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Abstract We propose a proximal approach to deal with a
class of convex variational problems involving nonlinear con-
straints. A large family of constraints, proven to be effective
in the solution of inverse problems, can be expressed as the
lower level set of a sum of convex functions evaluated over
different blocks of the linearly-transformed signal. For such
constraints, the associated projection operator generally does
not have a simple form. We circumvent this difficulty by split-
ting the lower level set into as many epigraphs as functions
involved in the sum. In particular, we focus on constraints
involving `̀̀q-norms with q≥ 1, distance functions to a con-
vex set, and `̀̀1,p-norms with p ∈ {2,+∞}. The proposed
approach is validated in the context of image restoration by
making use of constraints based on Non-Local Total Varia-
tion. Experiments show that our method leads to significant
improvements in term of convergence speed over existing al-
gorithms for solving similar constrained problems. A second
application to a pulse shape design problem is provided in
order to illustrate the flexibility of the proposed approach.
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1 Introduction

As an offspring of the wide interest in frame representations
and sparsity promoting techniques for data recovery, prox-
imal methods have become popular for solving large-size
non-smooth convex optimization problems [1, 2]. The effi-
ciency of these methods in the solution of inverse problems
has been widely studied in the recent signal and image pro-
cessing literature (see e.g. [3–8] and references therein). For
instance, in the context of image restoration, when the noise
is assumed to be zero-mean additive white Gaussian, the
target signal can be recovered from the blurred and noisy
observations z ∈ RN by solving the following non-smooth
optimization problem:

minimize
x∈RN

‖Ax− z‖2
2 +λ‖Fx‖1,

where A ∈ RN×N is the matrix associated with the degra-
dation blur, F ∈ RM×N (with M ≥ N) is an analysis frame
operator that sparsifies the target signal [9, 10], and λ is a
positive regularization parameter. A constrained formulation
of the above problem may be also considered [11], yielding

minimize
x∈RN

‖Ax− z‖2
2 s. t. ‖Fx‖1 ≤ η ,

where η is a positive constraint bound. Both optimization
problems are equivalent for some specific values of λ and η ,
since there exist some conceptual Lagrangian equivalences
between regularized and constrained formulations [12]. How-
ever, it has been recognized for a long time that incorporating
constraints directly on the solution, instead of considering
regularized functions, may often facilitate the choice of the
involved parameters [13–21]. Indeed, the bound η may be
easier to set than the parameter λ , as the former may be re-
lated to some physical properties of the target solution. This
is one of the primary motivations in considering constrained
formulations of convex optimization problems.
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1.1 Proximal algorithms

The wide class of proximal algorithms can efficiently deal
with constrained convex optimization problems, as they pro-
vide a unifying framework that allows one to address non-
smooth functions as well as hard constraints [1, 22–38]. The
key tool in these methods is the proximity operator [39] of a
proper lower-semicontinuous convex function ϕ from a real
Hilbert space H to ]−∞,+∞], defined as

(∀y ∈H ) proxϕ(y) = argmin
u∈H

1
2
‖u− y‖2 +ϕ(u).

The proximity operator can be interpreted as a sort of sub-
gradient step for the function ϕ , as p = proxϕ(y) is uniquely
defined through the inclusion y− p ∈ ∂ϕ(p). When the func-
tion is smooth, some proximal algorithms allow one to re-
place the proximity operator with a simpler gradient-descent
computation. When a hard constraint is involved, instead, the
proximity operator reduces to the orthogonal projection onto
a nonempty closed convex subset C ⊂H , in the sense that

(∀y ∈H ) proxιC
(y) = PC(y) = argmin

u∈C

1
2
‖u− y‖2,

where ιC denotes the indicator function of C, equal to 0 on C
and +∞ otherwise.

In order to solve a convex optimization problem, prox-
imal algorithms iterate a sequence of steps in which the
proximity operators of the involved functions are evaluated
at every iteration (e.g. prox‖·−z‖22

and P{‖·‖1≤η} in the con-
strained formulation mentioned earlier). The efficient com-
putation of these operators is thus essential for dealing with
large-size problems. Unfortunately, it turns out that a closed-
form expression of the projection onto a closed convex set is
available in a limited number of instances. Some well-known
examples are the projections onto an hypercube, a closed
half-space, an hyperslab, an affine set, a simplex and an `̀̀2-
norm ball [2,7,40]. However, more sophisticated convex sets
are usually necessary in a large number of inverse problems
(e.g. the `̀̀1-ball in the above example), raising the issue of
computing the associated projection operators.

When an expression of the direct projection is not avail-
able, a possible solution is to approximate the convex set
by a half-space, which leads to the concept of subgradient
projection. The main limitation of this approach is that the
objective function must be strictly convex [41]. Recent works
have proposed specific numerical methods to deal with an
`̀̀1-ball [11, 42] and an `̀̀1,∞-ball [43], but they may prove
inefficient in large-size problems, due to inner iterations.

1.2 Contributions

The objective of this paper is to propose an efficient split-
ting technique for solving the following class of constrained
convex optimization problems:

Problem 1

minimize
x∈H

R

∑
r=1

gr(Trx) s. t. h(Fx)≤ η ,

where η ∈ R and, for every r ∈ {1, . . . ,R},
– Tr (resp. F) is a bounded linear operator from H to RNr

(resp. RM),
– gr is a proper lower-semicontinuous convex function

from RNr to ]−∞,+∞],
– h is a proper lower-semicontinuous function from RM to
]−∞,+∞] having a block-wise decomposable structure:

(∀y ∈ RM) h(y) =
L

∑
`=1

h(`)(y(`)),

with y(`)∈RM` for each `∈{1, . . . ,L} and M1+ · · ·+ML = M.

Numerous constraints usually involved in the formu-
lation of inverse problems can be modelled by a block-
decomposable function. Popular examples are the Kullback-
Leibler divergence [16], `̀̀2-norm composed by Anscombe
transformation [19], `̀̀1-norm [11], `̀̀1,∞-norm [43], and total
variation [21] or total generalized variation [20] semi-norms.
A possible solution to deal with these constraints is to exploit
the Lagrangian equivalence between projection and prox-
imity operator, which boils down to the problem of finding
the zero of a nonlinear equation [2, Section 6.6.1]. However,
this approach turns out to be efficient only when the prox-
imity operator admits a simple form, which is the case of
Kullback-Leibler divergence [16] and `̀̀1-norm [11].

