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Abstract—We consider an ultra-reliable low-latency commu-
nication (URLLC) system with short packets employing hybrid
automatic repeat request (HARQ). Depending on the delay of
HARQ feedback and retransmissions, the latency constraint
can be either violated or fulfilled at the expense of power
consumption. We focus on the energy-latency tradeoff and
examine whether it is better to do one-shot transmission or
use HARQ. We analyze the energy consumption for incremental
redundancy (IR) HARQ and compare it with the no HARQ
case. The analysis relies on closed-form expressions for the outage
probability of IR-HARQ with variables both the blocklength and
the power. Our results show that for a wide range of blocklength,
when the feedback delay is more than half the latency constraint,
it is beneficial in terms of energy to use one-shot transmission
(i.e. no HARQ).

I. INTRODUCTION

Future evolution of mobile communication systems (5G
new radio) is giving rise to new uses of wireless com-
munications in areas such as augmented and virtual reality
(AR/VR), industrial control, automated transportation and
robotics. 5G is envisaged to support mission-critical Internet-
of-Things (IoT) applications and ultra-reliable low-latency
communication (URLLC) scenarios with strict requirements
in terms of latency (ranging from 1 ms and below to few
milliseconds) and reliability (higher than 99.999%). This
entails a fundamental paradigm shift from throughput-oriented
system design towards an holistic design for guaranteed and
reliable end-to-end latency.

Guaranteeing URLLC requirements is a challenging task
even in simple settings as URLLC drives the system to
new, unexplored operating regimes. The performance is con-
strained by challenging fundamental tradeoffs between delay,
throughput, energy and error probability. The predominance
of short messages, together with the need to reduce the packet
duration, implies that small blocklength channel codes are
also used. This results in a rate penalty term and transmission
rates with non-zero error probability, revisiting key insights
obtained via asymptotic information theoretic results. Recent
progress has quantified the effect of finite blocklength, pro-
viding tight bounds and accurate normal approximation for
the maximum coding rate to sustain the desired packet error
probability (PEP) for a given packet size [1].

In order to compensate for the reliability loss introduced
by short packets, highly reliable communications mechanisms
creating diversity have to be carried out, such as hybrid

automatic repeat request (HARQ). However the benefits of
time diversity could be rather limited under stringent la-
tency constraints. Moreover, the benefit of feedback-based
retransmissions (even with error-free but delayed feedback)
is questionable since each transmit packet is much smaller
due to energy and latency constraints, thus more prone to
errors. Additionally, energy considerations, in particular power
consumption, are of cardinal importance in the design of
URLLC systems, and there is an inherent power-latency trade-
off. A transmission can be successful (or its PEP may be kept
unaltered) with minimum delay at the expense of additional
or high power usage. In the short-packet regime, this interplay
is more pronounced as latency is minimized when all packets
are jointly encoded, whereas power is minimized when each
packet is encoded separately. Note that power is the energy
consumed over symbol period.

In this paper, we analyze the fundamental tradeoff between
latency (in terms of feedback/retransmission delay) and av-
erage consumed energy in URLLC with incremental redun-
dancy (IR)-HARQ. Considering that short packets have to be
decoded with a certain PEP and latency, we give an answer
whether it is beneficial to do one-shot transmission or split the
packet into sub-codewords and use IR-HARQ. Prior work has
considered the problem of throughput maximization by either
adjusting the blocklength of each IR-HARQ round using the
same power [2] or via rate refinement over retransmissions
of equal-sized and constant energy packets [3]. Equal-sized
and constant energy packets and rate maximization under
a reliability constraint is considered in [4]. In [5], sphere
packing is used for optimizing the blocklength of every
transmission with equal power. In contrast to prior work,
here we study the problem of average energy consumed
minimization to guarantee both PEP and latency (URLLC)
constraints by properly adapting both the blocklength and the
power of each transmission. A key result of our paper is that
one-shot transmission (no HARQ) should be used when the
feedback delay is more than half the latency constraint for
low and moderate blocklength.

