
HAL Id: hal-02087643
https://telecom-paris.hal.science/hal-02087643v1

Submitted on 2 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-level modeling of communication-centric
applications: Extensions to a system-level design and

virtual prototyping tool
Daniela Genius, Ludovic Apvrille, Letitia Li

To cite this version:
Daniela Genius, Ludovic Apvrille, Letitia Li. High-level modeling of communication-centric appli-
cations: Extensions to a system-level design and virtual prototyping tool. Microprocessors and Mi-
crosystems: Embedded Hardware Design , 2019, �10.1016/j.micpro.2019.03.006�. �hal-02087643�

https://telecom-paris.hal.science/hal-02087643v1
https://hal.archives-ouvertes.fr


High-Level Modeling of Communication-Centric
Applications: Extensions to a System-Level Design and

Virtual Prototyping Tool

Daniela Geniusa, Ludovic Apvrilleb, Letitia W. Lib,c

aSorbonne Université, LIP6, CNRS UMR 7606, daniela.genius@lip6.fr
bLTCI, Telecom ParisTech, Université Paris-Saclay, ludovic.apvrille@telecom-paristech.fr

cInstitut VEDECOM, 77 Rue des Chantiers, 78000 Versailles, France,
letitia.li@telecom-paristech.fr

Abstract

High performance streaming applications require hardware platforms featuring
complex, multi-level interconnects. These applications often resemble a task-
farm, where many identical tasks listen to the same input channel. Usual em-
bedded system design tools are not well adapted to capture these applications.
In particular, the non-uniform memory access (NUMA) nature of the platforms
induces latencies that must be carefully examined. The paper proposes a multi-
level modeling methodology and tools (TTool, SoCLib) that have been extended
to model the characteristics of streaming applications (multiple tasks, non deter-
ministic behavior, I/O devices) in UML/SysML, and to automatically generate
a virtual prototype that can be simulated with high precision. The paper uses
a typical streaming application to show how latencies can be estimated and fed
back to diagrams.

Keywords:
Virtual prototyping, System-level design, Design space exploration

1. Introduction

Parallel telecommunication and video streaming applications often adhere to
the task-farm paradigm: they contain a high number of tasks, each waiting to
accept data for processing from one of the common (input) buffers. Streaming
applications also have the particularity that they require specific Input/Output
(I/O) co-processors which read from, for example, an Ethernet link and, after
processing by the application, write to another link or display video streams on
a display.

Multiprocessor-on-chip system (MPSoC) architectures feature complex, some-
times hierarchical, interconnect-on-chip architectures: they are thus well adapted
for the deployment of highly parallel applications. These MPSoC usually rely on
Non Uniform Memory Access (NUMA), where clusters using local crossbars are

Preprint submitted to Micpro April 2, 2019



grouped around a central interconnect. In these architectures, memory access
latencies are hard to predict, thus resulting in non deterministic behaviors.

Design space explorations can help predicting application timings. Ideally,
the design space exploration should be performed at a high level of abstraction
so as to minimize the design effort to dimension the application and the under-
lying architecture. However, since high-level models are highly abstracted, it
means that decisions are taken with high-level parameters that should be verified
later in the system design process using more precise modeling and simulation
schemes (e.g. cycle accurate simulations).

Tool support is certainly required to carry out this method. Yet, in the
field of classical embedded systems for which many high-level modeling and
exploration tool exists, communications are typically one-to one and do not
fully exploit the capacities of such architectures e.g. the standard interconnect
is a (simple) bus.

Our previous work [1, 2] enabled the multi-level modeling of high throughput
task-farm applications, by providing a formal basis for non-deterministic chan-
nel accesses and extended TTool to model NUMA architectures and generate
NUMA virtual prototypes. However, while streaming applications strongly rely
on I/O elements, it was not possible to model these elements. Neither could
we explicitly take into account the very strong variations of latencies, e.g. for
mermory access, in the model.

In summary, our contribution presents an overview of new and existing
work on a model-based engineering (MBE) approach for complex task-farm type
streaming applications with a presentation of the overall method, the semantics,
modeling extensions, as well as a comprehensive case study.

The paper is organized as follows. Section 2 presents the related work.
Section 3 presents the background frameworks. Section 4 explains extensions
of the semantics to capture non-determinism, and of the hardware model to
convene for our class of applications. Section 5 illustrates the approach by
means of a case study, for which experimental results are presented in Section
6. Section 7 concludes the paper and gives our perspectives.

2. Related Work

During an embedded software development process, software components are
generally tested/executed on a local host, and then are integrated once the target
is available. The lack of information regarding software/hardware interactions
often leads to late and costly software revisions. Moreover, reconsideration
of software design choices may strongly impact MPSoC design, because they
feature a high number of processor cores and complex interconnection networks.
Thus, we require a fast and easy-to-use solution for a preliminary high-level
exploration.

One possible approach is to frequently validate the different refinements of
software components in a as-realistic-as-possible hardware environment. Flexi-
ble Programmable Gate Arrays (FPGAs) can be used for this purpose [3, 4], but

2



the hardware elements must be totally developed to include a sufficient amount
of details, and then flashed onto a —sometimes costly— FPGA.

A less expensive solution is the use of virtual prototyping platforms. They
are slower and less realistic than FPGAs, but offer more flexibility, and are more
accessible for software engineers with limited hardware knowledge.

Many completely software-based prototyping environments have been pro-
posed. Some of them are restricted to high-level analysis and offer only func-
tional simulation, while others offer virtual prototyping and extended profiling
capabilities.

PtolemyII [5] proposes a modeling environment for the integration of diverse
execution models, in particular hardware and software components. Even if
design space exploration can be performed, its first intent is the simulation of
the modeled systems.

In Polis [6], applications are described as a network of state machines. Each
element of the network can be mapped on a hardware or a software node. This
approach is more oriented towards application modeling, even if hardware com-
ponents are closely associated to the mapping process. Metropolis [7], an exten-
sion of Polis, targets heterogeneous systems and offers various execution models.
Architectural and application constraints are however closely interwoven.

Sesame [8] proposes modeling and simulation at several abstraction levels. In
contrast to Metropolis, application and architecture are clearly separated in the
modeling process. Models’ semantics vary according to the levels of abstraction,
ranging from Kahn process networks (KPN [9]) to data flow for model refine-
ment, and to discrete events for simulation. Currently, Sesame is limited to the
allocation of processing resources to application processes. It neither models
memory mapping nor the choice of the communication architecture.

The ARTEMIS [10] project originates from heterogeneous platforms in the
context of research on multimedia applications in particular, thus justifying
the acronym (ARchitecTurEs and Methods for embedded MedIa Systems); it
is strongly based on the Y-chart approach. Application and architecture are
clearly separated: the application produces an event trace at simulation time,
which is read in by the architecture model. However, behavior depending on
timers and interrupts cannot be taken into account.