The present work aims at designing an efficient method
to address Problem 1 when the projection onto the involved
constraint does not have a closed-form expression and the
standard approach mentioned above is infeasible or ineffi-
cient. More specifically:
(i) We propose a splitting technique that replaces the con-

straint in Problem 1 with a collection of epigraphs and
a closed half-space constraint. So doing, we trade the
problem of computing the projection onto the original
constraint with the problem of computing the projection
onto smaller epigraphs.

(ii) We enrich the list of functions for which the projection
onto the associated epigraph can be efficiently computed.
In this regard, we provide some theoretical results con-
cerning the epigraphical projection of several functions
of practical interest, such as the absolute value raised to
a power q ∈ [1,+∞[, the distance to a convex set and the
`̀̀p-norm with p ∈ {2,+∞}.

(iii) We illustrate through an image restoration example that
regularity constraints based on Total Variation [44] and
Non-Local Total Variation [45] can be efficiently han-
dled by the proposed epigraphical splitting, which sig-
nificantly speeds up the convergence (in terms of ex-
ecution time) with respect to standard numerical solu-
tions [11, 43].
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1.3 Organization

The paper is organized as follows. In section 2, we detail a
new splitting approach to deal with a constraint expressed
as the lower level set of a decomposable function. Since the
proposed splitting introduces some epigraphs in the mini-
mization process, we provide in Section 3 the expression of
specific epigraphical projections. To demonstrate the flexibil-
ity of our approach, we illustrate some numerical experiments
in Sections 4 and 5: the former concerns an image recovery
problem, while the latter is related to a pulse shape design
for digital communications. Finally, some conclusions are
drawn in Section 6.

Notation: Let H be a real Hilbert space endowed with the
norm ‖·‖ and the scalar product 〈· | ·〉. Γ0(H ) denotes the set
of proper lower-semicontinuous convex functions from H
to ]−∞,+∞]. Recall that a function ϕ : H → ]−∞,+∞] is
proper if domϕ =

{
y ∈H

∣∣ ϕ(y)<+∞
}

is nonempty. The
lower level set of ϕ at height ζ ∈ R is the closed convex sub-
set of H defined as lev≤ζ ϕ =

{
y ∈H

∣∣ ϕ(y)≤ ζ
}

, and the
epigraph of ϕ ∈Γ0(H ) is the closed convex subset of H ×R
defined as epiϕ =

{
(y,ζ ) ∈H ×R

∣∣ ϕ(y)≤ ζ
}

. A subgra-
dient of ϕ at y ∈H is the subset of H defined as ∂ϕ(y) ={

t ∈H
∣∣ (∀u ∈H ) ϕ(u)≥ ϕ(y)+ 〈t | u− y〉

}
. When ϕ is

Gâteaux-differentiable at y, ∂ϕ(y) = {∇ϕ(y)}. Let C be a
nonempty closed convex subset C of H . The relative inte-
rior of C is denoted by riC. For every y ∈H , the proxim-
ity operator of ϕ reads proxϕ(y) = argminu∈H

1
2‖u− y‖2 +

ϕ(u). The indicator function ιC ∈ Γ0(H ) of C is equal to 0
for y ∈ C and +∞ otherwise. The projection onto C reads
PC(y) = argminu∈C ‖u− y‖. The distance to C is given by
dC(y) = ‖y−PC(y)‖.

2 Proposed method

We now turn our attention to the constraint in Problem 1
and we illustrate how to deal with it when the associated
projection does not have a closed form. More precisely, we
assume that the function h in Problem 1 can be modelled as:

(∀y ∈ RM) h(y) =
L

∑
`=1

h`(y(`)), (1)

where the generic vector y is decomposed into blocks of
coordinates as follows

y =
[(

y(1)
)>

︸ ︷︷ ︸
sizeM1

, . . . ,
(
y(L)
)>

︸ ︷︷ ︸
sizeML

]>
∈ RM, (2)

with M1 + · · ·+ML = M and, for every ` ∈ {1, . . . ,L}, y(`) ∈
RM` and h` ∈ Γ0(RM`) is such that ri(domh`) 6=∅.

2.1 Epigraphical splitting

Our approach consists of introducing an auxiliary vector ζ =(
ζ (`)
)

1≤`≤L ∈ RL in the minimization process, so that the
constraint in Problem 1 can be decomposed into a collection
of block-wise convex sets and a closed half-space:1

L

∑
`=1

h`(y(`))≤η ⇔


(∀` ∈ {1, . . . ,L}) h`(y(`))≤ ζ (`),

L

∑
`=1

ζ
(`) ≤ η .

(3)

Consequently, Problem 1 can be equivalently formulated in
the following form:

minimize
(x,ζ )∈H ×RL

R

∑
r=1

gr(Tr x) s. t.
(∀` ∈ {1, . . . ,L}) h`

(
[Fx](`)

)
≤ ζ (`),

L

∑
`=1

ζ
(`) ≤ η .

(4)

Note that the above minimization problem is defined with
respect to x and ζ , so we have increased the dimensionality
of our problem and we have replaced the lower level set of h
with simpler constraints given by the epigraphs of h1, . . . ,hL.

2.2 Connections with proximal algorithms

Within the proposed constrained optimization framework,
Problem (4) can be rewritten in a more compact form as
follows:

Problem 2

minimize
(x,ζ )∈H ×RM

R

∑
r=1

gr(Trx) s. t.

{
(Fx,ζ ) ∈ E,

ζ ∈V,

where

E = {(y,ζ ) ∈ RM×RL |

(∀` ∈ {1, . . . ,L}) (y(`),ζ (`)) ∈ epih`}, (5)

V =
{

ζ ∈ RL ∣∣ 1>L ζ ≤ η
}
, (6)

with 1L = (1, . . . ,1)> ∈ RL.

The resolution of Problem 2 requires an efficient algo-
rithm for dealing with large-size problems involving possi-
bly nonsmooth functions and linear operators. As already
mentioned in the introduction, we resort to proximal algo-
rithms, which allow us to deal individually with the operators

1 Note that the linear inequality over the auxiliary vector ζ can be
also replaced by an equality, even though it makes little difference in
our approach.
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(Tr)1≤r≤R, F , (proxgr
)1≤r≤R, PE , and PV . In the present case,

we assume that (proxgr
)1≤r≤R have closed-form expressions.

