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Abstract—Low voltage distribution networks were not designed
to support massive deployment of distributed energy resources
(DER) such as solar panels, which is currently hindering the
Energy Transition. Recent research contributions have shown
that local energy markets improve the capacity of distribution
grids to host DER. In parallel, distributed models were created
to deal with the control of batteries in presence of stochastic
demand and production, as well as variable electricity prices. The
combination of the two techniques has received little attention
until now, from both the literature and the industry. In this
paper we extend the traditional approach to sequential stochastic
decision processes by also modeling the interaction with the
neighborhood in addition to the utility. The model is then
solved using reinforcement learning techniques. For the local
energy market we use MUDA: a strategy-proof multi-unit double
auction.

The performance of the proposed system is evaluated through
simulations, demonstrating its capacity to effectively decrease the
overall exchange of energy with the grid and the monetary cost
for users.

Index Terms—ADP, Battery, Smart Grid, Energy Market,
Auction

I. INTRODUCTION

Massive deployment of renewable energy sources at res-
idential premises, mainly solar panels, together with local
storage, are becoming an important element of the Energy
Transition. Distribution electricity networks have not been de-
signed for supporting such massive deployment and therefore
novel paradigms are required to avoid expensive investments
that would delay exploiting the benefits of the mentioned
deployments for both the prosumers and for the distribution
networks operators.

The generation of renewable energy on its own might be
more detrimental than beneficial if there is not a proper
shift in the demand curve to accompany the production.
Local batteries can be used to mitigate, at least partially, this
problem. Nevertheless, an autonomic architecture is required at
the customer side to decide and schedule the different possible
flows of energy. What is more, households with intelligent
architectures and batteries can perform load shaping without
modifying the their energy demand, i.e: without compromising
comfort.

The deployment of local markets at the neighborhood level
has several benefits in addition to enabling the provision of
advanced services. Such markets, and the possibility of distri-
bution network operators (DSO) to induce prosumers behavior,
when adequately designed, can provide a high performing
distributed scheduling. It is important to note that the utility
still plays a role in the market (prosumers can buy and sell
energy from/to the utility). Local markets can reduce the
energy and power through the last Medium Voltage/ Low
Voltage (MV/LV) transformer and maximize the benefits of
local renewable energy deployment, while respecting quality
of electricity supply constraints and guaranteeing the stability
of the network. There are three main limitations of previous
proposals: either they are only strategy proof 1 (SP) in the
price and not in the quantity, they assume that agents are
deterministic, the stochastic optimization is centralized or
some combination of the above.

Our contribution consists of a framework that combines
and extends two techniques that had been applied with great
success in the Smart Grid but that had not been used in
conjunction before: a sequential stochastic decision process
(SSDP) and a multi-unit double auction. In particular: a) we
use an auction that is SP in the quantity bid as well as the
price, b) the proposed SSDP is decentralized, requires no
information about other prosumers or complex forecasts and
seamlessly integrates the interaction with other households
through a market, c) through simulations we show that both
prosumers and the DSO benefit from its use.

A. Related Work

An et.al. [1] propose a framework for the exchange of
renewable energy among microgrids (MG). Their approach
consists of two-stage stochastic programming optimization
followed by a distributed double auction. The optimization
problem is solved by a centralized controller, which needs to
have knowledge of energy production and demand of each
MG. With respect to their proposed auction, it’s built as a
distributed algorithm that maximizes social welfare.

1In a strategy-proof auction, there is no incentive to lie when bidding.



In [2], Etesami et. al. use stochastic game theory to model
the interactions between different prosumers and a utility
company. Prosumers are not able to exchange energy among
them but might buy from the utility using their closest substa-
tion. Although they take into account the stochasticity of the
problem, the flow of energy back to the grid is forbidden.

In the work of Horta et.al. [3], a double auction mechanism
is proposed for the exchange of energy among household.
Prosumers optimize the use of their battery based on a linear
programming problem assuming a perfect forecast, trade their
missing/surplus of energy in the market and re-adjust the
battery usage according with the traded energy and it’s price.

Bessler [4] presents an algorithm to replace double auctions
in local energy markets. In the algorithm, producers propose
an energy price and consumers pay the price if it is below
a private threshold. Analogously to the ultimatum game, the
prosumer is forced to offer competitive prices or sell for cheap
at the Feed in Tariff (FIT). Because the only subgame-perfect
equilibrium in the ultimatum game is to offer an unequal trade
[5], it is unclear whether the proposed mechanism is SP.