MARTE [11] shares many commonalities with our approach, in terms of
the capacity to separately model communications from the pair application-
architecture. However, it intrinsically lacks separation between control aspects
and message exchanges. Other works based on UML/MARTE, such as Gas-
pard2 [12], are dedicated to both hardware and software synthesis, relying on a
refinement process based on user interaction to progressively lower the level of
abstraction of input models. Still, such a refinement does not completely sep-
arate the application (software synthesis) or architecture (hardware synthesis)
models from communication. Finally, MARTE neither offers explicit support
for task-farm applications nor for NoC and NUMA based platforms.

Di Natale et al.[13] propose the generation of communication managers for
software low layers. Yet, they do not handle the specificity of task-farm appli-
cations nor do they offer formal verification.

3



Batori [14] proposes a design methodology specific for telecommunication
applications. From use cases, the method proposes several formalisms to cap-
ture the application structure (“interaction model”) and behavior (Finite State
Machine) and for its deployment from which executable code can be generated.
The platform seems limited to specific components and no design exploration
seems possible; code generation targets a real platform, and not a prototyping
environment.

An important aspect of streaming applications is I/O, requiring hardware
modules for the sending and receiving of network packets or video frames either
from a network, a file or other source. Often very specific, they are difficult to
model in tools for modeling generic applications [15, 16].

We therefore propose an approach to address all aspects of such applications,
in terms of software and hardware modeling, formal verification, simulation, and
performance evaluation, using a model-driven approach and existing toolkit as
a basis.

3. Background

3.1. Supporting Toolkit

TTool [17] is a UML/SysML modeling and verification toolkit for designing
embedded systems, supporting different level of abstraction, and proposing a
push button approach for both simulation and formal verification.

3.1.1. Modeling Levels

The main abstraction levels of TTool are partitioning and software design
[18]. The software design level includes a prototyping phase in which software
can be simulated onto the hardware using a precise simulation engine.

As shown in Figure 1, the approach is as follows:

1. The overall method starts by a partitioning phase, DIPLODOCUS (De-
sIgn sPace expLoration based on fOrmal Description teChniques, Uml and
SystemC), containing three sub-phases: the modeling of the functions to
be realized by the system (functional view), the modeling of the candidate
architecture as an assembly of highly abstracted hardware nodes, and the
mapping phase. A function mapped on a processor is a software function,
a function mapped on a hardware accelerator corresponds to a custom
ASIC (Application-specific Integrated Circuit).

2. The second phase is based on AVATAR (Automated Verification of reAl
Time softwARe [19]), a SysML-based environment for modeling the soft-
ware components of complex embedded systems. It starts by the design
of the software and hardware. A deployment view shows the allocation of
software components. Code can then be generated both for the software
components of the application (in C/POSIX code) and for the virtual
hardware nodes (in System C format).

4



Final 
software 
code

Refinements

VHDL/Verilog

Software 
Design and
 Prototyping

(AVATAR)

Deployment view

......

Hardware 
design

Abstractions

Abstractions

Reconsideration
of partitioning
decisions

Simulation 
and 
Verification : 
safety, security 
and 
performance

Mapping view

Functional view Architecture view

Software Component Hardware
model

Partitioning 
with 

Design Space 
Exploration 
techniques

(DIPLODOCUS)

Figure 1: Overall Approach from [18]

Choice of parameters at the higher level of abstraction is subject to validation
or invalidation due to experimental results on the generated prototype. Thus,
simulation results at the prototyping level could lead to reconsideration of the
partitioning decisions.

At each stage, simulation and formal verification ensure that our design
meets performance, behavior, and schedulability requirements [20]. Simulations
and verifications first rely on model transformation techniques e.g. SysML-to-
formal specification. Safety properties can be evaluated using the TTool internal
model checker or with UPPAAL [21], while security properties can be proved
with ProVerif [22].

3.1.2. Simulation

From partitioning models, high-level simulation can be performed. From
software design models, an application and its deployment can be transformed
into a virtual prototype [23] based on SoCLib [24], a public domain library of
component models written in SystemC. SoCLib targets shared-memory MPSoC
architectures based on the Virtual Component Interconnect (VCI) protocol [25].
This protocol clearly separates the components functionality from communica-
tion aspects; we use Cycle/Bit Accurate component models.

Basically, the transformation works as follows. Each SysML block is trans-
lated into a POSIX thread and executed on one of the general purpose proces-
sors. The threads uses on primitives defined in the AVATAR runtime. These
primitives capture the semantics of the AVATAR operators (delay, asynchronous
read, etc.) and implement them using C/POSIX calls. The main program in-
stantiates the POSIX threads of the AVATAR blocks, and the channels trans-
lated as software objects stored in the on-chip memory. Threads are spawned
from the main thread on the CPU indicated in the deployment diagram. The

5



top cell generator generates a SystemC top cell from the deployment diagram.
A ldscript generator generates the linker script taking into account the mapping
specified in the deployment diagram.

3.1.3. Capturing non deterministic behaviour

In [1], we have shown how to rely onnon-deterministic operators of timed
automata in order to capture multi-writer multi-reader (MWMR) communica-
tions as already explained in in [26] i.e. any number of reader or writer tasks
can access simultaneously to these channels. In other words, a task waiting for
some data to be processed indifferently picks up data from common buffers,
thus introducing a high degree of non deterministic behaviors that are difficult
to capture in FIFO models (e.g., Kahn models). However, at the time, these
channels lacked formal semantics, and generation of platform variants was text-
based and semi-automatic. Due to our contributions, it is now possible to work
from high-level models, generate the prototyping code and feed the results back
to the higher-level diagrams.

<<block>>

B0

~ out m0()
~ out m1()

<<block>>

B1

~ in m0()
~ in m1()

m0()

state0

m1()

Waiting4Sig

m1() m0()

after (2,12)after (5,15)

after (10,20)

Figure 2: Non-deterministic AVATAR model

An example of non deterministic behavior —using the after clause of SysML
state machines— is shown on the left side of Figure 2 where two SysML blocks
communicate via a channel. Asynchronous channels can be rather naturally
implemented using multi-writer multi-reader channels. In the figure, AVATAR
asynchronous channels are depicted with origin and termination ports filled in
white. The right part of the figure shows the state machine diagrams of blocks
B0 and B1, respectively. This is a non deterministic system since e.g. B0 can
decide to send either m0 or m1. B1 waits for one of the two messages, or if a
given time without receiving one of the two (“after(10,20)”) passes, it resets the
waiting time of messages by taking the top right transition from its main state.

3.1.4. Modeling task-farm applications in TTool

In the field of embedded systems, communications are typically one-to one,
more rarely one-to-many e.g. broadcast communication. Many-to-many com-
munications are not common practice. Block hierarchy can be used to express
the fact that several blocks write to the same channel, as shown in previous
work [1].