In addition, the projection onto V is well-known [2, Sec-
tion 6.2.3], whereas the projection onto E is given by

(∀(y,ζ ) ∈ RM×RL) PE(y,ζ ) = (p,θ), (7)

where θ = (θ (`))1≤`≤L ∈RL, p = (p(`))1≤`≤L ∈RM is block-
wise decomposed as in (2), and

(∀` ∈ {1, . . . ,L}) (p(`),θ (`)) = Pepih`(y
(`),ζ (`)). (8)

Therefore, in order to solve Problem 2, we need to com-
pute the projection onto epih` for each ` ∈ {1, . . . ,L}, which
yields two potential benefits with respect to Problem 1. Firstly,
the epigraphical projection involves the lower-dimensional
problem of determining the projection onto the convex sub-
set epih` of RM` ×R. Secondly, these projections can be
computed in parallel, since they are defined over disjoint
blocks [46]. An example of an algorithm that converges to a
solution to Problem 2 (and thus to a solution of Problem 1)
will be provided in Section 4.

2.3 Examples of epigraphical constraints

We now illustrate some examples of functions that can be
handled with the epigraphical splitting presented above. The
mathematical expression of the associated projection will be
derived in Section 3.

(i) `̀̀q-norm. Let q ∈ [1,+∞[, (τ(`))1≤`≤M ∈ ]0,+∞[M , and

(∀y ∈ RM) h(y) =
M

∑
`=1

τ
(`)|y(`)|q. (9)

Then, the above function can be modelled as in (1) with
L = M and, for every ` ∈ {1, . . . ,M},

(∀y(`) ∈ R) h`(y(`)) = τ
(`) |y(`)|q. (10)

The corresponding epigraphical projection will be given
in Proposition 2 for q = 1 and Proposition 3 for q > 1.
Note that the `̀̀1 and `̀̀2 norms are widely used for the
regularization of inverse problems [47, 48].

(ii) Distance function. Let L ∈ N∗, (τ(`))1≤`≤L ∈ ]0,+∞[L,
(q(`))1≤`≤L ∈ [1,+∞[L and, for every ` ∈ {1, . . . ,L}, let
C(`) be a nonempty closed convex subset of RM` , and

(∀y ∈ RM) h(y) =
L

∑
`=1

τ
(`) dq(`)

C(`)(y
(`)). (11)

Then, the above function can be modelled as in (1) with,
for every ` ∈ {1, . . . ,L},

(∀y(`) ∈ RM`) h`(y(`)) = τ
(`) dq(`)

C(`)(y
(`)). (12)

The corresponding epigraphical projection will be given
in Proposition 4. Such a function is relevant for relaxing
constraints on support or dynamics range [49].

(iii) `̀̀1,2-norm. Let L ∈ N∗, (τ(`))1≤`≤L ∈ ]0,+∞[L, and

(∀y ∈ RM) h(y) =
L

∑
`=1

τ
(`) ‖y(`)‖2. (13)

Then, the above function can be modelled as in (1) with,
for every ` ∈ {1, . . . ,L},

(∀y(`) ∈ RM`) h`(y(`)) = τ
(`) ‖y(`)‖2. (14)

The associated epigraphical projection will be given in
Corollary 1. Note that the `̀̀1,2-norm is useful to define
multivariate sparsity constraints [50] or total variation
bounds [44], which typically involve a sum of functions
like (14) composed with linear operators corresponding
to analysis transforms or gradient operators.

(iv) `̀̀1,∞-norm. Let L ∈ N∗ and, for each ` ∈ {1, . . . ,L}, let
(τ(`,m))1≤m≤M`

∈ ]0,+∞[M` . We assume that:

(∀y ∈ RM) h(y) =
L

∑
`=1

max
1≤m≤M`

τ
(`,m) |y(`,m)|. (15)

Then, the above function can be modelled as in (1) with,
for every ` ∈ {1, . . . ,L},

(∀y(`) ∈ RM`) h`(y(`)) = max
1≤m≤M`

τ
(`,m) |y(`,m)|. (16)

The corresponding epigraphical projection will be given
in Proposition 5. When τ(`,m) ≡ 1, the function in (16)
reduces to the standard infinity norm ‖ · ‖∞, which has
recently attracted much interest for regularization pur-
poses [43, 51–53].

2.4 Differences with existing splitting techniques

Several splitting techniques have been recently proposed to
efficiently handle functions composed with a linear operator.
In this context, the approaches inspired by the Alternating
Direction Method of Multipliers are very popular, since they
deal with optimization problems of the form

minimize
x∈H

g1(T1x)+g2(x)

by resorting to the following reformulation

minimize
(x,v)∈H ×RN1

g1(v)+g2(x) s. t. T1x = v.

This kind of splitting has been often used in image restoration
[54] and, more recently, for distributed optimization problems
[55]. A similar form of splitting has been considered in [6],
where the constraint T1x = v is handled by computing the
projection onto the nullspace of [T1 −Id ], which has a closed-
form expression for some specific choices of T1, such as
circulant matrices involved in image restoration.
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The solution that we propose in this work also introduces
auxiliary variables. However, our objective is not to deal
with linear transformations, but rather with a projection that
does not have a closed-form expression. Consequently, the
proposed solution departs from the usual splitting methods, in
the sense that our approach leads to a collection of epigraphs,
while the usual splitting techniques involve linear constraints.

3 Epigraphical projections

The key point in the proposed splitting is the introduction of
some epigraphs in the minimization process, in order to facil-
itate the computational steps. Therefore, it is of paramount
importance that the projection onto the epigraph can be ef-
ficiently computed. The problem of determining such an
epigraphical projection is formalized in the following propo-
sition (all the proofs are given in appendix).2

Proposition 1 Let H be a real Hilbert space and let H ×R
be equipped with the standard product space norm. Let ϕ

be a function in Γ0(H ) such that domϕ is open. For every
(y,ζ ) ∈H ×R, the projector Pepiϕ onto epiϕ is given by:

Pepiϕ(y,ζ ) = (p,θ) , (17)

where{
p = prox 1

2 (max{ϕ−ζ ,0})2(y),

θ = max{ϕ(p),ζ}.
(18)

The previous result shows that the proximity operator in (18)
plays a prominent role in the calculation of the projection
onto epiϕ . We now provide several examples of function ϕ

for which this proximity operator admits a simple form.

Proposition 2 Let τ ∈ ]0,+∞[. Assume that

(∀y ∈ R) ϕ(y) = τ|y|. (19)

For every (y,ζ ) ∈ R×R, Pepiϕ(y,ζ ) = (p,θ) is given by

p =

y, if τ|y| ≤ ζ ,
sign(y)
1+ τ

2 max{|y|+ τζ ,0}, otherwise.
(20)

and θ = max{τ|p|,ζ}.