II. SYSTEM MODEL

We consider a point-to-point communication link, where the
transmitter has to send B information bits within a certain
predefined latency, which can be expressed by a certain
predefined maximum number of channel uses, denoted by N`.



If no ARQ/HARQ mechanism is utilized, the packet of B
bits is transmitted only once (one-shot transmission) and its
maximum length is N`. When a retransmission strategy is em-
ployed, we consider hereafter IR-HARQ with M transmission
rounds, i.e., M−1 retransmissions. Setting M = 1, we recover
the no-HARQ case as a special case of the retransmission
scheme. We denote nm with m ∈ {1, 2, ...,M} the number
of channel uses for the m-th transmission.

The IR-HARQ mechanism operates as follows: B infor-
mation bits are encoded into a parent codeword of length∑M

m=1 nm symbols. Then, the parent codeword is split into M
fragments of codeword (sub-codewords), each of length nm.
The receiver requests transmission of the m-th sub-codeword
only if it is unable to correctly decode the message using
the previous (m−1) fragments of the codeword. In that case,
the receiver concatenates the first m fragments and attempts to
jointly decode it. We assume that the receiver knows perfectly
whether or not the message is correctly decoded (through
CRC) and ACK/NACK is received error free. Every channel
use (equivalently the symbol) requires a certain amount of
time, therefore we measure time by the number of symbols
contained in a time interval. The latency constraint is ac-
counted for by translating it into a number of channel uses
as follows: we have

∑M
m=1 nm ≤ N`. Penalty terms D(~nm),

where ~nm is the tuple (n1, n2, ..., nm) ∈ Nm
+ can easily be

introduced at each m-th transmission in order to take into
account the delay for the receiver to process/decode the m-
th packet and send back acknowledgment (ACK/NACK). In
this paper, we will focus on the simplified version where
D(~nm) = 0.

The channel is considered to be static within the whole
HARQ mechanism, i.e., there is only one channel coefficient
value for all the retransmissions associated with the same bits.
This is a relevant model for short-length packet communica-
tion and IoT applications. Indeed, for a system operating at
carrier frequency fc = 2.5 GHz, for a channel coherence time
Tc = 1 ms (so equal to the URLLC latency constraint, i.e.,
the maximum duration of all the retransmissions associated
with the same bits), the maximal receiver speed to satisfy
the static assumption is v = cBd/fc ≈ 180 km/h, where
Bd = 0.423/Tc [6, (8.20)] is the Doppler spread and c is the
speed of light. So for any device whose speed is smaller than
180 km/h, the channel is static during the HARQ process.
This is a relatively high speed for most mission-critical IoT
or tactile Internet applications. Therefore, our communication
scenario consists of a point-to-point link with additive white
Gaussian noise (AWGN). Specifically, in m-th round, the
fragment (sub-codeword) cm ∈ Cnm is received with power
Pm = ||cm||2

nm
and distorted by an additive white circularly-

symmetric complex Gaussian random process with zero mean
and unit variance. The power allocation applied during the first
m rounds is denoted by ~Pm = (P1, ...Pm) ∈ Rm

+ .

III. PROBLEM STATEMENT AND PRELIMINARIES

The objective of this paper is to find out the HARQ
mechanism maximizing the throughput by tuning the number

of transmitted information bits B, the number of rounds M ,
and the blocklength-power allocation , i.e. (~nM , ~PM ), given
a maximum packet error probability εrel, a latency constraint
N` (due to URLLC requirements) and an energy budget Et.

Before going further, we need to characterize the probabil-
ity of error in the m-th round of the HARQ mechanism as
a function of (~nm, ~Pm). To derive this packet error proba-
bility, we resort to the results for the non-asymptotic (finite-
blocklength) regime [1] since the packets we manipulate may
be short.

In IR-HARQ with m transmission, the packet error prob-
ability or equivalently the outage probability, denoted by εm,

can be expressed as εm = P

(
m⋂
i=1

Ωi

)
where Ωi is the event

corresponding to “the concatenation of the first i fragments of
the parent codeword, with length ~ni and energy per symbol ~Pi,
is not correctly decoded when optimal coding is employed”.