Several Approximate Dynamic Programming (ADP) ap-
proaches have been proposed. Most of them resemble the
basic structure proposed in [6] and give good results but
they either do not allow selling energy back to the grid or
do not model the interaction between households. In [7], a
multi-battery arbitrage problem is solved in presence of wind
supply and with the ability to sell back to the grid. They do
not allow however to sell the extra supply of production to
the grid without storing it first in the battery. [8] uses the
same approach that [7] for several controllable devices and
solar energy but does not model the ability to sell back to the
grid. Wei et.al. [9] propose a new algorithm to solve the ADP
problem for the same scenario as above, but forbids the flow
from the battery to the grid.

II. PROPOSED FRAMEWORK

Let N denote a given set of prosumers connected to the
same Low Voltage (LV) network. Each of them might have
a battery and/or a photovoltaic panel (PV). For each timeslot
t in a fixed time horizon T , each prosumer will decide: how
much she is going to charge/discharge his battery and how
much energy she has to buy or sell.

Prosumers can buy (sell) energy from (to) the utility or by
participating in the local energy market. The only objective of
each household is to reduce their electricity bill. Households
do not have access to any information about other prosumers.
The only exception being the result of the auction. Even then,
it is the result of an aggregated response and not an individual
action. During this study we considered a time horizon of 1
day and timeslots of 10 minutes each.

A. Stochastic Sequential Decision Process Structure

The SSDP follows the basic structure of an ADP program
as described in [6]. For each prosumer p and every timeslot
t, Figure 1 shows the sequence of events involved in the
model. First, p observes the current state (I) and decides how
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Fig. 1. Flowchart of the different actions taken and information received by
a given prosumer in a timeslot.

much energy to exchange with the market, the utility and the
battery in the current timeslot by following the exchange policy
(II). After taking the action, observes a post-action state and
decides how much to offer in the market (III) that will occur
at the end of the timeslot (and for which the energy will be
exchanged in timeslot t + 1). This is achieved by following
the market policy. Finally, the prosumer waits for the results
for the market and external information (VI) that arrives just
before the end of t. With this information computes the reward
of the period and the new state (VII). This process is repeated
for each time step (144 times).

The state stores several pieces of information: the battery
state of charge (SoC) at the beginning of timeslot t (Bt),
the energy available from production Pt, the energy to be
consumed Lt, the price of selling and buying energy to the
utility, a bound on the energy to be exchanged in the market
mqt, the market price for that quantity and a forecast of Pt+1

and Lt+1. Of the above, all but Bt are considered exogenous
information (which we will denote Wt+1), because it needs to
be provided from an outside source such as a smart meter (Bt
is the exception because it can be computed from Bt−1 and the
action taken). It also encodes information about the prosumer
that does not change with time such as bounds on the energy
that can be traded in a given period with the battery and the
grid (Cb and Cg), the maximum and minimum SoC and the
reservation price, which is a measure of how much money a
prosumer wants to obtain from trading in the market (it is used
to compute the desired price offered at bidding time).

An action is a tuple of the form: xt = (bt,mt, gt), where
bt,mt, gt is the amount of energy exchanged with the battery,
the market and the grid respectively. A negative value of bt
means that the battery is charging, while positive values of
mt and gt represent energy that is sold. Figure 2 depicts the
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Fig. 2. The arrows indicate the direction in which energy flows are allowed.
Black arrows are for a household internal flows, green arrows are for flows
exchanged with the neighborhood and red arrows are flows exchanged with the
utility through the last MV/LV transformer. The fridge represents consumption
in the household.

allowed energy flows without taking into account constraints.
Actions are chosen by following a policy; a deterministic
mapping Xπ

t : S → Xt given by equation 1:

Xπ
t (St) = arg max

xt∈Xt

{r1(St, xt) + γV πt (Sxt )} (1)

In equation 1, V πt (S) represents the value-to-go to be
obtained by being in state S the next timeslot and γ is a
discount factor. Sxt is the post-action state. It can be seen as
an intermediate state between St and St+1. If Bt was the
battery SoC at the beginning of the timeslot, the battery level
in the post-action state (Bxt) already reflects the effect of
taking action bt: Bxt = Bt+1 = Bt − bt. On the other hand,
information such as the production of next period (Pt+1) is not
available. r1(St, xt) is a reward (or penalty) for taking action
xt while being in state St. It is the product of the traded energy
by its price.

Finally, Xt is the space of feasible actions which is defined
by the following constraints:{

0 ≤ mt ≤ mqt if mqt > 0

0 ≥ mt ≥ mqt otherwise
(2)

Pt − Lt + bt = mt + gt, (3)

|bt| ≤ Cb, |mt + gt| ≤ Cg, mtgt ≥ 0 (4)

The ideal quantity to offer in the market is mt+1 (so that
the bound mqt+1 is tight). There is not enough information
to compute this value, Xπ

t+1(St+1), but can be approximated.
This can be done by using the value of mxt in Xπ

t+1(Sxt ) (In
equation 3, production and consumption are replaced by their
respective forecast, and in r1 the real price is replaced by a
desired or wished price).