The above result follows by the fact that 1
2 (max{τ|y|−ζ ,0})2

= (τ2/2)y2− τζ |y|+ζ 2/2 if τ|y|> ζ and 0 otherwise, for
which the proximity operator is known [24, Example 4.6].
This example clearly shows that Proposition 1 allows us to
leverage the results on proximity operators already known in
the literature. The following proposition considers the case
when the absolute value is raised by a positive power.

2 Alternative characterizations of the epigraphical projection can
be found in [40, Prop. 9.17 and 28.28], whereas the result reported
in [2, Section 6.6.2] refers to a preliminary version of this paper.

Proposition 3 Let q ∈ ]1,+∞[ and τ ∈ ]0,+∞[. Assume that

(∀y ∈ R) ϕ(y) = τ|y|q. (21)

For every (y,ζ ) ∈ R×R, Pepiϕ(y,ζ ) = (p,θ) is given by

p =


sign(y)χ0, if ζ ≤ 0,
y, if ζ > 0 and τ|y|q ≤ ζ ,

sign(y)χζ , otherwise,

(22)

and θ = max{τ|p|q,ζ}, where χ· is the unique solution on
[(·/τ)1/q,+∞[ of the following equation

qτ
2
χ

2q−1−qτζ χ
q−1 +χ = |y|. (23)

Note that, when q is a rational number, (23) is equivalent to
a polynomial equation for which either closed form solutions
are known or standard numerical solutions exist.

The previous propositions allows us to establish a result
concerning the distance function to a convex set.

Proposition 4 Let C be a nonempty convex subset of H . Let
q ∈ [1,+∞[, τ ∈ ]0,+∞[, and ζ ∈ R. Assume that

(∀y ∈H ) ϕ(y) = τ dq
C(y). (24)

For every (y,ζ ) ∈H ×R, Pepiϕ(y,ζ ) = (p,θ) is given by

p =

{
y, if y ∈C,

αy+(1−α)PC(y), otherwise,
(25)

and θ = max{τ dq
C(p),ζ}, where

α =
prox 1

2 (max{τ|·|q−ζ ,0})2

(
dC(y)

)
dC(y)

(26)

and the above expression is provided by Propositions 2–3.

In the case when q = 1 and C = {z} for some z ∈H , the
previous result can be specialized with dC(y) = ‖y− z‖ and
PC(y) = z. So doing, we obtain a corollary about the Eu-
clidean norm, for which the corresponding epigraph is called
the Lorentz cone and the associated epigraphical projection
is known in the literature (see e.g. [2, Section 6.3.2]).

Corollary 1 Let τ ∈ ]0,+∞[, ζ ∈R and z∈H . Assume that

(∀y ∈H ) ϕ(y) = τ ‖y− z‖. (27)

For every (y,ζ ) ∈H ×R, Pepiϕ(y,ζ ) = (p,θ) is given by

p =


z, if y = z,

y, if τ ‖y− z‖ ≤ ζ ,

αy+(1−α)z, otherwise,

(28)

and θ = max{τ ‖p− z‖,ζ}, where

α =
1

1+ τ2 max
{

1+
τζ

‖y− z‖
,0
}
. (29)
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We conclude the section with a result about the weighted
maximum of absolute values. When the weights are all equal,
this function reduces to the standard infinity norm ‖ · ‖∞, for
which the expression of the epigraphical projection has been
recently given in [56]. The following proposition provides a
slightly more general result.

Proposition 5 Let (τ(m))1≤m≤M ∈ ]0,+∞[M . Assume that

(∀y ∈ RM) ϕ(y) = max
1≤m≤M

τ
(m) |y(m)|, (30)

where the values (ν(m) = τ(m) |y(m)|)1≤m≤M`
are in ascending

order. Then, for every (y,ζ ) ∈ RM×R, Pepiϕ(y,ζ ) = (p,θ)
is given by

p =
(

sign(y(m)) min
{
|y(m)|,θ/τ

(m)
})

1≤m≤M
(31)

and

θ = max


ζ +

M

∑
m=m

ν
(m)(τ(m))−2

1+
M

∑
m=m

(τ(m))−2

,0

 , (32)

where m is the unique integer in {1, . . . ,M+1} such that

ν
(m−1) <

ζ +
M

∑
m=m

ν
(m)(τ(m))−2

1+
M

∑
m=m

(τ(m))−2

≤ ν
(m) (33)

(with the conventions ∑
0
m=1 · = ∑

M
m=M+1 · = 0, ν(0) = −∞

and ν(M+1) =+∞).

4 Image recovery problems

We propose to evaluate the performance of the proposed
epigraphical solution in the context of image restoration,
where H = RN , x ∈ RN denotes the image to be recovered,
and z ∈ RK is an observation vector such that

z = DAx+b. (34)

We assume that A ∈ RN×N is a blurring operator, D ∈ RK×N

is a decimation operator,3 and b ∈ RK is a realization of
zero-mean white Gaussian noise.

3 D thus corresponds to K ≤ N lines of the identity N×N matrix.

4.1 Constrained formulation

A usual approach to recover x from the degraded observations
is to follow a variational approach that aims at solving a
convex optimization problem defined as:

minimize
x∈[0,255]N

‖DAx− z‖2
2 s. t. h(Fx)≤ η , (35)

where η ≥ 0 and F ∈ RM×N is the linear operator associated
with an analysis transform. Hereabove, the quadratic term
aims at insuring that the solution is close to the observations,
while the constraint imposes some regularity on the solution.
Regularization is essential for solving such an ill-posed prob-
lem, as it allows one to select, among competing solutions,
the one that presents some form of parsimony or smoothness.

Natural images usually exhibit a smooth spatial behaviour,
except around some locations (e.g. object edges), where
discontinuities arise. Therefore, the quality of the results
obtained through the aforementioned variational approach
strongly depends on the ability of the operator F and the func-
tion h to model such a specific kind of regularity. Among the
sophisticated regularization terms that have been recently de-
veloped in the field of image restoration, the most commonly-
used ones can be generalized as

(∀y ∈ RM) h(y) =
L

∑
`=1
‖y(`)‖q

p, (36)

where q≥ 1, p≥ 1 and y is block-decomposed as in (2).
The above function can model the `̀̀q-norm in (9) when

p = q and L = M. This norm has been largely used in combi-
nation with a sparsifying transform F , such as frames [24] or
Laplacian operators. Indeed, the case q= 2 leads to Tikhonov
regularization, whereas the case q = 1 yields a sparsity-
inducing regularization [57, 58].