6



Figure 3 shows a typical task-farm application modeled as AVATAR block
diagram. Masters and Workers are connected through an AVATAR channel
regrouping all communication between the master and worker tasks (i.e. the
common channel). The master blocks have to be put into a higher-level block
called Masters, writing indifferently to the channels, and the worker into a
higher-level block Workers, reading the channels, respectively. Figure 4 does
not show the state macines of the inner tasks which are very simple, but only the
two outer tasks. The Masters task reads data produced by either one of the two
inner tasks Master0 and Master1 via channel from master0 and from master1,
the Workers task dispatches data to either one of the two inner tasks Worker0
and Worker1 via channel from worker0 and from worker1.

<<block>>

Masters

- data : int;

~ out queue(int data)
~ in from_master0(int data)
~ in from_masters1(int data)

<<block>>

Master0

- data : int;

~ out to_queue(int data)

<<block>>

Master1

- data : int;

~ out to_queue(int data)

<<block>>

Workers

- data : int;

~ out to_worker0(int data)
~ out to_worker1(int data)
~ in from_queue(int data)

<<block>>

Worker0

- data : int;

~ in toWorker0(int data)

<<block>>

Worker1

- data : int;

~ in toWorker1(int data)

Figure 3: Task farm application: block diagram

3.2. Support for NUMA Architectures

TTool, up to the work described in [2], did not provide support for modeling
NUMA virtual platforms. A NUMA architecture typically addresses at least two
computing domains. TTool has been extended to handle NUMA architectures
thanks to the following contributions:

• Modeling aspects. A local crossbar component and the possibility to con-
nect communication components (crossbar, bus, mesh, ...) with each other
to build multi-level interconnects have been added. TTool is still limited
to two-level interconnects featuring local crossbars around either a Virtual
Generic Multi Network (VGMN), abstraction of a n ×m mesh intercon-
nect, or a Virtual Generic Serial Bus (VGSB), abstraction of a serial bus.

7



queue(data)

Waiting

dispatch

from_master0(data) from_masters1(data)

to_worker1(data)to_worker0(data)

from_queue(data)

Waiting

Dispatch

after (10,50)

Figure 4: Task farm application: master and worker hierarchical tasks

• Model transformation. Automated code generation for NUMA architec-
tures has been added. While the model-to-code translation of software
tasks and the generation of a main program remains mostly the same
with respect to what was described in [23], the topcell (in particular the
determination of the segment’s addresses in the mapping table) as well as
the ldscript are far more complex. Using a two-level interconnect in the
shared memory paradigm means that addresses and segment sizes, which
are automatically generated by the tool, must avoid overlapping and re-
spect cluster rules (in Most Significant Bits) and local address; local and
shared memory segments have to be generated. Each cluster contains at
least one RAM. Additional infrastructures which are invisible from the
SysML level are replicated on the clusters, such as DMA and interrupt
controllers.

3.3. Capturing Latencies

NUMA platforms usually have a high access latency variance, because time
required for memory access differs depending whether data is located on the
same or a different cluster. To better study timings, our idea is to rely on
multi-level modeling and verification. To do so, we use a refinement relation
R defined in [27] that can help to better trace latencies between the different
modeling levels.

More precisely, the refinement relation allows us to split tasks into sub-
tasks and to replace high-level complexity operators by a concrete sub-behavior.
When a task is split into sub-tasks, internal communication must be added be-
tween sub-tasks. Figure 5 shows the relation between Partitioning and Software
Design models. Latencies are determined between a pair of operators on the
same execution path. By performing simulations on either of the two levels, we
obtain the occurrences of channel operators (right hand side of the figure) and

8



can then derive minimum, maximum and average latencies by comparing the
times they were reached. The selected latency checkpoints are marked by blue
flags on the left hand side of Figure 5, the same in the state machines of TTool
diagrams.

sig()

state0

sig() sig()

state1

state2

Partitioning
Before mapping

evt
event()

chl
channel(size)

Algorithm
Complexity

Channel Operator
After mapping

Channel
Transit
Time

Algorithm
Execution
Time

Event Operator

Latency

Software Design

Channel Signal Operator
Channel
Time
Function

Algorithm
Time
Function

Event Signal Operator

Latency

Modeling Execution on Target

calculateAlgorithm

signal1(attribute)

signal2()

Figure 5: Relation between latencies in Partitioning and Software Design Models from [27]

4. Contributions

This section discusses how we have further extended our approach from [1, 2]
to obtain a more realistic virtual prototype at deployment level. Thus, in order
to better capture the behavior of parallel streaming applications, two kinds of
extensions are proposed. First, the effects of complex interconnect architectures
and resulting high variability of memory accesses should be captured in the
model in order to conduct formal verification. Second, the effects of I/O devices
that are typical for streaming application should be captured in sufficient detail
to show the impact on performance and allow design space exploration.

4.1. Latency Feedback between Modeling Levels

Latency requirements on channels are annotated by the designer in the TTool
diagrams. In our experiments, we focus on average latencies between events.
This is due to the fact that latencies vary enormously, depending if memory is
accessed in the local or on a distant cluster.

9



There are two kinds of problems that are now automatically detected: if
the simulation of the virtual prototype at the current abstraction level does not
meet the requirement, or if it deviates from more than an indicated percentage,
diagrams are annotated accordingly. Deviating latencies appear in red. Model
adaptations to solve the problems are however still manual.

4.2. Modeling I/O Co-processors

Input/Output co-processors are hardware or software tasks. In both cases,
they take as input a stream of packets, images or video and transform it into
a format that the platform can efficiently handle. TTool, up to now, did not
provide support for any kind of streaming I/O simulation. We have integrated
into TTool high-level representations of some existing models of packet and
video streaming co-processors from the same previous work.

The corresponding cycle-accurate SystemC hardware components have now
been added to our virtual prototyping environment. In the Deployment Dia-
grams in [2], we used the existing MWMRCoporoc blocks to indicate an interface
to the I/O block. The block as such was visible in the block diagram, and was
software.

This diagram is no longer semantically correct when a block is hardware.
It should then appear on the partitioning level. In the Deployment Diagrams
on Software design level, the corresponding blocks now have a new semantics.
A corresponding block, called Hardware Accelerator (HWA), becomes available.
This somewhat relaxes a paradigm of TTool which requires that no hardware is
visible in the Software Design (AVATAR) diagrams, but is necessary to generate
the channels leading to and from the interface.

Figure 6: Co-processor interface

The hardware wrapper called VCI MWMR Controller shown in Figure 6
was first presented in [26]. It is used to connect HWA featuring a FIFO in-

10



terface to the rest of the platform. It provides a VCI initiator and target VCI
interface, read and write FIFO interfaces of configurable number, a status and
a configuration register.

Wrapper and I/O co-processor instances, signals and netlist as well as the
ldscript have to be generated automatically by TTool if they appear in the
Deployment Diagram. The fact of adding such detailed models of hardware I/O
to the virtual platform thus has significant impact on the generation of top-cell
and ldscript and contributes further to the added complexity described in 3.2.