When an infinite blocklength is assumed, an error occurs
if the mutual information is below a threshold and for IR-
HARQ, it can easily be seen that for i < j we have Ωi ⊆ Ωj

[7], [8], which leads to εm = P(Ωm). In contrast, when
a finite blocklength (or a real coding scheme) is assumed,
the above statement does not hold anymore and an exact
expression for εm seems intractable. Therefore, in the majority
of prior work on HARQ (see [2], [8], [9] and references
therein), the exact outage probability εm is replaced with the
simplified εm defined as εm = P(Ωm), since εm and εm
are numerically close. Note that for m = 1 the definitions
coincide and ε1 = ε1 = P(Ω1). In the remainder of the paper,
we assume that this approximation is valid. Then, εm can be
upper bounded [1, Lemma 14 and Theorem 29] and also lower
bounded as in [9] by employing the κβ-bounds proposed in
[1]. Both bounds have the same first two dominant terms and
the error probability is approximately given by

εm ≈ Q


m∑
i=1

ni ln(1 + Pi)−B ln 2√√√√ m∑
i=1

niPi(Pi + 2)

(Pi + 1)2

 (1)

where Q(x) is the complementary Gaussian cumulative dis-
tribution function. For the sake of clarity, we may show the
dependency on the variables, i.e., εm(~nm, ~Pm) instead of εm,
whenever needed.

Notice that some works have tried to approximate more
accurately the term εm or εm [10]–[13]. For instance, in [10],
the authors provide more involved expressions for εm, but
the feedback scheme considered is different from ours; the
feedback time index in [10] is not predefined (it is a random
variable) and is adapted online. In [11], [12] justifications for
the approximation εm ≈ εm when using non-binary LDPC
codes or tail-biting convolutional code can be found. In [13],
the authors used saddlepoint approximation to find a tight
approximation of εm but provide closed-form expression only



for binary erasure channels (BEC). Therefore, we consider
that using the Gaussian approximation expressed by (1) pro-
vides a relavant tradeoff between analytical tractability and
tightness of the approximations.

IV. PROBLEM STATMENT AND ITS SOLUTION

We remind we carry out an IR-HARQ to send B informa-
tion bits and our goal is to allocate the blocklength and power
of the packet sent in every round in order to maximize the
throughput. The throughput is defined as the average ratio of
the successfully decoded bits divided by the number of spent
symbols. The thoughput can be derived thanks to the renewal
theory where the expecting delay is

∑M
m=1 nmεm−1 and the

expected reward is B(1 − εM ). Consequently, our goal can
be translated into the following optimization problem.

Problem 1: General problem

max
B,M,~nM , ~PM

B(1− εM )∑M
m=1 nmεm−1

(2)

s.t.
M∑

m=1

nm ≤ N` (3)

εM ≤ εrel (4)
M∑

m=1

nmPmεm−1 ≤ Et (5)

M ≤ Mr (6)

Solving the general problem is intractable. Therefore we
consider a simpler one by modifying slightly the objective
function. To that end, we force the numerator to be equal to
B(1− εrel) which means we force the constraint given by (4)
to be active. This leads to the following optimization problem

Problem 2:

max
B,M,~nM , ~PM

B(1− εrel)∑M
m=1 nmεm−1

(7)

s.t.
M∑

m=1

nm ≤ N` (8)

εM ≤ εrel (9)
M∑

m=1

nmPmεm−1 ≤ Et (10)

M ≤ Mr (11)

In Lemma 1 it is proven that the solution of Problem 2
achieves almost the same performance as those of the original
Problem 1.

Lemma 1: Let (Bmod,Mmod, ~nmod
M , ~Pmod

M ) be the solu-
tion of Problem 2. It gives the value Th for the through-
put according to (2). Let Th? be the highest value of
the throughput given by the solution of Problem 1. Then
(Bmod,Mmod, ~nmod

M , ~Pmod
M ) is a feasible point of Problem 1

and it holds that Th ≤ Th? ≤ Th
1−εrel .