The above function also matches the `̀̀1,2-norm in (13)
when q = 1 and p = 2. Such a mixed-norm is used in the
classical total variation (TV) regularization to penalize the
image gradient [44]. Although TV has emerged as a sim-
ple and successful convex optimization tool, it often fails to
preserve textures, details and fine structures, because they
are hardly distinguishable from noise. To improve this be-
haviour, the TV model has been extended by using some
generalizations based on higher-order spatial differences [59]
or a non-locality principle [45, 60, 61]. The latter yields the
non-local-TV operator, defined as

Fx =

F1x
. . .

FNx

=


(
ω1,n(x(1)− x(n))

)
n∈N1

. . .(
ωN,n(x(N)− x(n))

)
n∈NN

 , (37)

where, for every ` ∈ {1, . . . ,N}, N` ⊂ {1, . . . ,N} \ {`} de-
notes the neighborhood of ` and (ω`,n)n∈N`

are positive
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weights. Note that (37) reduces to the classical gradient op-
erator when N` only contains the horizontal/vertical nearest
neighbours of ` and ω`,n ≡ 1.4

Several types of `̀̀q,p-norms can be used to penalize the
nonlocal gradient. The case q = p = 2 (i.e. the `̀̀2-norm) may
be seen as a variational extension of NonLocal Means [60],
while the case q = p = 1 (i.e. the `̀̀1-norm) leads to NonLocal
Medians [63]. The case q = 1 and p ∈ {2,+∞} (i.e. the `̀̀1,p-
norm) is instead preferred in color imagery [64, 65]. In our
experiments, we will present the results of `̀̀q,p-non-local-
TV for several values of q and p, in order to show that the
proposed epigraphical splitting may be more efficient that
the existing solutions for handling this class of constraints.

4.2 Optimization method

As mentioned in the introduction, proximal algorithms can
efficiently solve Problem (35) as long as the proximity op-
erator of the involved functions can be efficiently computed.
Unfortunately, the projection onto the lower level set of (36)
cannot be computed in closed form. A possible approach to
circumvent this issue is given by the epigraphical splitting
presented in Section 2. Indeed, Problem (35) can be rewritten
as Problem 2 with R = 2, T1 = A, T2 = I, g1 = ‖D · −z‖2

2,
g2 = ι[0,255]N and h` = |·|q (for p = q≥ 1) or h` = ‖·‖p (for
q = 1 and p ∈ {2,+∞}). In order to solve this specific in-
stance of Problem 2, we will consider two proximal methods:
the primal-dual algorithm called Monotone+Lipschitz For-
ward Backward Forward (M+LFBF) [34], and the primal
algorithm called Simultaneous-Direction Method of Multi-
pliers (SDMM) [1]. According to the general results in [34,
Theorem 4.2] and [1], the sequence

(
x[i]
)

i∈N generated by
M+LFBF or SDMM is guaranteed to converge to a (global)
minimizer of Problem 2.

4.3 Numerical results

The aim of our experiments is twofold. Firstly, we will dis-
play an example of image reconstructed with the different
types of non-local-TV regularization, in order to evaluate the
visual impact of each regularization. Secondly, in order to
show the efficiency of the proposed epigraphical splitting,
we will compare the execution time required by M+LFBF
and SDMM to solve Problem (35) using: 1) the epigraphical
approach, and 2) the standard approach that employs specific
numerical methods to deal with a `̀̀1- or `̀̀1,2-ball [11] and a
`̀̀1,∞-ball [43].

4 Methods for building N` and setting the associated weights are
described in [60–62]. In our experiments, we use the `̀̀q,p-TV regulariza-
tion to obtain an estimate of x, which we subsequently use to compute
the weights through the self-similarity measure proposed in [62].

Fig. 1 illustrates the restoration of a RGB color im-
age (N = 320×480×3) degraded by a 3×3 uniform blur
(applied component-by-component), a decimation that ran-
domly removes 60% of the pixels (K = 0.4×N) and an
additive white Gaussian noise with variance 102. The con-
straint bounds η for the several `̀̀q,p-balls were hand-tuned in
order to achieve the best SNR values. These results show the
interest of considering non-local operators and `̀̀1,∞-norms
for modelling the regularity present in color images.

Fig. 2 compares the speed of the considered algorithms
(w.r.t. the example in Fig. 1), showing the distance ‖x[i]−
x[∞]‖ as a function of the execution time for the epigraphical
approach and the approach based on the direct computation
of projections. The stopping criterion is set to ‖x[i+1]−x[i]‖≤
10−5‖x[i]‖, and x[∞] denotes the solution obtained when such
a criterion is reached. Note that x[∞] may not be unique, hence
it was computed for each algorithm independently. These
plots indicate that the proposed epigraphical approach yields
a faster convergence.

Since the constraint bound η may not be known pre-
cisely, it is important to evaluate the impact of its choice
on our method performance (it is out of the scope of this
paper to devise an optimal strategy to set this bound). In
Tables 1-4, we compare the execution times of epigraphical
and direct approaches for different choices of regularization
constraints and values of η . However, in order to reduce the
computation burden of the direct projection onto the `̀̀1,∞-
ball, we present the results obtained with the grayscale image
boat cropped at 256×256.5 The stopping criterion is set to
‖x[i+1]− x[i]‖ ≤ 10−4‖x[i]‖. For more readability, the values
of η are expressed as a multiplicative factor of the `̀̀q,p-non-
local-TV semi-norm evaluated on the original image.

– Tables 1 and 2 report the comparison for `̀̀1,2-TV and
`̀̀1,∞-TV, respectively. The convergence times indicate
that the epigraphical approach yields a faster convergence
although it requires more iterations in order to converge.
This can be explained by the computational cost of the
subiterations required by the direct projections onto the
`̀̀1,p-ball. Moreover, the numerical results show that er-
rors within ±20% from the optimal value for η lead to
SNR variations within 2%.

– Tables 3 and 4 collects the results of `̀̀1,2-non-local-TV
and `̀̀1,∞-non-local-TV for different sizes of the neigh-
bourhood N`. The convergence times show that the epi-
graphical approach is faster than the direct one for both
considered algorithms. Moreover, it can be noticed that
errors within ±20% from the optimal bound value lead
to SNR variations within 1%.

Note that our codes were developed in MATLAB R2011b
(the operators F and F> are implemented in C) and executed
on an Intel Xeon CPU at 2.80 GHz and 8 GB of RAM.

5 Note that the `̀̀1,2-norm performs better on grayscale images.
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(a) Original image. (b) Degraded image. (c) `̀̀2,2-non-local-TV: 18.12–0.761.