Our contributions, previous and new ones, are now shown throughout a
comprehensive case study.

5. Case Study

A particularly interesting telecommunication application is the parallel clas-
sification of communication packets, as described in [28]. Task farm properties
were captured by Multi-Writer Multi-Reader (MWMR) within channel mapped
to shared memory, where an arbitrary number of —hardware or software— tasks
access to the same channel.

One of the results of the above work was a detailed analysis of the difficulties
and sources of performance loss for this particular application:

• Complex semantics of Multiple-Writer Multiple-Reader channels

• Complex Input/Output Hardware

• High sensibility to non-uniform memory access leading to varying latencies
and thus, indirectly, to underflow and overflow of communication channels

• Cyclic behavior of the task graph through feedback of addresses that must
be re-used in order to save memory

The task and communication graph shown in Figure 7 features a parallel
task graph, where all tasks of a stage n can read the data output by all tasks
of stage n − 1. In this application, network packets are first cut into chunks
of equal size by the input co-processor. Each packet chunk has a descriptor
referencing the address of the next chunk. Overall, a chunk contains a 32-bit
address, 11 bits to describe its TotalSize, 20 bits date for a time stamp, and a
boolean internal indicating if the packet is stored on-chip or off-chip, for a total
of 64 bits. Only these descriptors are sent through the channels: indeed, packet
data are kept in on-chip or off-chip memories. Note that the I/O co-processors
have both, VCI and FIFO, interfaces. They also have an Ethernet interface.

The case study tasks are:

• A bootstrap task organizes the system start-up and fills the address channel
with a set of addresses generated from the addresses available in packet
memory.

11



Figure 7: Classification application: tasks and communication graph

• An input task constantly reads the addresses initially generated by the
bootstrap task. Also, addresses freed from packets having left the system
can be reused. Messages between bootstrap, input and output tasks corre-
spond to 32-bit addresses. The Input Engine reads Ethernet encapsulated
IP packets, cuts them into slots of equal size, and copies these slots to
dedicated memory regions.

• A classification task reads one or several descriptors at a time, then re-
trieves the first chunk of the corresponding packet from memory. Any
classification task can access any chunk. The helper classifiers determine
the priority of each packet.

• The scheduling task reads one of the queues according to their priority
order, and then writes the descriptor to the output queue. The helper
schedulers schedule the packet based on its priority. Both classification
and scheduling tasks use try-read primitives to start work whenever data
is available and thus maximize performance.

• The output task constantly reads the output queue. Each time a slot is
read, the output task frees corresponding addresses, and sends them to
the address channel for reuse.

Overall, the application task graph is thus inherently cyclic and very vulnerable
to buffer overflows due to contentions.

Thanks to the the latest TTool additions, we are now able to model a much
more realistic version of the classification application, including bootstrap and
reuse of addresses, non deterministic behavior, I/O operations and monitor of
the fill state of channels. Abstraction is made from the actual classification

12



and scheduling algorithms, where they are replaced by minimum and maximum
computation time.

5.1. Modeling at Partitioning Level

Figure 8 shows the design of the application at partitioning level, including
the behavior of the Output Engine task. At this stage, the model focuses on the
performance properties of tasks and communications. Thus, detailed algorithms
and data values are abstracted to computation and transmission complexities.
These abstractions facilitate the selection of a HW/SW architecture capable of
executing the application.

Communications are modeled as events (in purple) or channels (in blue).
Channels are used to send an amount of data, where events are used for syn-
chronization. For example, the Bootstrap and Output Engine first signal to the
Input Engine that they will send a new address, and wait for the Input Engine
to accept before sending the address.

The data communications are modeled only in terms of their size, but not
their values. We model, for example, the size of the packet sent and the size
of the packets. When mapped to an architecture, the size of the data commu-
nications determines if the current mapping can send the data quickly enough,
or if the communications take too long to deliver, and therefore more efficient
communication buses should be used.

The abstract behavior of the Output Engine is modeled in terms of its com-
munications and processing complexities. As shown, the Output Engine con-
tinually loops. In each loop, the Output Engine waits a certain duration before
accepting a packet from the Scheduling. Once it receives a packet, it frees the
corresponding address, modeled only as the processing duration at this phase.
Once an address is freed, the Output Engine transmits this address to the Input
Engine. The data sent and received are modeled only as a number of samples,
as our abstraction level does not consider concrete values. Again, the algorithm
details and exact data values are expected to be provided only in the Software
Design phase, because they are not necessary to take the HW/SW partitioning
decisions.

5.2. Modeling at Software Design Level

The circular nature and non-determinism of the application is also reflected
in the software design model. Yet, at this level, data types become explicit and
task behavior is described at a lower abstraction level.

5.2.1. Application Model

Figure 9 shows the block diagram of the telecommunication application.
This architecture shows refined elements such as values exchanged via channels
and extra attributes. The packet descriptor is defined as a data type called
PacketDesc. The application model features three classification tasks and two
scheduling tasks. This relatively low number of tasks is due to current limita-
tions of the graphical representation – AVATAR diagrams cannot yet express

13



classif

Classif1

Classifier

Classifier

+ queueType : Natural;
+ c1free = true : Boolean;
+ c2free = true : Boolean;
+ c0free = true : Boolean;

Classif2
Scheduling

Scheduling

Sched1Sched0

Bootstrap
+ counter = 16 : Natural;InputEngine OutputEngine

address

bootstrapaddress

schedPacket

newBoot

newAddr

newSchedPacket0

newSchedPacket1schedPacket0

schedPacket1

toSched0 toSched1toQueue
classifPacket

newQueueHigh

newQueueMedium

newQueueLow

toSchedPacket

toQueue1
toQueue2classifPacket1

classifPacket2

newPacket

classif1 classif2

packet

Classif0

Loop for ever

chl
schedPacket(1)

evt
newAddr()

chl
address(1)

delay

freeAddress

Figure 8: Functional model of the classification application

replication of identical tasks and all diagrams and automata have to be designed
manually. It still permits realistic modelling of the NUMA and I/O effects; these
effects are acerbated with an increasing number of tasks (up to eighty classifica-
tion tasks were employed, and the channels between the Input Engine and the
classification tasks had to be replicated [28]).

All logical channels between blocks are defined as asynchronous. The main
communication channel is defined between Classification and Scheduling. It
conveys three AVATAR signals that correspond to the three priority queues.
Each priority queue (high, medium, low) is translated into a separate multi-
writer multi-reader channel in the SoCLib platform.

The upper right part of the window shows three priority queues, one for low,
medium and high priority. The priority queues are modeled as asynchronous
channels; their depth can be chosen, which here is set to 1024. The width is the
item size (here: 8 bytes for a packet descriptor). In the example, channels are
configured to be “blocking write” channels.

