω(α) = `∗ω − p(1− ω)
d2

dα2
ROC∗(α0) (α− α∗)2

Using also the fact that ROC∗ dominates any other curve of the ROC space, we have: ∀C ⊂ X
measurable, β(C) ≤ ROC∗(α(C)). Also, by assumption, there exists m such that: ∀α ∈ [0, 1],
d2

dα2 ROC∗(α) ≥ −m. Hence, since `ω(α(Ĉω)) = Lω(Ĉω), we have:(
α(Ĉω)− α(C∗ω)

)2

≤ 1
mp(1− ω)

(
Lω(Ĉω)− Lω(C∗ω)

)
.

We have obtained the desired inequality. It remains to get the rate of convergence for the weighted
empirical risk.

Now set: F ∗ = pG∗ + (1 − p)H∗. We observe that: ∀t > 0, P(|η(X) − ω| ≤ t) = F ∗(ω +
t) − F ∗(ω − t) ≤ 2t supu(F ∗)′(u). We have thus shown that the distribution satisfies a modified
Tsybakov’s margin condition [Tsy04], for all ω ∈ [0, 1], of the form:

P(|η(X)− ω| ≤ t) ≤ D t
γ

1−γ .

with γ = 1/2 and D = 2 supu(F ∗)′(u). Adapting slightly the argument used in [Tsy04], [BBL05],
we have that, under the modified margin condition, there exists a constant c such that, with proba-
bility 1− δ:

Lω(Ĉω)− L∗ω(C∗ω) ≤ c
(

log(1/δ)
n

) 1
2−γ

.

Proof of Theorem 2. We note α̃i = α(C̃ωi), β̃i = β(C̃ωi) and also φ̃i( · ) = φ( · ; (α̃i−1, α̃i)) −
φ( · ; (α̃i, α̃i+1)). We then have ROC(s̃K, α) =

∑K
i=1 β̃iφ̃i(α) and we can use the following
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decomposition, for any α ∈ [0, 1]:

ROC∗(α)− ROC(s̃K, α) =

(
ROC∗(α)−

K∑
i=1

ROC∗(α̃i)φ̃i(α)

)
+

K∑
i=1

(ROC∗(α̃i)− β̃i)φ̃i(α) .

It is well-known folklore in linear approximation theory ([dB01]) that if s̃K is a piecewise constant
scoring function whose ROC curve interpolates the points {(α̃i,ROC∗(α̃i))}i=0,...,K of the optimal
ROC curve, then we can bound the first term (which is positive), ∀α ∈ [0, 1], by:

−1
8

inf
α∈[0,1]

d2

dα2
ROC∗(α) · max

0≤i≤K
(α̃i+1 − α̃i)2 .

Now, to control the second term, we upper bound the following quantity:

|ROC∗(α̃i)− β̃i| ≤ sup
α∈[0,1]

d
dα

ROC∗(α) · |α̃i − α∗i |+ |β∗i − β̃i|

We further bound: |α̃i − α∗i | ≤ |α̃i − αi|+ |αi − α∗i | where αi = α(Ĉi). In order to deal with the
first term, the next lemma will be needed:

Lemma 1 We have, for all k ∈ {1, . . . ,K}:

α(C̃k) = α(Ĉk) + (k − 1)OP(n−1/4) .

where the notation OP(1) is used for a r.v. which is bounded in probability.

From the lemma, it follows that: max1≤i≤K |α̃i − αi| = OP(Kn−1/4). We can then use Theorem
1 with δ replaced by δ/K to get that max1≤i≤K |αi − α∗i | = OP((n−1 logK)1/3). The same
inequalities hold with the β’s. It remains to control the quantity α̃i+1 − α̃i. We have:

| α̃i+1 − α̃i |≤ max
1≤k≤K

| α(Ĉk)− α(Ĉk−1) | +K OP(n−1/4) .

We have that:

max
1≤k≤K

| α(Ĉk)− α(Ĉk−1) |≤ 2 max
1≤k≤K

| α(Ĉk)− α(C∗k) | + max
1≤k≤K

| α(C∗k)− α(C∗k−1) |

As before, we have that the first term is of the order (logK/n)1/3 and since the second derivative
of the optimal ROC curve is bounded, the second term is of the order K−1. Eventually, we choose
K in order to optimize the quantity: K−2 + (logK/n)2/3 +K2n−1/2 +Kn−1/4 + (logK/n)1/3.
As only the first and the third term matter, this leads to the choice of K = Kn ∼ n1/8.

Proof of Lemma 1.

We have that α(C̃2) = α(Ĉ2) + α(Ĉ1 \ Ĉ2). Therefore, since C∗1 ⊂ C∗2 and observing that

α(Ĉ1 \ Ĉ2) = α(((Ĉ1 \ C∗1 ) ∪ (Ĉ1 ∩ C∗1 )) \ ((Ĉ2 \ C∗2 ) ∪ (Ĉ2 ∩ C∗2 )) ,

it suffices to use the additivity of the probability measure α(.) to get: α(C̃2) = α(Ĉ2)+OP(n−1/4).
Eventually, errors are stacked and we obtain the result.

Proof of Theorem 3.

We use the following decomposition, for any fixed α ∈ (0, 1):

R̂OC∗(α)−ROC∗(α) =

(
R̂OC∗(α)−

K∑
i=1

ROC∗(α̂i)φ̂i(α)

)
+

(
K∑

i=1

ROC∗(α̂i)φ̂i(α)− ROC∗(α)

)
.

Therefore, we have by a triangular inequality: ∀α ∈ [0, 1],∣∣∣∣∣R̂OC∗(α)−
K∑
i=1

ROC∗(α̂i)φ̂i(α)

∣∣∣∣∣ ≤ max
1≤i≤K

|β̂i − βi|+ |βi − β∗i |+ |ROC∗(α∗i )− ROC∗(α̂i)| .

7



And, by the finite increments theorem, we have:

|ROC∗(α∗i )− ROC∗(α̂i)| ≤

(
sup
α∈[0,1]

d
dα

ROC∗(α)

)
(|α∗i − αi|+ |αi − α̂i|) .

For the other term, we use the same result on approximation as in the proof of Theorem 2:∣∣∣∣∣
K∑
i=1

ROC∗(α̂i)φ̂i(α)− ROC∗(α)

∣∣∣∣∣ ≤ −1
8

inf
α∈[0,1]

d2

dα2
ROC∗(α) · max

0≤i≤K
(α̂i+1 − α̂i)2

max
0≤i≤K

(α̂i+1 − α̂i) ≤ max
0≤i≤K

(α∗i+1 − α∗i ) + 2 max
1≤i≤K

|α∗i − αi|+ 2 max
1≤i≤K

|α̂i − αi| .

We recall that: max1≤i≤K |α̂i − αi|. = OP(Kn−1/2). Moreover, max0≤i≤K{α∗i+1 − α∗i } is of the
order of K−1. And with probability at least 1− δ, we have that max1≤i≤K |α∗i − αi| is bounded as
in Theorem 1, except that δ is replaced by δ/K in the bound. Eventually, we get the generalization
bound: K−2 + (logK/n)1/3, which is optimal for a number of knots: K ∼ n1/6.
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