(d) `̀̀1,1-TV: 17.78–0.787. (e) `̀̀1,2-TV: 18.36–0.821. (f) `̀̀1,∞-TV: 18.91–0.824.

(g) `̀̀1,1-non-local-TV: 18.93–0.828. (h) `̀̀1,2-non-local-TV: 19.47–0.839. (i) `̀̀1,∞-non-local-TV: 20.17–0.847.

Fig. 1 Comparison of SNR (dB) – SSIM [66] indices for an example of restoration.
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(a) `̀̀1,2-TV.
0 200 400 600 800 1000 1200 1400

10
−4

10
−3

10
−2

10
−1

10
0

 

 

M+LFBF (direct)

M+LFBF (epi)

SDMM (direct)

SDMM (epi)

(b) `̀̀1,∞-TV.
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(c) `̀̀1,2-non-local-TV.
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(d) `̀̀1,∞-non-local-TV.

Fig. 2 Plots (distance to x[∞] vs execution time) comparing the epigraphical and direct approaches implemented with M+LFBF and SDMM.
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Table 1 Results for the `̀̀1,2-TV constraint and different values of η (w.r.t. the grayscale image boat cropped at 256×256)

η SNR (dB) – SSIM

SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

0.45 19.90 – 0.733 107 6.07 174 2.03 2.99 113 6.15 182 3.49 1.76
0.50 20.18 – 0.745 117 6.95 159 1.95 3.57 116 6.97 168 3.44 2.03
0.56 20.23 – 0.745 129 8.36 153 1.90 4.41 124 8.17 159 3.01 2.72
0.62 20.16 – 0.737 141 9.44 155 1.83 5.16 131 8.62 159 3.26 2.65
0.67 20.00 – 0.724 154 10.20 162 2.17 4.71 140 10.00 164 2.84 3.52

Table 2 Results for the `̀̀1,∞-TV constraint and different values of η (w.r.t. the grayscale image boat cropped at 256×256)

η SNR (dB) – SSIM

SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

0.45 19.52 – 0.726 160 312.55 231 3.89 80.43 183 347.10 252 6.43 53.96
0.50 19.71 – 0.728 168 342.01 215 3.75 91.31 185 368.24 236 5.83 63.17
0.56 19.71 – 0.734 180 373.60 211 3.49 106.93 189 386.29 229 5.53 69.91
0.62 19.59 – 0.715 196 412.68 216 3.67 112.50 198 411.04 229 5.86 70.15
0.67 19.39 – 0.698 211 448.77 223 3.76 119.27 207 437.66 234 5.76 75.96

Table 3 Results for the `̀̀1,2-non-local-TV constraint and different values of η (w.r.t. the grayscale image boat cropped at 256×256)

η SNR (dB) – SSIM

SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

Neighbourhood size: 3×3
0.43 20.82 – 0.757 208 20.67 211 10.93 1.89 82 6.95 93 3.76 1.85
0.49 20.97 – 0.765 167 16.84 177 9.01 1.87 75 6.61 83 3.47 1.91
0.54 21.02 – 0.767 147 15.31 157 7.93 1.93 71 6.45 77 3.15 2.04
0.59 20.98 – 0.764 134 14.44 148 7.67 1.88 72 6.58 77 3.24 2.03
0.65 20.88 – 0.757 133 14.82 136 7.11 2.08 76 7.53 80 3.27 2.30

Neighbourhood size: 5×5
0.43 21.00 – 0.766 301 56.03 343 45.18 1.24 82 8.51 90 5.43 1.57
0.49 21.15 – 0.773 260 49.03 302 39.64 1.24 75 7.90 81 4.90 1.61
0.54 21.20 – 0.775 242 46.31 283 37.72 1.23 71 8.26 75 4.47 1.85
0.59 21.17 – 0.773 231 46.20 268 36.56 1.26 70 7.94 74 4.49 1.77
0.65 21.08 – 0.767 220 44.64 252 34.46 1.30 73 8.40 76 4.59 1.83

Table 4 Results for the `̀̀1,∞-non-local-TV constraint and different values of η (w.r.t. the grayscale image boat cropped at 256×256)

η SNR (dB) – SSIM

SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

Neighbourhood size: 3×3
0.43 20.78 – 0.762 434 1470.46 449 25.03 58.76 225 730.26 244 12.35 59.15
0.49 20.86 – 0.764 395 1319.64 413 22.86 57.72 221 692.25 237 11.92 58.08
0.54 20.83 – 0.760 363 1193.61 382 21.46 55.62 217 667.50 233 11.46 58.22
0.59 20.73 – 0.752 340 1093.26 354 19.77 55.30 216 653.79 230 11.67 56.01
0.65 20.58 – 0.740 322 1007.55 336 18.64 54.06 216 643.00 229 11.45 56.18

Neighbourhood size: 5×5
0.43 20.91 – 0.769 384 2069.62 452 64.42 32.13 233 863.01 252 18.47 46.73
0.49 20.97 – 0.767 326 1700.34 412 58.66 28.99 231 822.06 247 18.36 44.77
0.54 20.98 – 0.771 290 1476.98 389 55.35 26.69 229 787.61 245 17.90 43.99
0.59 20.88 – 0.759 276 1336.16 374 52.64 25.38 230 772.42 245 17.57 43.96
0.65 20.75 – 0.749 268 1220.14 362 51.45 23.72 231 760.86 245 17.81 42.72
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5 Pulse shape design

We revisit the problem of a pulse shape design for digital
communications presented in [49], where it was addressed
in terms of constrained convex optimization. Denote by
x =

(
x(`)
)

0≤`≤N−1 ∈ RN the pulse, by χ =
(
χ(`)
)

0≤`≤N−1
its discrete Fourier transform, and assume that the underlying
sampling rate is 2560 Hz. The following constraints arise
from engineering specifications [49].

(i) The modulus of the Fourier transform should not exceed
the bound γ = 10−3/2 beyond 300 Hz. This leads to

(∀` ∈ D1) C(`)
1 =

{
x ∈ RN ∣∣ |χ(`)| ≤ γ

}
, (38)

where D1 represents frequencies beyond 300 Hz.
(ii) Vanishing frequencies of χ at the zero frequency and at

integer multiples of 50 Hz:

C2 =
{

x ∈ RN ∣∣ (∀` ∈ D2) χ
(`) = 0

}
(39)

where D2 denotes the frequencies where the Fourier trans-
form χ vanishes.

