
HAL Id: hal-00855146
https://hal.science/hal-00855146v2

Submitted on 8 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware Trojan Horses in Cryptographic IP Cores
Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, Xuan Thuy Ngo, Laurent

Sauvage

To cite this version:
Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, Xuan Thuy Ngo, Laurent Sauvage. Hardware
Trojan Horses in Cryptographic IP Cores. FDTC (Fault Detection and Tolerance in Cryptography),
Aug 2013, Santa Barbara, United States. pp.15-29, �10.1109/FDTC.2013.15�. �hal-00855146v2�

https://hal.science/hal-00855146v2
https://hal.archives-ouvertes.fr

Hardware Trojan Horses in Cryptographic IP Cores

Shivam BHASIN1, Jean-Luc DANGER1,2, Sylvain GUILLEY1,2, Xuan Thuy NGO1,† and Laurent SAUVAGE1,2

1Institut MINES-TELECOM, TELECOM-ParisTech

CNRS LTCI (UMR 5141),

46 rue Barrault, 75 634 Paris Cedex 13, France.

Email: firstname.lastname@telecom-paristech.fr

2Secure-IC S.A.S.

80 avenue des Buttes de Coësmes, 35 700 Rennes, France.

Email: firstname.lastname@secure-ic.com

†Corresponding author.

Abstract—Detecting hardware trojans is a difficult task in
general. In this article we study hardware trojan horses insertion
and detection in cryptographic intellectual property (IP) blocks.
The context is that of a fabless design house that sells IP
blocks as GDSII hard macros, and wants to check that final
products have not been infected by trojans during the foundry
stage. First, we show the efficiency of a medium cost hardware
trojans detection method if the placement or the routing have
been redone by the foundry. It consists in the comparison
between optical microscopic pictures of the silicon product and
the original view from a GDSII layout database reader. Second,
we analyze the ability of an attacker to introduce a hardware
trojan horse without changing neither the placement nor the
routing of the cryptographic IP logic. On the example of an
AES engine, we show that if the placement density is beyond
80%, the insertion is basically impossible. Therefore, this settles
a simple design guidance to avoid trojan horses insertion in
cryptographic IP blocks: have the design be compact enough,
so that any functionally discreet trojan necessarily requires a
complete re-place and re-route, which is detected by mere optical
imaging (and not complete chip reverse-engineering).

Index Terms—Hardware trojan horses (HTH), HTH detection
and insertion, optical pictures versus GDSII comparison tech-
nique, ECO place-and-route, core utilization rate (CUR).

I. Introduction

The semiconductor industry has spread across borders in

the time of globalization. Different design phases of an In-

tegrated Circuit (IC) may be performed at geographically

dispersed locations. This coupled with the outsourcing design

and fabrication to increase profitability has become a common

trend in the semiconductors industry. However, this business

model comes with an ample scope of introducing malicious

behavior to a part of the IC. The adversary has enough scope to

tamper the supply chain by maliciously implanting extra logic

as Hardware Trojan Horse (HTH) circuitry into an IC [41].

This raises serious concerns about security and trustworthiness

of imported products employed in critical applications like

military, health, transportation, etc. HTH can be introduced

in an IC at several points right from the Register Transfer

Level (RTL) source code to lithographic masks fabrication. An

C CmodifiedA
B

Trojan active

PayloadTrigger

Figure 1. Minimalist Hardware Trojan Horse example

attacker can change a design netlist or subvert the fabrication

process by manipulating design masks, without affecting the

main functionality of the design [2].

Any HTH is composed of two main components [37]:

• Trigger: is the part of HTH used to activate the malicious

activity,

• Payload: is the part of HTH used to realize/execute the

malicious activity.

Fig. 1 gives an example of one simplistic HTH. In this

archetype HTH, the trigger is a simple AND gate: it tests the

equality of the inputs A and B to 1; the payload is an XOR

gate: it inverts the intermediate net C if the trigger is active.

An adversary can introduce a HTH which might be designed

to disable or destroy a system at some future time, or to leak

confidential information such as secret keys covertly to an

adversary [36] by putting them to output channels. In [35],

the author demonstrates an attack on a (purported military-

grade) chip using a malicious backdoor. The backdoor allows

the attacker to disable all the security of the chip, reprogram

cryptographic part, access secret keys, modify low-level sil-

icon features, access unencrypted configuration bitstream or

permanently damage the device. Thus protection against HTH

is an open problem and an active research topic.

HTH detection is an extremely challenging problem; tradi-

tional structural and functional tests do not seem to be effective

in targeting and detecting HTHs. Since HTH can be introduced

during different design phases, the nature of HTH differs from

one design phase to the others. Therefore it is difficult to

find a unique detection technique for all HTH. For instance

Automatic Test Pattern Generation (ATPG) methods which

are used in manufacturing test for detecting defects, generally

operate on the netlist of the HTH-free circuit. Existing ATPG

algorithms cannot target HTH activation/detection directly [42]

because HTH are designed such that they are silent most

of their lifetime and have very small size relative to their

host design, with featuring limited contribution into design

characteristics. Such HTHs are most likely connected to nets

with low controllability and/or observability [42], [5].

The state of the art principle in detection strategies of HTH

can be widely classified in two categories, viz. invasive and

non-invasive [26].