Proof: The constraints of the two problems are the same,
therefore they share the same feasible domain which we

denote D. So, (Bmod,Mmod, ~nmod
M , ~Pmod

M ) is a feasible point
of Problem 1. Since Th? is the optimal value and Th just
a feasible one, Th ≤ Th?. Furthermore, the solution of
Problem 2 guarantees that for every point in D it holds

B∑M
m=1 nmεm−1

≤ Th
1−εrel . Therefore if x? ∈ D is the optimal

point of Problem 1 and gives an error probability of ε?M
then Th?

(1−ε?M ) ≤
Th

1−εrel from which we can easily derive
Th? ≤ Th

1−εrel .
We propose to do the optimization over B via a 1-D grid-

search. Consequently, Problem 2 can be still simplified and
leads to the following Problem 3.

Problem 3:

min
M,~nM , ~PM

M∑
m=1

nmεm−1 (12)

s.t.
M∑

m=1

nm ≤ N` (13)

εM ≤ εrel (14)
M∑

m=1

nmPmεm−1 ≤ Et (15)

M ≤ Mr (16)

The rest of this Section is devoted to the resolution of this
Problem 3. We will see that it can be solved iteratively
through a dynamic programing approach.

First of all, we introduce the states at the end of m-th round:

S1 = (N1, ε1)

Sm = (Nm, εm, Em, Vm),m ∈ {2, 3, ...}

where ∀m ∈ N?: Nm =
∑m

i=1 ni, Em =
∑m

i=1 niPiεi−1 and
Vm =

∑m
i=1 ni(1 −

1
(1+Pi)2

). We have Vm < Nm ≤ N`.
Let SM be the set of feasible final states. By feasibility,
we mean that a state SM in SM satisfies the constraints in
Problem 3. We have SM ⊂ {1, 2, ..,N`}× [0, εrel]× [0,Et]×
[0,N`] ∀M ∈ {1, 2, ..,Mr}. Our objective is to find the
optimal sequence/path of states minimizing (12) which will
provide the optimal vector (~nM , ~PM ) solving Problem 3.
Indeed, each solution (and so the optimal one) represented
by a path (~nM , ~PM ) leads to an SM ∈ SM .

The first three variables of the states Sm were chosen
in order to be able to check the constraints (13-15). The
dispersion variable Vm was added such that the sequence
of Sm is a Markov chain since the description of Sm then
depends only on the previous state Sm−1 and the variables
nm and Pm which constitute the branch between Sm−1 and
Sm. The functions connecting these states can be easily
found and let them be: Sm = fS(Sm−1, nm, Pm), Sm−1 =
f−1S (Sm, nm, Pm).

For sake of simplicity, we introduce the following notation
“min
X|Y

f(X)” which stands for “minimize f(·) over the vari-



ables X given constraints Y ”. Now the Problem 3 can be
seen as the solution of:

min
M,SM ∈ SM |M ∈ {1, ..,Mr}

{
min

~nM , ~PM |SM

M∑
m=1

nmεm−1

}
over the constraints (13)-(15)

As roughly-mentioned previously, we perform the outer
minimization by exhaustive search (even though, we will
prove below that only a few states S ∈ SM are good
candidates). On the other hand, the inner minimization is
solved dynamically since it can be written as:

min
nM ,PM |SM

{
min

~nM−1, ~PM−1|SM ,nM ,PM

{nMεM−1+

M−1∑
m=1

nmεm−1}
}

The inner minimization is done under fixed (SM , nM , PM )
which allows the first term nMεM−1 to get out as a constant
since this term can be expressed as a function of only those
fixed variables. Moreover, SM−1 = f−1S (SM , nM , PM ) is
fixed which can be confirmed that it is an equivalent to
(SM , nM , PM ) constraint when minimizing the second term.
So, we have

min
~nM , ~PM |SM

{
M∑

m=1

nmεm−1} = min
nM ,PM |SM

{
K(SM , nM , PM )

+ min
~nM−1, ~PM−1|SM−1=f−1

S (nM ,PM ,SM )
{
M−1∑
m=1

nmεm−1}
}

The above formula can be proven for every m ∈ {1, ...,M}
which allows to apply the dynamic programming approach.
Specifically to find the optimal solution for the state Sm it
is sufficient to know the optimal solution of every Sm−1
connected to it through a branch (nm, Pm). Therefore we
can start by straightforwardly computing the values for each
feasible S1 and afterwards in every m iteration of the dynamic
programming algorithm we compute the optimal solution for
Sm by using the corresponding Sm−1.