Figure 10 shows the behavior of the Input and Output Engines modeled with
SysML state machine diagrams. The Input Engine first accepts addresses from
the bootstrap task. The latter stops working once a preset number of addresses
has been reached, at which point the Input Engine accepts addresses fed back
from the Output Engine. As shown, the more detailed behavior of the Output
Engine is modeled in this phase, including how addresses are freed. The after
represents an estimation of the duration of the scheduling algorithm after model
refinement.

The model of the classification task is rather complex. It contains three
identical classification sub-tasks, which get work from the from IE channel in a
task-farm manner. This task-farm way is modeled by non-deterministic choice
modeled in the state Waiting. Each classification sub-task then classifies the
packet, and a guarded choice operator selects the low, minimum or high priority
queue. Figure 12 shows one of the inner classification tasks. Priority queues

14



<<block>>
Scheduling

- packet : PacketDesc;

~ in from_queue_low(PacketDesc packet)
~ in from_queue_medium(PacketDesc packet)
~ in from_queue_high(PacketDesc packet)
~ out to_scheduler0(PacketDesc packet)
~ out to_scheduler1(PacketDesc packet)
~ out packet(PacketDesc packet)
~ in scheduledPacket0(PacketDesc packet)
~ in scheduledPacket1(PacketDesc packet)

<<block>>

Sched0

- packet : PacketDesc;

~ out scheduledPacket0(PacketDesc packet)
~ in toScheduler0(PacketDesc packet)

<<block>>

Sched1

- packet : PacketDesc;

~ out scheduledPacket1(PacketDesc packet)
~ in toScheduler1(PacketDesc packet)

<<block>>
Classification

- packet : PacketDesc;
- f1 = true : bool;
- f0 = true : bool;
- f2 = true : bool;

~ out queue_low(PacketDesc packet)
~ out queue_medium(PacketDesc packet)
~ out queue_high(PacketDesc packet)
~ in c0_to_queue_low(PacketDesc packet)
~ in c1_to_queue_low(PacketDesc packet)
~ in c2_to_queue_low(PacketDesc packet)
~ in c0_to_queue_medium(PacketDesc packet)
~ in c1_to_queue_medium(PacketDesc packet)
~ in c2_to_queue_medium(PacketDesc packet)
~ in c0_to_queue_high(PacketDesc packet)
~ in c1_to_queue_high(PacketDesc packet)
~ in c2_to_queue_high(PacketDesc packet)
~ in from_IE(PacketDesc packet)
~ out to_c0(PacketDesc packet)
~ out to_c1(PacketDesc packet)
~ out to_c2(PacketDesc packet)

<<block>>

Classif2

- packet : PacketDesc;

~ out to_queue_low(PacketDesc packet)
~ out to_queue_medium(PacketDesc packet)
~ out to_queue_high(PacketDesc packet)
~ in from_classif(PacketDesc packet)

<<block>>

Classif1

- packet : PacketDesc;

~ out to_queue_low(PacketDesc packet)
~ out to_queue_medium(PacketDesc packet)
~ out to_queue_high(PacketDesc packet)
~ in from_classif(PacketDesc packet)

<<block>>

Classif0

- packet : PacketDesc;
- nbPackets : int;

~ out to_queue_low(PacketDesc packet)
~ out to_queue_medium(PacketDesc packet)
~ out to_queue_high(PacketDesc packet)
~ in from_classif(PacketDesc packet)

<<datatype>>
PacketDesc

- address : int;
- date : int;

<<block>>

InputEngine

- packet : PacketDesc;
- address : int;
- frequency = 24 : int;
- priority : int;

~ out packet(PacketDesc packet)
~ in address(int address)
~ in bootstrap(int address)

<<block>>

OutputEngine

- packet : PacketDesc;
- address : int;

~ out address(int address)
~ in packet(PacketDesc packet)

<<block>>

Bootstrap

- address : int;
- counter = 16 : int;

~ out address(int address)

Figure 9: Block Diagram of the classification application

behavior are modeled inside an outer classification task. Figure 11 shows the
state machine diagram of the outer classification task. This model is very com-
plex because we have to reflect that either we read a packet from Input Engine,
dispatch it to one of the classifiers and go back to the WaitForPacket state (left
hand side), or read packet already classified from one of the inner tasks and
then transmit it (center) or there still may be available packets in the channels
filled up by the inner tasks (right hand side).

The scheduling tasks which take up work are modeled in a similar way (Fig-
ures 13 and 14). An outer task coordinates the reading from the priority queues
and the writing to the output channel. The scheduling tasks are somewhat less
complex because they write to a common output queue and need not contain
choice operators.

5.2.2. Mapping

Allocation of tasks and channels onto the target MPSoC is explicitly cap-
tured within deployment diagrams (Figure 15). These diagrams contain hard-
ware nodes (e.g., CPUs and memory banks) that can be customized with param-
eters such as cache associativity, memory size, network latency, etc. Software
tasks are mapped onto the execution nodes of the platform, and channels be-
tween tasks are mapped onto the memories.

I/O can be modeled in two ways: either as software tasks or as SoCLib
models of hardware accelerators. Packet processor models are taken from [16]:
one is used for reading packets from either an Ethernet connection or a file,

15



from_IE(packet)

bootstrap(address) address_feedback(address)

processPacket

processPacket

after (50)

FreeAddress

address(address)

packet(packet)

Waiting

after(10)

Figure 10: State machines of the Input Engine and the Output Engine with latency check-
points

and the other is used for writing packets after computations. The more recent
network I/O facilities of SoCLib are used, allowing the reading in and analysis
of Ethernet encapsulated IPv4 packets.

Timers and interrupts are not modeled in the deployment diagram because
they are automatically added to the prototyping model during the generation
of the SoCLib virtual platform. There are six processors in total. The target
architecture features a two-level interconnect based on a Virtual Generic Micro
Network (VGMN), which behaves as two independent packet switched networks
for commands and responses, and two local crossbars.

6. Experiments

Parallel packet classification is known to suffer from several major perfor-
mance impediments, such as overflow of the input channels for high throughput,
cache misses and conflicts when taking locks, resulting in high latencies. We
explore different mappings of the classification application featuring three clas-
sifiers, three priority queues, and two schedulers. Compared to our previous
contributions, our experimentation is no more limited to the software part of
the application.

6.1. Test-bed

As we now model the (nearly) complete application, the generated platform
should yield results comparable to the real one with 3 classifiers, 2 schedulers,
no bursts and no packet memory access.

In the experiments, we focus on measuring latencies to analyze the perfor-
mance of our system. After the Input Engine finishes reading addresses from
the Bootstrap task, it reads addresses which have been liberated by the Output
Engine. By inserting checkpoints in the channel leaving the Input Engine and
the one entering the Output Engine, we can thus measure the processing time of
such fed back addresses. Figure 10 shows the state machine diagrams annotated
with latency checkpoints in the form of small flags.