Invasive methods try to (prophylactically) modify the design

of IC to prevent the HTH or to assist another detection

technique. Chakraborty et al. have proposed a design that

aims to expose the presence of a HTH in a multi-module

design [11]. Salmani et al. propose a procedure to insert

dummy flip-flops into logic to increase HTH activity, making

the detection easier using side-channel techniques [33]. Other

researchers also suggest logic additions that will make it easier

to detect a HTH utilising side-channel analysis, e.g., [25] add

extra logic for characterising delay times within an IC.

Non-invasive HTH detection is done by comparing the

performance characteristics of an IC with a known good copy

also known as the “golden circuit”. Detecting HTH in a non-

invasive manner can be done either at runtime or in the testing

phase. The runtime detection mechanisms is combined with

the countermeasures, as once a HTH is detected at runtime,

attempts are made to try and continue operating by bypassing

the HTH. For runtime, Bloom et al. detail a HTH detection

approach that uses both hardware and software to detect

two types of HTH which are DoS (Denial of Service) and

combined hardware and software HTH [8]. Abramovici and

Bradley added reconfigurable DEsign-For-ENabling-SEcurity

(DEFENSE) logic to the functional design to implement real-

time security monitors [1]. McIntyre et al. detect the presence

of HTHs by executing functionally equivalent processes on

multiple hardware processing elements [27]. The testing phase

detection methods attempt to enhance traditional IC testing,

or use side-channel analysis. For logic testing, Jha and Jha

present a randomisation-based technique which probabilisti-

cally compares the functionality of the design of the circuit

with the implemented circuit [19]. Chakraborty et al. suggest

to test rare occurrences on an IC rather than testing for cor-

rectness [12]. The tester determines rare states that can occur

within a circuit module. For side-channel analysis, Agrawal et

al. present a type of detection mechanism [3]. Some known

good copies of the IC are obtained and fingerprinted using

one or more side-channel parameters. Other chips can then be

tested against these fingerprints like path delay in [20]. Power

supply transient signal analysis is used as the side channel by

Rad et al. [32]. They aim at determining the smallest HTH

that they can find using this technique, which can be as low

as three additional gates. Banga and Hsiao [5] propose the

“sustained vector technique” that is able to magnify the side-

channel differences (based on power draw) between circuits

infected with HTHs and those that are not.

Most of the abovementioned techniques are indirect de-

tection methods (e.g. reviewed in Chapter 15 of [37]). Such

methods observe the effect of the HTH on the timing, the

side-channel emissions, etc. The presented indirect detection

methods are, under ideal circumstances, able to detect a

HTH even of small size. However, countermeasures protecting

cryptographic implementations often rely on perturbing the

power consumption by methods like random clock jitter or

masking of sensitive data, etc. Therefore, the indirect method,

though still feasible, will loose efficiency in such applications.

Another requirement for the indirect method is the golden

reference, which can be sometimes expensive to obtain. Also

side-channel based techniques are often becoming less efficient

because of factors like environmental/measurement noise, pro-

cess variation, or algorithmic noise. Thus HTH detection may

require a huge amount of traces. On the contrary, our direct

observation technique is not affected by the randomization or

variations brought by countermeasures.

In this paper, we develop a new HTH detection method

at the layout level of integrated circuits by using a low-cost

direct visual detection. We address the scenario where the

HTH is inserted by an untrusted off-shore foundry just before

the fabrication of a unit. We place ourselves in the role of a

designer who sends a HTH-free layout (e.g. in GDSII format

– Graphic Database System version II, format of Cadence

Design Systems) to a third-party foundry for fabrication but

is threatened by introduction of a HTH in the GDSII by the

untrusted fab. Of course an untrusted founder introducing a

HTH will not share the HTH-infected GDSII with the designer.

To address this issue we propose a detection technique based

on image processing/comparison techniques. These techniques

are used to compare the final HTH-free layout with the high-

quality optical snapshots of the IC. We illustrate our technique

on secret key block ciphers (modified to allow for a distant

fault injection); but actually it can also allow to detect the mod-

ification made in the netlist of arithmetic operations, which can

lead to “bug attacks” [6] in asymmetric cryptography. Several

works on insertion of HTH in cryptographic applications have

been previously studied [16], [4].

This paper describes a HTH based on a backdoor that can

activate a bitflip compliant with a (remote) differential fault

attack. It also discusses a visual or correlation based technique

capable of detecting modifications in the layout (that can

somehow be considered permanent faults).

The rest of this paper is organized as follows. Section II

gives a general background on AES and how fault attacks

can reveal its secret key. Also in this section, a small gate

count HTH is given whose principle is to trigger an artificial

fault injection. Section III presents the central contribution of

the paper: it explains how a visual comparison between the

chip and the original GDSII can reveal HTH insertions. An

automated method for the HTH detection based on a similarity

tool (namely the cross-correlation) is then presented. Based

on this detection method, a case study of HTH and results

are shown in Section IV; it is applied successfully to real

images and layouts. Section V gives some recommendations

for the designer to implement a cryptographic IP module that

would resist to HTH insertion; that is either the HTH fails to

be inserted by lack of resources, or it will be detected after

fabrication with our low-cost visual detection based on lay-

out/picture comparison. Finally conclusions and perspectives

are drawn in Section VI. In the appendix A, the setup to test

the proposed fault-based HTH is presented.