Finally the optimal solution of Problem 3 has some char-
acteristics which reduce the number of states to test.

Lemma 2: When M grows, feasible points of Problem
3 with better values of the objective function (12) appear.
Therefore the optimal solution satisfies (16) with equality, i.e.
M? = Mr.

Proof: In [14, Appendix C], it is proven that if the last,
i.e. M -th, packet with (nM , PM ) blocklength and power is
properly split into two packets with (n′M , PM ) and (nM+1 =
nM − n′M , PM ) then the average energy is decreased. The
same splitting straightforwardly can be shown to decrease our
objective (12) and therefore this new configuration with an
extra round gives better result while satisfying the constraints.
Therefore more rounds lead to better performace.

Lemma 3: Let (M?, ~n?M? , ~P ?
M?) be the optimal point of

Problem 3. We remind that M? = Mr due to Lemma 2. Let
ε?m = ε(m,~n?m,

~P ?
m) where ~n?m (resp. ~P ?

m) is an extracting
vector from the m-th first components of ~n?Mr

(resp. ~P ?
Mr

),
be the error probability at every round m < Mr. We have

ε?m > εrel and finally at round Mr we have ε?Mr
≤ εrel <

ε(~n?Mr−1, n
?
Mr
− 1, ~P ?

Mr
).

Proof: Assume that for m0 < Mr we have ε?m0
< εrel.

Then the point (m0, ~n
?
m0
, ~P ?

m0
) is a better than the optimal

point which leads to contradiction. Furthermore, to prove
ε?Mr

≤ εrel < ε(~n?Mr−1, n
?
Mr
− 1, ~P ?

Mr
) is fairly simple

since the first inequality is the reliability constraint and
the second cannot be violated since otherwise the point
(~n?Mr−1, n

?
Mr
− 1, ~P ?

Mr
) is a better than the optimal solution

which again leads to a contradiction.
As ε?Mr

≤ εrel < ε(~n?Mr−1, n
?
Mr
− 1, ~P ?

Mr
), we can

conjecture that ε?Mr
≈ εrel since the last round will enable

to satisfy the constraints but not going to far away from it
because it will be costly in throughput (if nMr

is selected too
high) or in energy (if PMr is selected too high). Therefore we
will also that E?

Mr
≈ Et where E?

Mr
is the energy consumed

by the optimal solution of Problem 3.

V. IMPLEMENTATION

The dynamic programming algorithm needs in practice the
variables of the states to take discrete values. Specifically:
• Nm has already a discrete form since it is an integer in-

side the interval [0, N ] but for accelerating the simulation
it can be also quantized using bigger than one symbol
step size. Let N be the set of the discrete values that Nm

can take.
• εm is real and from lemma 3 we know εm ∈ [0, εrel]. It

turns out that if instead of εm the use of the equivalent
(due to Q−1() being a one-to-one mapping) variable
cm := Q−1(εm) is employed, more accurate results are
yielded. If we assume only realistic error probabilities
of value lower than 0.5 then cm ∈ [0, Q−1(εrel)]. Let
C ⊂ [0, Q−1(εrel)] be the set of the discrete values that
the dynamic algorithm allows cm to take.

• Em is real and Em ∈ [0,Et]. After quantization let E be
the set of the discrete values Em can take.

• Vm is real and Vm ∈ (0, Nm) ⊂ (0,N`). After quan-
tization let V be the set of the discrete values Vm can
take.

The dynamic algorithm consists of two stages: the first one
to compute for the feasible states their performance and the
second one to search over those states to find the optimal
solution. The complexity is governed by the first stage and
is equal to the number of iterations the dynamic algorithm
takes, multiplied by the number of states examined per iter-
ation, multiplied by the number of branches departing from
every state. In our implementation, we compute the branch
(nm+1, Pm+1) departing from a state Sm through fixing
the variables Nm+1 and Em+1 of the arriving state Sm+1

and subsequently we acquire the feasible εm+1 and Vm+1.
Therefore the overall complexity is O(Mr · |N||E||C||V| · |N||E|).