(iii) Symmetry of the pulse and its mid-point value should be
equal to 1:

C3 = {x ∈ RN | x(N/2) = 1 and

(∀` ∈ {0, . . . ,N/2}) x(`) = x(N−1−`))}. (40)

(iv) Pulse duration should be 50 ms and it should have peri-
odic zero crossings every 3.125 ms:

C4 =
{

x ∈ RN ∣∣ (∀` ∈ D4) x(`) = 0
}
, (41)

where D4 is the set of time indices in the zero areas.
(v) Pulse energy should be as small as possible, in order to

avoid interference with other systems.

5.1 Optimization method

Some of the aforementioned constraints are incompatible
(e.g. the second and the fourth ones). Hence, in order to make
the problem feasible, we propose to replace the convex sets
(C(`)

1 )1≤`≤N with the following constraint:

C1 =
{

x ∈ RN ∣∣ ∑
`∈D1

dq

C(`)
1

(χ(`))≤ η
}
, (42)

where η > 0 and q ∈ [1,+∞[. Therefore, the resulting opti-
mization problem reads

minimize
x∈RN

‖x‖2
2 +

4

∑
s=1

ιCs(x). (43)

As mentioned in the introduction, proximal algorithms can
efficiently solve the above problem as long as the projection
associated to each constraint (Cs)1≤s≤5 can be efficiently

computed. Unfortunately, the projection onto C1 cannot be
computed in closed form. We thus propose to circumvent
this issue by using the epigraphical splitting presented in
Section 2. Indeed, (43) can be rewritten as Problem 2 with
R = 4, T1 = · · · = T4 = I, g1 = ‖ · ‖2

2, gs = ιCs for each s ∈
{2, . . . ,4}, L = N and

E =
{
(y,ζ ) ∈ RN×RN ∣∣ (∀` ∈ D1) (y(`),ζ (`)) ∈ epidq

C(`)
1

}
,

(44)

V =
{

ζ ∈ RN ∣∣ 1>D1
ζ ≤ η

}
. (45)

5.2 Numerical results

Fig. 3 presents state-of-the-art results (from [49]), while
Fig. 4 presents the results obtained with the proposed so-
lution for q = 2 and different values of η . Note that for large
values of η , the solutions converge to a solution of the uncon-
strained (without imposing C1) problem (cf. Fig 3-right). It is
also interesting to experimentally observe that the estimated
pulse for the smallest value of η leading an admissible solu-
tion (cf. Fig 4-left) is similar to the solution proposed in [49]
(cf. Fig. 3 - middle). As illustrated by these experiments, the
proposed approach allows us to gain more design flexibility
at the expense of a small additional computational cost.

6 Conclusions

We have proposed a new epigraphical technique to deal with
constrained convex optimization problems with the help of
proximal algorithms. In particular, we have turned our atten-
tion to constraints based on distance functions and weighted
`̀̀q,p-norms. In the context of 1D signals, we have shown that
constraints based on distance functions are useful for pulse
shape design. In the context of images, we have used `̀̀1,p-
balls to promote block-sparsity of analysis representations.
The obtained results demonstrate the good performance (in
terms of image quality) of non-local measures and `̀̀1,∞-norm
in color imagery. Nevertheless, it would be also interesting
to consider alternative applications of `̀̀1,∞-norms, such as
regression problems [67].

Furthermore, the experimental part indicates that the epi-
graphical method converges faster than the approach based
on the direct computation of the projections via standard
iterative solutions. Parallelization of our codes should even
allow us to accelerate them [46]. Note that, although the
considered application involves two constraint sets, the pro-
posed approach can handle an arbitrary number of convex
constraints. In addition, the epigraphical approach could also
be used to develop approximation methods for addressing
more general convex constraints.
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Fig. 3 State-of-the-art results: pulse x (top) and its Fourier transform χ (bottom). (a) Minimizer of ‖x‖2
2 + dC3 (x) + dC4 (x) subject to

x ∈
(⋂
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)
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1
(x) subject to x ∈C2∩C3∩C4. (c) Minimizer of ‖x‖2

2 subject to x ∈C2∩C3∩C4.
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Fig. 4 Results obtained from (43) with q = 2: pulse x (top) and its Fourier transform χ (bottom).
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7 Appendix

7.1 Proof of Proposition 1

For every (y,ζ ) ∈H ×R, let (p,θ) = Pepiϕ(y,ζ ). If ϕ(y)≤
ζ , then p = y and θ = ζ = max{ϕ(p),ζ}. In addition,

(∀u ∈H ) 0 =
1
2
‖p− y‖2 +

1
2
(

max{ϕ(p)−ζ ,0}
)2

≤ 1
2
‖u− y‖2 +

1
2
(

max{ϕ(u)−ζ ,0}
)2
, (46)

which shows that (18) holds. Let us now consider the case
when ϕ(y)> ζ . From the definition of the projection, we get

(p,θ) = argmin
(u,ξ )∈epiϕ

‖u− y‖2 +(ξ −ζ )2. (47)

From the Karush-Kuhn-Tucker theorem [68, Theorem 5.2],6
there exists α ∈ [0,+∞[ such that

(p,θ) = argmin
(u,ξ )∈H ×R

1
2
‖u− y‖2 +

1
2
(ξ −ζ )2 +α(ϕ(u)−ξ ) (48)

where the Lagrange multiplier α is such that α(ϕ(p)−θ)=0.
Since the value α = 0 is not allowable (otherwise it would
lead to p = y and θ = ζ ), it can be deduced from the above
equality that ϕ(p) = θ . In addition, differentiating the La-
grange functional in (48) w.r.t. ξ yields ϕ(p)=θ=ζ +α ≥ ζ .
Hence, (p,θ) in (47) is such that θ =ϕ(p)=max{ϕ(p),ζ}
and

p = argmin
u∈H

ϕ(u)≥ζ

‖u− y‖2 +(ϕ(u)−ζ )2. (49)

Furthermore, as ϕ(y)> ζ , we obtain

inf
u∈H

ϕ(u)≤ζ

‖u− y‖2 = ‖Plev≤ζ ϕ(y)− y‖2 = inf
u∈H

ϕ(u)=ζ

‖u− y‖2, (50)

where we have used the fact that Plev≤ζ ϕ(y) belongs to the
boundary of lev≤ζ ϕ which is equal to

{
u ∈H

∣∣ ϕ(u) = ζ
}

since ϕ is lower-semicontinuous and domϕ is open [40,
Corollary 8.38]. We have then

inf
u∈H

ϕ(u)≤ζ

‖u−y‖2 = inf
u∈H

ϕ(u)=ζ

‖u−y‖2≥ inf
u∈H

ϕ(u)≥ζ

‖u−y‖2+(ϕ(u)−ζ )2.