II. Proposal for a Low Gate Count Hardware Trojan Horse

in AES

A. General Background on Differential Fault Analysis and

AES

Physical attacks which target the implementation of crypto-

graphic circuits (in smartcards, pay-TV and SIM cards, etc.)

have been known for some years now. They are widely classi-

fied as “observation” and “perturbation” attacks. Observation

or side channel attacks (SCA) consist in observing physical

emanations of the system, like power (Differential Power

analysis, or DPA [23]) or E/H field (ElectroMagnetic Analysis,

or EMA [31]). Thereafter statistical tools are deployed to

find dependency between the predicted and observed behavior.

Perturbation or fault attacks consist in the injection of faults

during the execution of a cryptographic algorithm [7]. From

the knowledge of one or multiple couples {correct ciphertext,

faulted ciphertext}, some hypotheses on the secret key can be

discarded. This generic attack strategy is referred to as DFA

(Differential Fault Analysis). DFA is very effective against

some cryptographic algorithms. For example in AES, the

number of faulty ciphertext required to break the key can be

as low as two1. There are several techniques known for fault

injection in a system [21]. The variations of the supply voltage,

overclocking, temperature increase, or the irradiation by a laser

beam will most probably lead to a wrong computation result

that can be exploited to realize a DFA. This kind of attack

represents a real threat for the implementation of cryptographic

algorithms such as the AES.

In the sequel, and without loss of generality, we focus on

the 128-bit version of AES. AES is a substitution permuta-

tion network (SPN) product block cipher. It has an iterative

structure, consisting in the repetition of ten rounds which are

applied to the 16 bytes data block to be encrypted. The 16

bytes are laid out as a matrix of four columns of four bytes

si, j, where 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3. A round consists

of a fixed sequence of transformations. Apart from the first

and the last rounds, the other eight rounds are identical and

consist of four transformations each. The first and last rounds

1Recently, some even stronger attacks have been presented [40]; the idea is
to exploit further relationships from the key scheduling logic to end up with a
Boolean equation system that solves the key with one fault, albeit at the cost
of more computation. For the need of our HTH design, both types of DFA
would be equally adequate.

are incomplete, so as to ease the decryption. The four round

transformations are called SubBytes, ShiftRows, MixColumns

and AddRoundKey.

Piret’s DFA [29] assumes only a random “byte-flip” in the

last or antepenultimate encryption round. This means that the

state state9 at the 9th round (in the case of AES-128), is

replaced by state9⊕ ǫ, where ǫ is a 16 byte vector where only

one byte is nonzero:

state9

fault injection
−−−−−−−−−−−→ state9 ⊕ ǫ . (1)

It is an attack that consists in solving a system of non-

linear equations with Boolean variables: the 128+ 8 unknown

variables are the key and the fault, whereas the 128 + 128

known variables are the correct and the faulted ciphertexts.

In fact due to the linearity of the MixColumns transformation

there are 255 × 4 possible differences at the output of the

MixColumns. If we suppose a fault on one input byte of the

last MixColumns it will affect 4 bytes of the output as shown

in Fig. 2 and if we use a pair of correct ciphertext C and a

faulty ciphertext F, we can make a guess about 4 bytes in the

key using Piret’s algorithm [29]. Eight single faults, located

by pairs in the four columns before the MixColumns stage of

the ninth round (further referred to as “Round 9”) permits the

unveiling of the whole key. Alternatively, for this attack, only

two single faults located before the MixColumns of the eighth

round (further denoted as “Round 8”) allows the attacker to

find the 16 bytes of the key.

B. DFA-based AES Hardware Trojan Horse

Fig. 3 shows an example of a HTH introduced in an AES

coprocessor. The inserted HTH aids the attacker to perform

faults compliant with Piret’s DFA. It has three activation

conditions:

1) First of all, an external switch (optional) should be

activated; it allowed us to validate the design without

and with the HTH, simply by moving a sliding lever

of a DIP switch on a SASEBO-GII board (for details,

please refer to appendix A).

2) Second, the HTH tests that the round counter is equal

to 8. As already mentioned, in this round, the fault is

scattered to all of the 128 bits of the ciphertext, and these

faulted bits allow to retrieve the complete last round key.

3) The third activation condition is a pattern detected in the

plaintext. Concretely, our HTH is generic: depending

on a parameter N, N bits of the plaintext are tested

for equality to one. Such genericity makes it possible

for a trade-off: the larger N, the smaller the activation

probability (1/2N) – by functional test for instance –

but the larger the HTH (its size grows roughly speaking

proportionally with N). A working example of this HTH

on FPGA is shown in Appendix A for N = 16.

The HTH payload is a single XOR gate which faults one

bit of the AES in the inner eighth round. As a consequence,

this HTH is more compact than other HTH that would (for

instance) output one round key instead of the ciphertext; such

strategy requires at least 128 multiplexers.

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

S
00

S
03

S
02S

01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

K9 K10

S
00

S
03

S
02S

01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
00

S
03

S
02S

01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
h
iftR

o
w

s

M
ix

C
o
lu

m
n
s

S
h
iftR

o
w

s

S
00

S
03

S
02S

01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
u
b
B

y
te

s

S
u
b
B

y
te

s

S
00

S
03

S
02S

01

S
12S

11
S

13

S
21

S
20

S
22

S
23

S
30

S
31 S

33
S

32

S
10

S
03

S
02

S
12S

11
S

13

S
21

S
20

S
22

S
30

S
31 S

33

S
01

S
00

S
03

S
02

S
12S

11
S

13

S
21

S
20

S
22

S
30

S
31 S

33

S
01

S
00

Round 9

Cipher Text

Round 10

Figure 2. Effect of a fault in last but one round of AES-128.