16



Waiting

WaitForPacket

from_IE(packet)

to_c0(packet)

to_c1(packet)

Waiting

to_c2(packet)

sendPacket

[ f1]

f2=false

f1=false

after (10,20)

[ f2][ f0]

f0=false

[else ]
[ f0||f1||f2]

Low

queue_low(packet)

c0_to_queue_low(packet)

c1_to_queue_low(packet)

c2_to_queue_low(packet)

Medium

queue_medium(packet)

High

queue_high(packet)

c0_to_queue_medium(packet)

c2_to_queue_medium(packet)

c1_to_queue_medium(packet)

c0_to_queue_high(packet)

c1_to_queue_high(packet)

c2_to_queue_high(packet)

f0=true

f2=true

f1=true

f0=true

Waiting

f0=true
f1=true

f2=true

f1=true f2=true

recQueue

Low

c0_to_queue_low(packet)

c1_to_queue_low(packet)

c2_to_queue_low(packet)

Medium

queue_medium(packet)

High

queue_high(packet)

c0_to_queue_medium(packet)

c2_to_queue_medium(packet)

c1_to_queue_medium(packet)

c0_to_queue_high(packet)

c1_to_queue_high(packet)

c2_to_queue_high(packet)

f0=true

f2=true

f1=true

f0=true

Waiting

f0=true
f1=true

f2=true

f1=true f2=true

recQueue

queue_low(packet)

Figure 11: State machine of the outer classification task

6.2. Assumptions

There still are some restrictions to our model. For example, we do not model
packet storage in these experiments, neither do we represent burst transfer of
packet descriptors to obtain better performances. Since we are interested in
general packet timing, the algorithms inside the tasks are still quite abstracted
with regards to the real ones (which serve as time estimates), as we are more
interested in timings rather than detailed application behavior.

6.3. Partitioning Level

Latency checkpoints are added to the Partitioning models: one is placed in
the Input Engine (as soon as the bootstrap is finished and the application runs
in steady state) and the corresponding one in the Output Engine (as soon as the
packet is read, the after annotation reflects an estimation of the duration of the
computation), as shown previously in Figure 8. This enables us to compare high-
level simulation results with results obtained by cycle-bit accurate simulations.

6.4. Software Design Level

Channels are stored in memory, and the communications via these channels
represent a high fraction of the application activity. When the number of tasks

17



to_queue_low(packet)

to_queue_medium(packet)

to_queue_high(packet)

from_classif(packet)

Classify

Waiting

after (20,100)

Figure 12: State machine of one of the inner classification tasks

Read

to_scheduler1(packet)to_scheduler0(packet)

from_queue_low(packet)

from_queue_medium(packet)

from_queue_high(packet)

Waiting

scheduledPacket1(packet)scheduledPacket0(packet)

packet(packet)

SendToOutput

Dispatch

after (50)

after (50)

Figure 13: State machines of the outer scheduling task

accessing a channel increases, the amount of time spent waiting for the lock also
increases.

The experiment is based on the cycle/bit accurate level of SoCLib, thus
with a high level of precision, at the price of rather slow simulations. General
purpose processors simulated in the virtual prototype are PowerPC 405 running
at 433MHZ. The processors run the MutekH [29] micro kernel. For reading of
actual Ethernet packets, we rely on the network io API provided with SoCLib.
The abstract models of Input and Output Engine assume an equal part of high,
medium and low priority packets, modeled by a Random operator.

In the virtual prototype, spy points —represented by magnifying glasses—
correspond to hardware probes which log all transfers on the VCI interconnect.
Figure 15 shows how this spy mechanism, described in [30], is now integrated in
the deployment diagram. The top cell automatically generated from deployment
diagrams integrates the corresponding logger/statistics modules. The input
channel (InputEngine/out packet, spyglass 1), is mapped on the I/O cluster and
accessed by the classification tasks from cluster 0. The three priority queues
(Classification/out queue low, spyglass 2), mapped on Memory0, are written by

18



scheduledPacket0(packet) scheduledPacket0(packet) scheduledPacket0(packet)

toScheduler0(packet)

Waiting

Enqueue

PriorityHighPriorityMediumPriorityLow

[ packet.date==0]

[packet.date==1 ]

[packet.date==2 ]

after (100) after (50) after (10)

Figure 14: State machines of the inner scheduling tasks

<<MWMR-CoPro>>
InputEngine

<<MWMR-CoPro>>
OutputEngine

<<CROSSBAR>>
Crossbar2

<<TTY>>
TTY2

<<CPU>>
CPU2

AVATAR Design::Classif1

<<CPU>>
CPU3

AVATAR Design::Classif2

<<CPU>>
CPU1

AVATAR Design::Classif0

AVATAR Design::Classification

<<TTY>>
TTY1

<<CPU>>
CPU4

AVATAR Design::Scheduling

AVATAR Design::Sched0

<<VGMN>>
ICN0

<<CPU>>
CPU5

AVATAR Design::Sched1

<<CROSSBAR>>
Crossbar0

<<CROSSBAR>>
Crossbar1

<<TTY>>
TTY0

<<RAM>>
Memory0

Classification/out queue_low

Classif1/in from_classif

Classif2/in from_classif

Classif0/in from_classif
2

<<RAM>>
Memory1

Sched1/in packet

Sched0/in packet

Scheduling/out packet

Sched0/in toScheduler0

Sched1/in toScheduler1

3
<<RAM>>
Memory2

Bootstrap/out address

InputEngine/out packet

OutputEngine/out address

<<CPU>>
CPU0

AVATAR Design::Bootstrap

1

4
AVATAR Design::InputEngine

AVATAR Design::OutputEngine

Figure 15: Deployment Diagram with separate I/O cluster and spies (Mapping 1)

three classification tasks and read by two scheduling tasks. The output channel
Scheduling/out packet, is mapped onto the scheduling cluster and monitored by
spy 3, the address feedback channel (OutputEngine/out address) by spy 4.

6.5. Experimental Results

We show results for three different mappings. All take into account the
results of [30] that the Scheduling/out packet channel must be mapped on the
same cluster as the scheduling tasks.

1. Mapping 1 : In the mapping presented in Figure 15, three clusters are used,
one for the classification tasks, one for the scheduling tasks, the final one
for I/O.