The exogenous information Wt+1 together with the market
results become available to the prosumer just before the end of
the period. To make the model more realistic, we account for
the small errors in Pt and Lt, by including a random normal
distributed noise in Wt+1. No decision is taken regarding the
noise: it is absorbed by the battery if it does not violate
any constraints or it is sold/bought from the utility at the
appropriate cost.

With knowledge of the exogenous information, the tran-
sition function St+1 = SM (St, xt,Wt+1) and the reward
function rt = r(St, xt,Wt+1) are computed. The transition
function solely updates the post-action state with the new
reading from the smart meter, as well as the forecasts and
energy prices for the next period. The reward function is the
exact economic cost incurred by the prosumer in the timeslot.

1) Objective and Learning: The objective of each prosumer
is to maximize the discounted reward obtained:

max
π∈Π

Eπ{
T∑
t=0

γtr(St, xt,Wt+1)} (5)

where maximizing in Π represents choosing the best policy.
In turn, that means to find the optimal value of V πt . Because it
is impossible to compute its value exactly, a standard technique
in ADP known as Value Function Approximation (VFA) is
used. Several kinds of VFAs exist. In the present work we use
a lookup table approximation around the post-action state. In
order to learn this approximation the reinforcement learning
algorithm named temporal difference with λ = 0 is used. The
process of learning the VFAs is carried out by simulating
the interaction of several households during N days (called
episodes). After every timeslot t of every episode n, each
prosumer updates their VFA according to equation 6.

V nt−1(Sxt ) = (1− αt)V n−1
t−1 (Sxt ) + αtv̂t (6)

where αn is the learning rate and v̂t is the value of the max-
imum in Xπ(St). Pseudo code of the algorithm is available at
[6, p. 391]. The non-stationarity property of the market result
makes the application of models requiring known probability
distributions hard to apply. There might be, however, simpler
approaches than reinforcement learning which are applicable
in this same scenario. The optimality of those techniques is
outside of the scope of this work.

B. Auction

A multi-unit double auction is a mechanism for allocating
goods (energy in this context) based on several offers by both:
buyers and sellers. Every prosumer might place an offer to buy
a quantity q of energy at price p, therefore becoming a buyer.
The same holds for selling. After receiving all the offers, the
market clears and the auctioneer notifies each participant of
the result: a quantity and price. In this framework, we use
MUDA, an auction proposed by Segal-Halevi [10]. In [10]
they prove that the following properties hold:
• Individually Rational (IR): prosumers never lose money

by participating in the auction.



• Weakly Budget Balanced (WBB): the auctioneer never
loses and might earn money (which can be used cover
the expenses of running the auction). This is achieved by
charing small fees only to the winners. The fees are small
enough that IR is preserved.

• Asymptotically Efficient: the efficiency of the auction
increases with the number of participants.

• Strategy-proof: participants do not have an incentive to
lie on the quantity bid nor in the price asked. Strategy-
proofness is an important property because it eliminates
the need to learn the best bidding strategy. The only
optimal strategy is to tell the truth. Previous works such
as [3] used auctions which where strategy proof only on
the price, but not the quantity.

The main idea for guaranteeing strategy-proofness in both
quantities is to include a stochasticity in the algorithm.

III. NUMERICAL EXPERIMENTS

ADP has already given good results for the arbitrage prob-
lem in presence of stochastic errors in load and production
forecasts. Therefore, we focus on the evaluation of the pro-
posed auction in a random environment. To achieve this, we
ran several simulations with and without market, to quantify
the effect the later has in the performance of the model. Four
cases were considered varying the number of prosumers and
the usable size of their batteries:
• Case I: 100 prosumers, 3 kWh battery
• Case II: 100 prosumers, 6 kWh battery
• Case III: 49 prosumers, 3 kWh battery
• Case IV: 49 prosumers, 6 kWh battery
In each of the cases, 50% of the prosumers had a battery

and a PV, 25% only a PV and 25% only a battery. PV panels
had a rated peak of production at 6kWh.

For each prosumer, realistic synthetic load and production
curves where used. The consumption data was obtained from
SMACH [11].

Utility price consist of two levels, a cheaper one (cC0.15)
in the early hours of the day (t < 90) and more expensive
(cC0.3) during the rest of the day. The FIT was fixed at cC0.1.
Reservations prices where taken equidistant in the interval
r ∈ [0, 0.3] and randomly distributed among prosumers. As
a result, a prosumer p with reservation price rp, offers in the
market at price FIT × (1 + rp) if selling and pUt × (1− rp)
if buying.