In our setup, the attacker needs to activate the HTH for

2 encryptions to retrieve the whole key. The power of the

attacker will be determined by the HTH activation circuit. The

smaller the activation circuit (Trigger) is applied, the more

difficult it is to detect HTH, thus the more dangerous it is.

We stress that some interpretation (in other words, little

reverse-engineering) of a GDSII file is needed to identify

the resources where to plug the HTH. However, we assume

that the localization of the state register (128 flip-flops) is

fairly easy, and thus understanding roughly speaking the

organization of the layout should be feasible without too much

pain.

To some extent, the principle of this fault-based HTH is the

equivalent to the “intentionally leaky” blocks discussed in [22]

for side-channel analyses, but in the domain of fault injection

attacks. Indeed, the side-channel (resp. fault injections) attacks

are used for a constructive feature (although our HTH actually

implements a malicious functionality!).

Finally, let us mention that, to our best knowledge, the first

HTH that relies on the insertion of a distant fault injection

mechanism is the “bug attack” [6]. It consists in slightly

altering a hardware integer multiplier, in such a way it delivers

always the correct answer but for at least one configuration

of the inputs. It has been shown by Biham, Carmeli and

Shamir that this permits a remote Bellcore [9] attack that

allows, for the insider who inserted the HTH and under

some circumstances (e.g. depending on the padding scheme),

a retrieval of the private key. The HTH presented in this

section is based on a similar idea that allows a remote DFA

on symmetric block ciphers.

C. Text-Only DFA-Based Hardware Trojan Horse

The Hardware Trojan Horse described in the previous

section II-B might seem awkward. Indeed, its trigger condition

requires the conjunction of several events, including a specially

crafted plaintext and an explicit binary activation. This choice

had been motivated by the ease to test it on the SASEBO

board. Nonetheless, it is possible to devise a hardware Trojan

horse which does not require the binary activation input, while

still allowing for a key extraction by DFA. One first method

simply consists in designing the Trojan so that it is sequential.

For instance, its trigger condition can be as follows:

• If the plaintext has such distinctive characteristic, then

• inject a fault in the antepenultimate (i.e., last but two)

round of the next encryption.

The attacker then simply sends twice the same plaintext

with the activation condition. The first one will be encrypted

correctly, while the second one will be corrupted. Hence a

DFA attack is possible.

An alternative solution is to design an AES block which

is able both to encrypt and decrypt. The Trojan activates

after the second round (i.e., mirror to the antepenultimate

round) of decryption, when some specially crafted ciphertext

is submitted. Let us denote one of such ciphertexts as c. The

(faulted) decryption yields an erroneous plaintext p′. However,

owing to the invertibility of the AES rounds and of the

fault injection (modeled as an exclusive-or with the state –

recall Eqn. (1)), it can also be considered that c is the faulty

ciphertext associated with the encryption of the plaintext p′,

which unfolded without error until round nine (as for AES-

128), where a fault is injected. Thus, it suffices for the attacker

to request the encryption of p′, which will execute without

fault (since the Trojan is only active in decryption mode).

This encryption yields c′, the correct ciphertext associated with

plaintext p′. Therefore, the pair (c, c′) allows to mount a DFA

attack.

Still, we notice a limitation. Both solutions have a drawback:

they do not work in the presence of some modes of operation,

because the inputs of the (trapped) AES cannot be chosen.

AddRoundKey

MixColumns

ShiftRows

SubBytes

AddRoundKey

AND

Grid

ShiftRows

SubBytes

Cipher Key

Round Key

Round Key 10

Initial Round

9 Rounds

Final Round

AddRoundKey

ac
ti

v
at

io
n

_
co

n
d

[0
]

(s
w

it
ch

)

ac
ti

v
at

io
n

_
co

n
d

[2
]

Output Cipher (128 bits)

Input Cipher (128 bits)

127

Trojan_active

127

ac
ti

v
at

io
n

_
co

n
d

[1
]

(8
th

 r
o

u
n

d
)

128

128

[126:0]
1271

Payload

N

Trigger

Figure 3. Differential Fault Analysis (DFA) based HTH in AES — Illustration of a remote DFA enabled by the HTH

III. Low-Cost Hardware Trojan Horse Detection by GDSII /

Picture Comparison

A. Reverse Engineering

Reverse engineering is often used in the semiconductor

industry to extract technical or patent related information

from a competitor’s chip [18]. The chip can be reverse en-

gineered at different levels like: product components, system-

level, process-level and circuit-level [39]. In our case we are

interested with the circuit-level reverse engineering. Modern

devices are fabricated in technology like 45 nm or lower

which can have up to 12 layers of metal and several millions

of transistors. The detail of the circuit are extracted in the

following sequential steps:

• package removal;

• delayering;

• imaging.