2. Mapping 2 : As shown in Figure 16, I/O tasks are mapped on the classi-
fication cluster. The channel containing the packet descriptors produced

19



<<CPU>>
CPU2

AVATAR Design::Classif1

<<CPU>>
CPU3

AVATAR Design::Classif2

<<CPU>>
CPU1

AVATAR Design::Classif0

AVATAR Design::Classification

<<TTY>>
TTY1

<<RAM>>
Memory0

OutputEngine/out address

InputEngine/out packetClassification/out queue_low

Classif1/in from_classif

Classif2/in from_classif

Classif0/in from_classif

<<RAM>>
Memory1

<<CPU>>
CPU4

AVATAR Design::Scheduling

AVATAR Design::Sched0

<<VGMN>>
ICN0

<<CPU>>
CPU5

AVATAR Design::Sched1

<<CROSSBAR>>
Crossbar0

<<CROSSBAR>>
Crossbar1

<<HWA>>
InputEngine

<<HWA>>
OutputEngine Bootstrap/out address

Sched1/in packet

Sched0/in packet

Scheduling/out packet

Sched0/in toScheduler0

Sched1/in toScheduler1

<<TTY>>
TTY0

<<CPU>>
CPU0

AVATAR Design::Bootstrap

AVATAR Design::InputEngine

AVATAR Design::OutputEngine

Figure 16: Deployment Diagram with unified I/O and classification cluster (Mapping 2)

by the Input Engine is mapped on RAM2 in the I/O cluster, whereas the
channel containing the liberated addresses is mapped on RAM1 of the
scheduling cluster. This choice was made because there is plenty of time
left for an address to return to the input engine. Addresses are small, so
buffers can thus be dimensioned with a high depth, and the latency to
cross over from one cluster to another is compensated.

3. Mapping 3 : The last mapping features the same mapping as in Figure
16, except that the classification/bootstrap cluster contains an additional
memory bank in order to store the address buffers (not shown).

Table 1 compares the results between the partitioning (high-level transac-
tional simulation) and software design levels. On the software design level, we
show results for the two variants: one where the very abstract models of Input
and Output Engine are used, from which software tasks are generated, and one
with the actual SoCLib models (Input Engine consisting of more than 600, the
slightly simpler Output Engine of mode than 400 lines of SystemC code). The
series of measurements show latencies (in milliseconds) from the reception of
a new or recycled address by the Input Engine to the reception of the com-
puted packet by the Output Engine (receive(address)->receive(packet)),
for the three mappings. These are averages for all paths taken between the two
operators in question.

We can observe that standard deviations are significant for the “end-to-end”
latencies, as packet descriptors might or might not be blocked due to competition
for access to a memory bank containing a channel.

Our first parameterizing of the hardware on the partitioning level actually
led to an overestimation of latencies by a factor of 6 to 8 (not shown). We
therefore modified our application model by reducing delay estimations to take
into account the much lower latencies obtained on the virtual prototype. The
columns Partitioning show latencies after these corrections. For the latencies
measured in Software Design, however, the second mapping demonstrates the
worst performance, which is not observed in the Partitioning evaluations.

The rightmost three columns of Table 1 show increasingly realistic virtual
prototypes, the rightmost obtained with the original one from [30], featuring

20



handwritten C Posix code for these tasks. When replacing the Input and Out-
put Engine generated from the abstract description by the cycle-bit accurate
(caba) models, we note a slight increase of latencies, thus would have revise the
abstract models shown in Figure 10 and add delays in order to be closer to the
more realistic model. We finally compare our prototypes, where the code of
the classification and scheduling tasks is generated from timed automata, hand-
written C Posix code for these tasks, for the same configuration and number of
tasks and channels (rightmost column).

It should be noted that we do not model packet memory, thus have fewer
source of contention when accessing the memory bank, and thus a slight advan-
tage wrt. the original application. The results obtained with SoCLib models of
the I/O co-processors are clearly closer to the results for the complete system
with handwritten Posix tasks.

However, while a simulation on partitioning level is performed in a mat-
ter of seconds, the full-system simulation of the platform takes several hours
(execution of the bootstrap and transmitting 10k packets of random priorities)
even with a relatively small number of tasks. As shown in [2] where we focused
on throughput, in the 20 million simulation cycles after bootstrap 3.5 ∗ 10−5

bytes are transferred per simulation cycle. With the cycle-bit accurate models
of the I/O engines, simulation time remains practically unchanged: the num-
ber of transfers on the VCI interconnect dominates the time for cycle accurate
simulation of I/O engines. Transfers initiated by software running on CPU are
replaced by the same transfers initiated by HW co-processors.

Table 1: Path Latencies

Mapping Partitioning Virtual Prototype

avg std dev abstract I/O HW I/O original

Mapping 1 18.6 12.2 10.1 12.7 14.8
Mapping 2 19.2 11.1 13.0 15.6 17.2
Mapping 3 17.9 11.2 10.5 12.9 14.4

6.6. Latency Feedback on diagrams

As was mentioned in section 4.1, latencies are annotated and eventual de-
viations reported. Figure 17 shows an example of latency annotations on the
software design level (the signal is internally numbered 752). In the example,
we measured an average latency of 327 microseconds from the reception of a
address by the Input Engine to the reception of this address by the Output
Engine.

6.7. Discussion

Due to current restrictions on the number of tasks which can be represented
in TTool diagrams, the number of tasks is small, but still sufficient to demon-
strate the effects of contention. In previous work on the same application, the

21



packet(packet)

Receive signal-address:752
327

Waiting

address(address)

FreePacket

after (50)

after (10)

Figure 17: Feedback of latencies in the Output Engine

effects shown here were exacerbated as experiments were performed for dozens
of classification tasks, mapped to several different clusters and thus creating
even higher contention on the interconnect.

An important advantage of working with a graphical interface like TTool is
that the rather important structural modifications between the mappings (pass-
ing from three to two clusters and redistributing channels) took less than five
minutes. In the original exploration, shell scripts could impact only the num-
bers of tasks and memory banks, so such structural changes of the underlying
hardware would require a rewriting of the top-cell.

What we are still lacking is the determination of latencies for individual
packets. In order to obtain this, an identifier has to be inserted into the de-
scriptor by the Input Engine and extracted by the Output Engine. We could
also gain more precise results on the Software design level by inserting actual C
Posix code into the description by timed automata —for this purpose, AVATAR
features a prototyping option— but this would mean that generated application
code is no longer correct by construction.

7. Conclusion and Future Work

This paper extends a UML/SysML virtual prototyping environment with
new modeling and evaluation capabilities for streaming applications. We first
explain the necessary extensions: modeling extensions, semantics extension,
and code generation extensions. We then show how these extensions have been
integrated into TTool. We also demonstrate how performance metrics such as
latency can be estimated, then measured, on models spanning different levels of
abstraction.

An exhaustive case study shows the modeling and experimental results for
an application that is particularly difficult to handle by regular tools: high per-
formance packet classification. We obtain a generated platform and application
very close to the original, handwritten one by extending TTool to handle the
new aspects: task-farm, NUMA, I/O.

22



High performance streaming applications such as the one analyzed in the
case study usually feature a larger number of tasks; we will thus require the
ability to describe and automatically generate multiple identical tasks, and to
generate code for these tasks accordingly. As shown for the example featuring
three classification and two scheduling tasks, the complexity for obtaining a
semantically correct model is high and, for larger numbers of tasks, near impos-
sible to model by hand.