The above complexity displays a slow algorithm but in
reality it can be faster by remarking that most of the times all
of the paths ending up at states with the same (Nm, cm, Em)
which the algorithm considers, present dispersions Vm within



a small range of values. Therefore if a reasonable resolution
of the discrete set V is considered so as no significant
approximation errors to be introduced, then the number of
feasible states with same (Nm, cm, Em) and different Vm
turns out to be rather small (many times just one value).
Therefore the variable |V| can be thought as constant which
in our simulations never exceeds 10.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical results to illustrate the
behavior of the system. First we inspect how the error prob-
ability affects the throughput. Specifically we solve Problem
2 with reliability constraint (9) to be equality and we let the
achieved εrel to take different values. This procedure actually
requires only one run of the dynamic algorithm because after
the computation of the performance of each state we can
restrict the research of the minimum only between the states
with the given εm. In that way Fig. 1 is obtained.
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Fig. 1. Throughput Versus Attained Error Probability when N = 400, Et =
267, B = 32Bytes

As mentioned from Lemma 2 and confirmed by Fig. 1,
the more rounds the higher throughput and we see also the
more robust is the throughput performance when pushing
for higher reliability. Moreover since we remain in the finite
blocklength regime it is impossible to attain εM → 0 given
finite energy budget. Therefore there exists a certain value
that the reliability cannot go beyond. This is the reason the
curve of Mr = 2 in Fig. 1 stops at a certain error probability.
The other two curves also stop after a certain error probability
which is much smaller preventing to be depicted in the figure.
Finally, we remark, as mentioned in [3], that there is a value
of error probability which maximizes the throughput but it
is fairly poor (close to 0.1). So in our case, we will achieve
higher reliability at the expense of the throughput performance
(since our operating point does not correspond to the optimal
one for throughput in this figure)

Now we analyze the influence of the number of used
symbols on the throughput. In order to obtain Fig. 2, we force
equality in the latency constraint (8) of Problem 2, and the
error probability is treated as for Fig. 1.
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Fig. 2. Throughput Versus Used number of symbols when εrel = 10−5,
B = 32Bytes,Mr = 3

When the available number of symbols are inadequate
(too weak), no feasible solution appears and the through-
put vanishes. Interestingly as NMr grows beyond a certain
threshold, only a slight increase of the throughput is obtained,
followed by a slow decrease. This means that it is not
always beneficial for throughput to use the whole available
blocklength. Asymptotically if NMr → ∞ then for some
m ∈ {1, · · ·Mr} it should nm → ∞ which will result to
vanishing the throughput.

For Fig. 3, we plot the throughput versus the energy
budget. In practice, we do not force equality in the energy
constraint (10), since as stated previously the optimal solution
consumes by default (almost) all the available energy. In
our simulations, we set the minimum possible blocklength
for the first HARQ round to be N1,min ≥ 100 (which
was set likewise so as Polyanskiy’s formula (1) to remain
accurate). Consequently the throughput cannot exceed the
value B

N1,min
which represent the fictional case of only one

packet sent with minimum blocklength and achieving perfect
reliability. This lower bound is closely approached as the
available energy grows to finally be enough so that only one
transmission fulfills the constraints. Further increase of the
energy is wasteful. Finally, Fig. 3 confirms again (as in Fig. 2)
that when we are beyond a certain threshold, any additionally
increase of the available blocklength is useless.

For Fig. 4, we depict the throughput (via a contour plot)
versus the available average energy Et and the information
bits to transmit B. There is an upper left area where there are
no feasible points. Keeping a constant Et by moving vertically
on Fig. 4, we see that the throughput is a unimodal function
over B and there is a specific value of B achieving optimality.
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This also agrees with [3] when a simple ARQ scheme with
no URLLC constraints was employed.
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VII. CONCLUSION

TO BE DONE
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