In the state of the art, “destructive reverse-engineering” can

be used to detect HTH for our scenario. Reverse-engineering

is generally performed by Chemical Metal Polishing (CMP)

followed by Scanning Electron Microscope (SEM) image

reconstruction and analysis [38]. It helps to reconstruct exactly

all via, metal and silicon layers. After, the determination of

the “correctness” of a chip is performed through visual com-

parison with a known good example or “golden reference”.

But this technique is very expensive since it takes a lot of

time (hence costs a lot) to realize properly: the mere error in

a picture (because the delayering left pieces of material on the

chip surface or because the recognition software [34] failed)

makes the reverse engineering fail. In addition, modern devices

are extremely small and densely packed, which makes the cost

(in money and time) of reverse engineering even higher.

B. Medium Cost Hardware Trojan Horse Detection

In this paper, we demonstrate that HTH inserted at GDSII

level can be spotted with a visual detection technique. The

main argument is that the full reverse-engineering is overkill

to detect a change in a layout. Mesoscopic imaging (obtained

with a ×150 optical microscope) is enough to conduct a

coarse imaging comparison between the GDSII file submitted

for fabrication and the returned circuit. High-end visible-light

microscope and camera are termed specialized equipments in

the attacks quotation application note [15, §3.7] (for Common

Criteria [14]), which means that they considered medium

cost laboratory tools. Indeed, the low-level (masks drawing)

“bitmap” comparison of two images is a more elementary task

than a full-fledged reverse engineering (that in addition aims

at interpreting the layout, i.e. reconstruct the netlist, by giving

sense to the picture). Still said differently, reverse engineering

is well suited to perform an “image versus netlist” comparison,

whereas we research in this paper to make a sheer “image

versus layout” comparison.

By optical observation, the M6 shape (topmost layer) can

be recovered. For example, Fig. 4 shows the layout and

the picture of the fabricated chip side-by-side. The layout is

opened in Mentor Graphics Calibre Litho View tool (r2102-

4.25), because it allows to set the color and the transparency

level for each layer. Specifically, we decided to represent the

topmost metal layer with a solid color, as this corresponds to

the non-transparency of this layer by optical microscopy. The

pictures were taken by a confocal microscope with a ×150

lens, and are presented in real colors (i.e. no image edition has

been performed: the image is raw). In the picture view, the L

shapes (that appear “white”) are aluminium dummy fillings2.

added to meet the density constraints of design rules. These

(innocuous) shapes cannot be seen in the layout view because

they are added by the silicon founder at masks preparation

steps. The technological node is 130 nm, where the metal lines

are in copper (that appear in “orange” color). The M6 lines are

rather routed vertical (but for the ring). Their smallest width is

460 nm. To a lesser extent, the M5 lines can be seen: those are

thiner lines (100 nm large). The L shapes slightly mask M6 /

M5 layers, but still the lines can be seen. In the “side of the

module” area of Fig. 4, various power and ground rings are

visible. In the “middle of the module” area of Fig. 4, power

strips and some signals of the AES core are visible. Some

of them are very noticeable, as they are making turns or even

zigzags (i.e. multiple jogs). If the chip has a shield layer (refer

to [10]), then the image recognition might be harder.

Our experiments are low cost, insofar as the circuits are

not depassivated (hence images are slightly blurred). Notwith-

standing we see that the pictures and the GDSII remarkably

match. Therefore, any single modification of the M6 (or M5)

routing could be easily detected visually.

In addition, the analyzed circuit remains functional, and so

it can be trusted alone. Indeed, in the case where both circuits

with and without HTH are produced, then the absence of HTH

2Given the orientation of the picture, each L shape appears like a Γ symbol.

Table I
Usage of routing resources per layer for the AES case-study with 95%

core utilization rate

Density

Layer
M1 M2 M3 M4 M5 M6

N = 0 44% 22% 20% 17% 10% 5%

N = 1 44% 22% 20% 17% 10% 5%

N = 2 44% 22% 20% 17% 10% 5%

N = 4 44% 22% 20% 17% 10% 5%

N = 8 44% 22% 20% 17% 10% 5%

N = 16 44% 22% 20% 17% 10% 5%

N = 32 44% 22% 20% 17% 10% 5%

N = 64 44% 22% 20% 17% 10% 6%

N = 128 44% 22% 20% 18% 11% 6%

on one circuit cannot prove the absence of HTH on all the

circuits.

Now, if we extrapolate to technologies where the feature

size is smaller (i.e. < 130 nm), a visual inspection might be

more delicate, and probably more error-prone. This is why in

the next section IV we use a statistical tool (viz. the cross-

correlation) instead of the exact shape recognition.

It can be argued that it is possible for the designer of a

HTH to route it using the inner metal layers (<M6). For

small HTHs, this is certainly true. However, when the HTH

becomes larger and larger, then low-level metal layers (M1,

M2, etc.) are already very crowded, and thus will feature a

faster congestion. For instance, in our AES module, the routing

density per layer for a core utilization rate of 95% is given in

Tab. I. For reasonable size hardware HTHs, the higher metal

layers are more likely to be used for routing the HTHs. Tab. I

also shows for AES infected with HTHs of size N = 1 to

N = 128. Obviously, some parts of the lower metal layers

are also used for routing. For the success of our method of

visual detection, it is sufficient that the higher layers are used

for routing some part of the HTHs. The higher the layer used

for routing the HTHs the simpler is it detection. Therefore if

only a small part of the HTHs uses the M6 tracks for routing,

our method can detect the presence. We do not need to go

down the other layers. But if the HTH is routed in lower level

metals, then circuit must be delayered. This operation is more

costly, however, since the passivation has been removed, the

layout stands out more clearly.