At each timeslot t, the error in the forecast of a prosumer
p is modeled as Xp,t ∼ N (0, 1

288 ) i.i.d. By doing this, we
can guarantee that the overall error

∑144
t=0Xp, t ∼ N (0, 1

2 ) is
small (less than 10% of the rated peak of production).

Because the outcome of the auction is random, for each
time step the auction is executed 20 times and the instance
with higher total profit is used.

Because batteries are allowed to end up in a state different
than the starting one, we assume that just before the end of
the time horizon, batteries are returned to their original state.
If t1 is chosen appropriately (for example, 1am), it’s safe to
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Fig. 3. TG reduction in the neighborhood at four different days. For each
day the result is shown when the market is present and when it’s not. On top
of each pair of bars is the overall reduction of the day.

assume that the process of restoring the batteries will not cause
negative side effects. To account for this situation, all plots
shown in this section include the amount of energy needed
for the restoration process. In particular for Subsection III-B,
the price at which this energy was traded was assumed to be
the worst possible.

A. Reduction of energy exchanged through the last MV/LV
transformer

Let Dt,p = Pt,p −Lt,p be the demand of a given prosumer
p at time t (positive if there is an excess of production
and negative otherwise). If batteries are to be used only as
temporary storage and their energy level should remain the
same at the end of the time frame, the total amount of energy
that must be exchanged with the grid is D =

∑
t

∑
pDt,p.

If Gt,p denotes the amount of energy traded with the grid
at time t by prosumer p, the energy exchanged with the grid
at time t is given by Gt =

∑
pGt,p. Then, the net energy

exchanged with the grid (irrespective of the direction of the
flow) is given by TG =

∑
t|Gt|. In an ideal case, TG would

be bounded by D (it might be lower if there is excess of
production and it’s stored on batteries), but because load and
production curves are not necessarily synchronized, it might be
necessary for the system to loan from or to the grid in other to
deal with a peak at a given time. As the energy market matches
production and demand inside the neighborhood, it has a
positive impact in the amount of TG. As an example, Figure 3
depicts the TG of a neighborhood under Case IV). Although
there is some variance as the consumption of each day is
different, in every case, the proposed mechanism effectively
reduces the total TG.

To understand how some of the parameters impact the
performance, Figure 4 shows the TG with and without market
for the four different cases.

Battery size has an important role in TG as it can be
seen that fixing the amount of prosumers and increasing their
battery size (Case I → Case II, Case III → Case IV) achieves
a reduction, which is almost twice the amount for the Cases
I/II. This fact is probably due to the ability of prosumers to
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Fig. 4. TG reduction in four different scenarios with and without market.
Shown on top of each pair of bars is the overall reduction of the case.
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Fig. 5. Cost reductions in the neighborhood at four different days. For each
day a scenario with and another one without market are considered. Shown
on top of each pair of bars is the overall reduction of the day.

better store the produced energy. What is more, increasing the
amount of prosumers also yields a reduction in TG (Case III
→ Case I, Case IV → Case II). In this case, the effect is
caused by the efficiency of the market, which increases with
the amount of participants.

As it is impossible to design an auction that is IR, strategy
proof, budget balanced and efficient [12], mechanism tend to
be efficient only asymptotically. By including only 50 pro-
sumers, the mechanism is far from the limit and improvements
are smaller than expected.

B. Financial viability

Although it is IR to participate in the market, it might be
possible that in a less trained version of the model, chosen
actions result in an overall increased cost. This might happen,
for example, if a greedy prosumer sold all her production in
the market, but has to later buy the same amount she sold
to the grid at a higher price. For Case IV) the total cost
incurred by prosumers with and without market is plotted in
Figure 5. In every day, there is a considerable reduction in the
overall cost incurred by the neighborhood. This fact will ease
the deployment of the proposed model, as users can directly
benefit from its presence.

IV. CONCLUDING REMARKS

Local energy markets represent an important enabler for
the energy transition, easing the integration of renewable
energies at residential distribution grids by exploiting demand
flexibility from elastic loads or storage technologies. In this
paper we provide considerable improvements to these markets
in terms of mechanism design, by using a strategy-proof
auction with respect to both price and quantity, and in terms of
demand flexibility allocation under uncertainty, by proposing
a stochastic model for the control of batteries, which can be
solved using reinforcement learning techniques. We show by
simulation under realistic scenarios that the proposed system
achieves important reductions in the net energy exchanged
with the grid as well as in monetary cost for the prosumers.
These results could be further improved by considering more
advanced learning techniques, Deep Q-Networks being one
example. A natural extension of the model is to allow for
two batteries, one of which belongs to an Electric Vehicle.
The proposed framework has the advantage that for such an
inclusion, only small changes must be done. One of which is
the replacement of lookup tables (which are known to suffer
from the curse of dimensionality) for other already existing
approaches such as concave function approximation.
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