Other typical I/O co-processors should be made available in the deployment
diagrams of TTool. The problem is that such components are very specific and
corresponding SoCLib models do not always exist. The generation of virtual
co-processors on different degrees of abstraction, starting at partitioning level,
thus is another interesting and important issue.

Our long term work targets full design space exploration. Even if currently
re-mapping is only semi-automatic and requires the designer to manually adapt
the architecture and the mapping, the level of abstraction allows for changes to
be made quickly and easily. More importantly, profound structural changes are
modeled and reflected in the virtual prototype in a matter of minutes.

References

[1] D. Genius, L. Apvrille, System-level design for communication-centric task
farm applications, in: 12th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip, IEEE, 2017, pp. 1–8.

[2] D. Genius, L. Apvrille, System-level design and virtual prototyping of a
telecommunication application on a numa platform, in: 2018 13th Interna-
tional Symposium on Reconfigurable Communication-centric Systems-on-
Chip, IEEE, 2018, pp. 1–8.

[3] A. Kumar, A. Hansson, J. Huisken, H. Corporaal, Interactive presenta-
tion: An fpga design flow for reconfigurable network-based multi-processor
systems on chip, in: Proc. DATE’07, EDA Consortium, 2007, pp. 117–122.

[4] K. Goossens, B. Vermeulen, A. B. Nejad, A high-level debug environment
for communication-centric debug, in: Proc. DATE’09, 2009, pp. 202–207.

[5] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs,
Y. Xiong, S. Neuendorffer, Taming heterogeneity - the Ptolemy approach,
Proceedings of the IEEE 91 (1) (2003) 127–144.

[6] P. Lieverse, P. van der Wolf, K. A. Vissers, E. F. Deprettere, A methodol-
ogy for architecture exploration of heterogeneous signal processing systems,
VLSI Signal Processing 29 (3) (2001) 197–207.

[7] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, A. L.
Sangiovanni-Vincentelli, Metropolis: An integrated electronic system de-
sign environment, IEEE Computer 36 (4) (2003) 45–52.

23



[8] C. Erbas, S. Cerav-Erbas, A. D. Pimentel, Multiobjective optimization and
evolutionary algorithms for the application mapping problem in multipro-
cessor system-on-chip design, IEEE Evol. Comp. 10 (3) (2006) 358–374.

[9] G. Kahn, The semantics of a simple language for parallel programming, in:
J. L. Rosenfeld (Ed.), Information Processing ’74: IFIP Congress, North-
Holland, New York, NY, 1974, pp. 471–475.

[10] A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P. van der Wolf, E. F.
Deprettere, Exploring embedded-systems architectures with artemis, IEEE
Computer 34 (11) (2001) 57–63.

[11] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, J.-P. Diguet, A co-design
approach for embedded system modeling and code generation with UML
and MARTE, in: DATE’09, 2009, pp. 226–231.

[12] A. Gamatié, S. L. Beux, É. Piel, R. B. Atitallah, A. Etien, P. Marquet,
J.-L. Dekeyser, A model-driven design framework for massively parallel
embedded systems, ACM TECS 10 (4) (2011) 39.

[13] M. Di Natale, F. Chirico, A. Sindico, A. Sangiovanni-Vincentelli, An MDA
approach for the generation of communication adapters integrating SW and
FW components from simulink, in: MODELS’14, 2014, pp. 353–369.

[14] G. Batori, Z. Theisz, D. Asztalos, Domain specific modeling methodology
for reconfigurable networked systems, in: G. Engels, B. Opdyke, D. C.
Schmidt, F. Weil (Eds.), MODELS’07, Springer, 2007, pp. 316–330.

[15] D. Comer, L. Peterson, Network Systems Design Using Network Processors,
1st Edition, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2003.

[16] S. Berrayana, E. Faure, D. Genius, F. Pétrot, Modular on-chip mul-
tiprocessor for routing applications, in: M. Danelutto, M. Vanneschi,
D. Laforenza (Eds.), Euro-Par, Vol. 3149 of Lecture Notes in Computer
Science, Springer, 2004, pp. 846–855.

[17] L. Apvrille, Webpage of TTool, in: http://ttool.telecom-paristech.fr/.

[18] D. Genius, L. W. Li, L. Apvrille, Model-Driven Performance Evaluation
and Formal Verification for Multi-level Embedded System Design, in: Con-
ferénce on Model-Driven Engineering and Software Development, Porto,
Portugal, 2017.

[19] G. Pedroza, D. Knorreck, L. Apvrille, AVATAR: A SysML environment
for the formal verification of safety and security properties, in: NOTERE,
Paris, France, 2011.

[20] L. Apvrille, L. W. Li, Harmonizing safety, security and performance require-
ments in embedded systems, in: Design, Automation and Test in Europe
(DATE’2019), Firenze, Italy, 2019.

24



[21] J. Bengtsson, W. Yi., Timed automata: Semantics, algorithms and tools,
in: Lecture Notes on Concurrency and Petri Nets, W. Reisig and G. Rozen-
berg (eds.), LNCS 3098, Springer-Verlag, 2004, pp. 87–124.

[22] B. Blanchet, Modeling and Verifying Security Protocols with the Applied
Pi Calculus and ProVerif, Now Foundations and Trends, 2016.

[23] D. Genius, L. Apvrille, Virtual yet precise prototyping: An automotive
case study, in: ERTSS’2016, Toulouse, 2016.

[24] SoCLib consortium, SoCLib: an open platform for virtual prototyping of
multi-processors system on chip (webpage), in: http://www.soclib.fr.

[25] VSI Alliance, Virtual Component Interface Standard (OCB 2 2.0), Tech.
rep. (Aug. 2000).

[26] E. Faure, A. Greiner, D. Genius, A generic hardware/software communica-
tion mechanism for multi-processor system on chip, targeting telecommuni-
cation applications, in: ReCoSoC, Montpellier, France, 2006, pp. 237–242.

[27] D. Genius, L. W. Li, L. Apvrille, Multi-level Latency Evaluation with an
MDE Approach, in: Conference on Model-Driven Engineering and Software
Development, Funchal, Portugal, 2018.

[28] D. Genius, E. Faure, N. Pouillon, Mapping a telecommunication application
on a multiprocessor system-on-chip, in: G. Gogniat, D. Milojevic, A. M.
A. A. Erdogan (Eds.), Algorithm-Architecture Matching for Signal and
Image Processing, Springer LNEE vol. 73, 2011, Ch. 1, pp. 53–77.

[29] A. Becoulet, Mutekh, http://www.mutekh.org.

[30] D. Genius, Measuring Memory Latency for Software Objects in a NUMA
System-on-Chip Architecture, 8th International Symposium on Recon-
figurable Communication-centric Systems-on-Chip, Darmstadt, Germany,
2013.

25