As a consequence, the strategy of an attacker is to make

the HTH as furtive as possible. Typically, she cannot change

the dimension of the IP block, because this will be the first

check made by the designer. So, the attacker must meet the

challenge to interleave the HTH gates and interconnections

signals inside the existing layout. Moreover, to be as discreet

as possible, low-level metal layers should be preferred.

However, as will be argued in the next section (and quanti-

fied with similarity metrics), it is extremely difficult to insert

logic (even some a couple of tens) in a design that is already

compact (density over 80%) without changing the appearance

of the layout.

Side of the module

M5

M6

Middle of the module

Figure 4. Picture (left hand side) and GDSII layout (right hand side – M6 in orange for Middle and Side of the module, M5 in yellow for Side of the
module) of an AES-128 cryptographic accelerator (area size: 67 µm × 60 µm)

IV. AES Hardware Trojan Horse Layout Study

A. Experiment Setup

In this experiment, we evaluate the feasibility and impacts of

HTH insertion at layout level. First, we create a circuit layout

without HTHs and then we insert a HTH with different sizes in

this layout while maintaining the IC placement and the routing.

After, we calculate the cross-correlation between these layouts

(layout without HTHs and layout with HTHs inserted) to see

the impacts of HTH insertion. The Cross-Correlation CC is

defined as the measure of similarity between two waveforms

or processes f1 and f2. It can be expressed as:

CC = Σx,y f1(x, y) · f2(x, y)

However, for image processing, cross-correlation may not be

an optimal metric. The problem arises from factors like light-

ning and exposure conditions. In such cases, the Normalized

Cross-Correlation (NCC) is recommended, which normalizes

the images before applying correlation. It is expressed as:

NCC =
1

nx · ny

·
Σx,y

(

f1(x, y) − f1
)

·
(

f2(x, y) − f2
)

σ f1 · σ f2

,

where nx (resp. ny) is the number of x (resp. y) values. NCC

is relevant to compare two heterogeneous objects (e.g. image

versus GDSII), unlike the “difference” that applies only to

two homogeneous objects (e.g. GDSII versus GDSII). We also

introduce another notion i.e. Reverse NCC or RNCC expressed

as:

RNCC = 1 − |NCC| ∈ [0, 1] .

The sole purpose of defining RNCC is for better visibility of

results. If the NCC between the image and the layout is low

Figure 5. HTH with N − 1 AND gates (AND tree) inserted in AES circuit

then RNCC will be high and it will be easy to distinguish the

error.

An AES 128-bit algorithm, as shown in Fig. 3, is imple-

mented to perform this experiment. Different AES layouts

with different core utilization rates are generated thanks to

Cadence Encounter (product SOC version 2012/8.1) software.

Core utilization rate is the area occupied by the standard cells

of the AES circuit relative to the total area of silicon. For

each core utilization, 8 HTHs with different sizes are inserted.

The structure of the HTH “trigger” consists in a series of

AND gates, as depicted in Fig. 5. The size of HTH is the

number of AND gates which varies from 1 gate to 128 gates.

These HTHs will observe the N inputs of the AES circuit and

inject a fault to the 8th AES round when the corresponding

inputs are in the high state. Of course we are aware that

less than (N − 1) AND gates might be needed to observe N

inputs (because of optimization with complex gates and use

of inverted NAND gates instead of AND gates), but we use

a 2 input AND tree to have a regular structure. It has the

advantage of growing linearly with the number of input bits

observed, which allows for a simple law to quantify the impact

of HTH size on the AES layout. The next section shows the

result of this experiment.

To maintain the placement and the routing of AES circuit,

we use the “ECO Placement” function of Encounter software.

The “ECO” option (short for “Engineering Change Order”)

is a local modification, customarily used to fine-tune a design

before tape-out. It allows to modify a couple of gates / nets,

without affecting the rest of the circuit, considered acceptable.

First, this function verifies the layout (with Design Rule

Checking, aka DRC). Second it inserts standard cells of

HTHs in unused places in the circuit. At the end, it routes

all HTH nets while minimizing the modification created to

original layout. The core utilization rates used are 50%, 60%,

70%, 80%, 90%, 95% and 99%. Eight different HTHs used

are 1, 2, 4, 8, 16, 32, 64, 128 AND gates HTHs. In total, 63

different AES layouts were generated thanks to this software

(7 original layouts for each core utilization rate and 56, 8 for

each core utilization rate (CUR), modified layouts).

B. Experiment Results

In reality, we can see only the last metal and isolation

layers in the pictures taken by microscopy. Because of this,

for the first experiment, all AES layouts generated show

only the 6th metal layer (the last metal layer in our case)

and hide others layer. Fig. 6(a), 6(b) and 6(c) show the

original AES, and two modified AES layouts (with 1 AND

gate and 128 AND gates HTHs) for 50% CUR. Visually,

there is very little difference between these layouts. By using

cross-correlation calculations, we can extract their differences.