(51)

Altogether, (49) and (51) lead to

p = argmin
u∈H

1
2
‖u− y‖2 +

1
2
(
ϕ(u)−ζ

)2 (52)

which is equivalent to (18) since 1
2 (max{ϕ−ζ ,0})2 ∈Γ0(H ).

6 By considering u0 ∈ domϕ and ξ0 > ϕ(u0), the required qualifica-
tion condition is obviously satisfied.

7.2 Proof of Proposition 3

Since (max{ϕ−ζ ,0})2 is an even function, prox 1
2 (max{ϕ−ζ ,0})2

is an odd function [24, Remark 4.1(ii)]. In the following, we
thus focus on the case when y ∈ ]0,+∞[. If ζ ∈]−∞,0],
then (max{ϕ−ζ ,0})2 = (ϕ−ζ )2 is differentiable and, ac-
cording to the fact that p = prox f (y) is uniquely defined as
y− p ∈ ∂ f (p), we deduce that p = prox 1

2 (ϕ−ζ )2(y) is such
that

p− y+qτ pq−1(τ pq−ζ ) = 0, (53)

where p≥ 0 by virtue of [69, Corollary 2.5]. This allows us
to deduce that p = χ0.

Let us now focus on the case when ζ ∈]0,+∞[. If y ∈
]0,(ζ/τ)1/q[, it can be deduced from [69, Corollary 2.5],
that p = prox 1

2 (max{ϕ−ζ ,0})2(y) ∈ [0,(ζ/τ)1/q[. Since (∀v ∈
[0,(ζ/τ)1/q[) max{ϕ(v)−ζ ,0}= 0, we have p = y. On the
other hand if y > (ζ/τ)1/q, as the proximity operator of
a function from R to R is continuous and increasing [69,
Proposition 2.4], we obtain

p = prox 1
2 (max{ϕ−ζ ,0})2(y)≥

prox 1
2 (max{ϕ−ζ ,0})2

(
(ζ/τ)1/q)= (ζ/τ)1/q. (54)

Since (max{ϕ − ζ ,0})2 is differentiable and, for each v ≥
(ζ/τ)1/q, (max{ϕ(v)−ζ ,0})2 = (τvq−ζ )2, we deduce that
p is the unique value in [(ζ/τ)1/q,+∞[ satisfying (53).

7.3 Proof of Proposition 4

Let us notice that 1
2 (max{τdq

C−ζ ,0})2 = ψ ◦dC where ψ =
1
2 (max{τ| · |q−ζ ,0})2. According to [49, Proposition 2.7],
for every y ∈H ,

proxψ◦dC
(y)=


y, if y ∈C,

PC(y), if dC(y)≤max∂ψ(0),
αy+(1−α)PC(y), if dC(y)> max∂ψ(0)

(55)

where α =
proxψ

(
dC(y)

)
dC(y)

. In addition, we have

∂ψ(0) =

{
[τζ ,−τζ ], if ζ < 0 and q = 1,
{0}, otherwise,

(56)

and, according to Proposition 2, when ζ<0 and dC(y)≤−τζ ,
proxψ

(
dC(y)

)
= 0. This shows that (55) reduces to (25).
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7.4 Proof of Proposition 5

For every (y,ζ ) ∈ RM×R, in order to determine Pepiϕ(y,ζ ),
we have to find

min
θ∈[0,+∞[

(
(θ −ζ )2 + min

|p(1)|≤θ/τ(1)
...

|p(M)|≤θ/τ(M)

‖p− y‖2
)
. (57)

For all θ ∈ [0,+∞[, the inner minimization is achieved when,
∀m∈ {1, . . . ,M}, p(m) is the projection of y(m) onto the range
[−θ/τ(m),θ/τ(m)], as given by (31). Then, (57) reduces to

min
θ∈[0,+∞[

(
(θ −ζ )2 +

M

∑
m=1

(max{|y(m)|−θ/τ
(m),0})2

)
(58)

which is equivalent to calculate θ = proxφ+ι[0,+∞[
(ζ ) where

φ(v) =
1
2

M

∑
m=1

(max{(τ(m))−1(ν(m)− v),0})2. (59)

The function φ belongs to Γ0(R) since, for each m∈{1, . . . ,M},
max{(τ(m))−1(ν(m)−·),0} is finite convex and (·)2 is finite
convex and increasing on [0,+∞[. In addition, φ is differen-
tiable and such that, for every v ∈ R and k ∈ {1, . . . ,M+1},

ν
(k−1)<v≤ν

(k) ⇒ φ(v)=
1
2

M

∑
m=k

(τ(m))−2(v−ν
(m)
)2
. (60)

By using [25, Prop. 12], θ = P[0,+∞[(χ) with χ = proxφ (ζ ).
Therefore, there exists an m ∈ {1, . . . ,M + 1} such that
ν(m−1) < χ ≤ ν(m) and ζ −χ = φ ′(χ), so leading to

ζ −χ =
M

∑
m=m

(τ(m))−2(χ−ν
(m)) ⇔ (32) (61)

and ν(m−1) < χ ≤ ν(m) ⇔ (33). The uniqueness of m ∈
{1, . . . ,M+1} follows from that of proxφ (ζ ).
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4. F.-X. Dupé, M. J. Fadili, and J.-L. Starck. A proximal iteration for
deconvolving Poisson noisy images using sparse representations.
IEEE Trans. Image Process., 18(2):310–321, Feb. 2009.

5. J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher. Structure-texture im-
age decomposition - modeling, algorithms, and parameter selection.
Int. J. Comp. Vis., 67(1):111–136, Apr. 2006.

6. L. M. Briceño-Arias, P. L. Combettes, J.-C. Pesquet, and N. Pustel-
nik. Proximal algorithms for multicomponent image recovery
problems. J. Math. Imag. Vis., 41(1):3–22, Sep. 2011.

7. S. Theodoridis, K. Slavakis, and I. Yamada. Adaptive learning in a
world of projections. IEEE Signal Process. Mag., 28(1):97–123,
Jan. 2011.

8. C. Chaux, M. El Gheche, J. Farah, J.-C. Pesquet, and B. Pesquet-
Popescu. A parallel proximal splitting method for disparity estima-
tion from multicomponent images under illumination variation. J.
Math. Imag. Vis., 47(3):167–178, November 2013.

9. S. Mallat. A wavelet tour of signal processing. Academic Press,
San Diego, USA, 1997.

10. L. Jacques, L. Duval, C. Chaux, and G. Peyré. A panorama on mul-
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