The Tab. II indicates all NCC between these layouts. Each

line shows NCC between AES with HTH and original layouts

for the corresponding core utilization rate. Note that these

coefficients are the comparisons between GDSII files so they

are calculated in the best cases. This result shows that NCC

decreases when core utilization rate and HTH size increases.

We realize that for CUR more than 80% and for HTHs more

than 64 gates, NCC decreases by about 10% or more. So

these HTHs can be detected. In this experiment, 64 gates are

equivalent to about 0.5% of AES circuit which is composed of

12, 267 standard cells . The values in bold correspond to the

cases when “ECO placement” function cannot place and route

HTHs without making errors in the layout. In these cases, we

must replace and reroute of all standard cells (AES and HTH

standard cells). This causes a big difference compared to the

original layout (NCC equal to 0.4010 & 0.3798) and so the

resulting HTH insertion is easy to detect. Values “X” mean that

even with replace and reroute of all standard cells, Encounter

cannot achieve the layout without errors.

The fact that “ECO placement” is able to place an HTH of

128 gates when CUR is 95% but fails for 90%, is a property

specific to our design and not at all generic. Probably this

would not hold for another design; actually, we expect that the

NCC decreases with the CUR (provided we could estimate the

NCC over a large number of circuits).

In addition, at the cost of depassivation and of the disso-

lution of the oxide layers3, it becomes possible to observe

from the top the superimposition of all the metal layers [30].

With such a preparation, the HTH will obviously be spotted

more accurately. We recomputed the cross-correlation under

this assumption. This time, all AES layouts (GDSII files) show

all metal layers. Fig. 7(a), 7(b) and 7(c) show the original AES,

and two modified AES layouts (with 1 AND gate and 128

AND gates HTHs) for 50% CUR. The Tab. III indicates all

NCC coefficients between these layouts. By observing Tab. II

and Tab. III, we notice that NCC coefficients for 6th metal

layer AES layouts are better. This is expected because adding

all metal layer into NCC computation is equivalent to adding

noise to the computation. For a strong attacker who can restrict

the HTH to lower metal levels, the computations for all metal

layers layout can be applied for detection.

We also compute the pixel-wise difference between the two

3Those oxide layers are also known as “inter-level dielectric” (ILD) or
simply “passivation layers”.

(a) (b) (c)

Figure 6. 6th metal layer AES layouts (1200 µm × 1200 µm) with 50% core utilization rate for (a) Original AES, (b) AES with 1 AND gate HTH, (c) AES
with 128 AND gate HTH

(a) (b) (c)

Figure 7. AES layouts (1200 µm × 1200 µm) with 50% core utilization rate for (a) Original AES, (b) AES with 1 AND gate HTH, (c) AES with 128 AND
gate HTH

images. The Fig. 8(a) and 8(b) show the differences of all

metal layers AES layout with 1 and 128 AND gates HTHs

compared with original AES layout for 50% core utilization

rate. So Fig. 8(a) is the difference between Fig. 6(a) and

Fig. 6(b), and Fig. 8(b) is the difference between Fig. 6(a)

and Fig. 6(c). We notice that these differences are small but

they are concentrated in areas where the HTH standard cells

are actually placed. Following this observation, we realize a

grid-wise RNCC calculations for these layouts. The principle

is to split into several pictures of same size using a grid.

Each sub-picture of a given layout is then correlated with the

corresponding sub-picture of the reference layout. Grid-wise

RNCC permits not only to detect the trojan but also localise

it visually. The Fig. 9(a), 9(b), 10(a) and 10(b) show the

grid-wise RNCC of the AES HTH layout (1 and 128 AND

gates) for 50% and 95% core utilization rates. For these

calculations, layouts are cut in 32 parts horizontally and in

31 parts vertically. So there are in total 32 × 31 = 992 pieces

and also 992 correlation coefficients without overlap for each

comparison. Note that these coefficients are reverse correlation

coefficients (i.e. 1 − cross-correlation coefficients) for being

seen better in the figures. We notice that the cross-correlation

coefficients were improved. HTH standard cells can be also

localized with this technique and also be detected easier (see

in [24] how to prepare a circuit accordingly with HF).

C. Validation on a Real Trojan Horse Insertion

In order to validate the relevance of NCC as a tool to

measure the similarity between an observed image and a

reference layout, we actually tested this metric in the real

context of HTH recognition. Figure 11 shows two GDSII

layouts, one infected and the other genuine.

Obtaining an infected GDSII is not a practical assumption.

Fabricating a golden reference circuit in an trusted fab is

neither a practical assumption. Thus, the detection shall be

Table II
NCC Coefficients between 6th metal layer of Original and Infected AES layouts

HTH size (Nb of AND gates)

1 2 4 8 16 32 64 128

CUR (Core Utilization Rate)

50% 0.9991 0.9972 0.9981 0.9950 0.9933 0.9918 0.9815 0.9668

60% 0.9987 0.9968 0.9959 0.9955 0.9944 0.9893 0.9788 0.9670

70% 0.9989 0.9981 0.9918 0.9941 0.9881 0.9850 0.9594 0.9067

80% 0.9999 0.9965 0.9898 0.9957 0.9780 0.9711 0.8970 0.8509

90% 0.9988 0.9990 0.9983 0.9962 0.9832 0.9572 0.8858 0.4010

95% 0.9997 0.9984 0.9980 0.9889 0.9589 0.9115 0.8824 0.8202

99% 0.9917 0.938 0.9714 0.9527 0.3798 X X X

Table III
NCC Coefficients between all metal layers of Original and Infected AES layouts

HTH size (Nb of AND gates)

1 2 4 8 16 32 64 128

CUR (Core Utilization Rate)

50% 0.9996 0.9788 0.9794 0.9770 0.9766 0.9760 0.9719 0.9708

60% 0.9993 0.9975 0.9973 0.9970 0.9964 0.9923 0.9843 0.9783

70% 0.9991 0.9987 0.9947 0.9952 0.9924 0.9889 0.9655 0.9272

80% 0.9997 0.9976 0.9942 0.9969 0.9868 0.9790 0.9291 0.8915

90% 0.9990 0.9988 0.9981 0.9964 0.9878 0.9709 0.9255 0.5162

95% 0.9995 0.9978 0.9974 0.9927 0.9742 0.9387 0.9159 0.8661

99% 0.994 0.9965 0.9803 0.962 0.4905 X X X

based only of the comparison between the genuine GDSII and

the fabricated chip, that may (or not) contain a HTH.

If the untrusted chip contains a HTH, the NCC value will

indicate its presence to the designer. To validate our concept,

we perform the following operations.

1) We fabricated a chip which contains a very tiny HTH

(whose impact at the M6 topmost metal level is only to

add two routing wires) and thus we have its GDSII.

2) Since we also know the HTH, we can obtain the genuine

GDSII from the trojaned GDSII.

3) Then we take a photo of the chip placed under an optical

microscope achieving a magnification zoom of 150×.

4) Finally, we compute the NCC between the photo of the

real trojaned chip and the two GDSII available (Fig. 11).

The NCC with a picture (the same as in middle of the

module part of Fig. 4, but rotated for the ease of presentation)

is computed:

• it is 1.56% between the trojan infected GDSII (unknown

to the designer, since forged at the silicon foundry) and

the image,

• and only 0.67% between the original GDSII (known by

the designer) and the image.

We emphasize again that obtaining a trojan infected GDSII

is not very realistic. Therefore a designer cannot know the

largest cross-correlation that can be obtained between the

trojaned GDSII (corresponding to the picture) and the pic-

ture. However, the grid-wise NCC method can detect the

hardware trojan horse in such cases. It is expected that the

grids that are not infected by the trojan, will yield about

1.56% NCC on the layout versus image comparison. Only

the grids with a significant lower NCC (0.67%) will raise a

concern. Thus, the local variation of cross-correlation, of order

(1.56 − 0.67)/1.56 = 57%, will allow to signal the presence

of a HTH in the design; indeed, 57% is a large contrast. It

is important to have such a large contrast, because eventually,

the grid-based correlation will be noisy, for several reasons:

• the photographic picture can be blurry,

• the correlation values in areas without HTH might depend

on the contents of this very area,

• obstacles, like the superimposed L shapes in M7, might

not be evenly distributed over the grid.

However, if the M7 L shapes are clearly identifiable, the

contrast can be increased by removing (i.e. by replacing them

by black areas) from both the picture and the layout.

To further investigate, the designer can then focus on

the infected area by repeating the same detection technique

with magnified pictures (of local SEM imaging) to attest the

presence of the HTH.

V. Recommendations

During this experiment, we realize that HTHs insertion

at layout level is not easy for the attacker. Firstly, he must

understand the functionality of the circuit from the GDSII file.

Secondly, he must keep the original layout mainly unchanged,

otherwise a “forensic” visual inspection is very likely to

detect the HTH. Thus the HTH must be placed-and-routed

inbetween the (unaltered) existing circuit. Results, given in

Section IV, show that HTHs insertion become more and more

difficult when core utilization rate increases. We recommend

the designer to use more than 80% core utilization rate (CUR)

for his design. From this CUR, the insertion of HTH is very

unlikely because of HTH size. If the HTH size is small, this

HTH can be accidentally activated and hence can be easily

detected at test time. If the HTH has a reasonable size (for

example superior to 64 gates in our study case), it is visually

detected (NCC decreases by about 10% or less for a CUR

superior to 80%). A similar observation was proposed in [42],

where the authors recommended to avoid dead space in an

IC in order to prevent HTH insertion. We reconfirm the same

observation and take it a bit further in order to quantify it

in terms of core utilization rate. With this, either the HTH

insertion fails (because it is too large w.r.t. the available place-

and-route resources4), or its insertion can be detected with a

medium cost visual technique. Further, our criteria based on

the CUR is “global” to a design, and can easily be set as a

constraint in all P&R tools.

VI. Conclusion and Perspectives

In this paper, we have presented the feasibility and impacts

of HTHs insertion to the circuit layout (especially for AES

circuit). Additionally, we have demonstrated the possibility

to detect HTHs with a medium cost visual technique; this

technique can be automated thanks to a cross-correlation. In

particular, the observation of the sole top-level metal layer

suffices (for large enough HTHs); thus the method avoids

mechanical or chemical preparation, known to produce dust

of material that would cause many false positive detections.

As a corollary, if no HTH is detected in the observed circuit,

then this circuit can be trusted and used safely in an appli-

cation, even if other circuits from a different batch happen

to be infected by a HTH. The results show that the insertion

complexity and the visibility of HTH increases with the core

utilization rate of circuits. With a high CUR, HTH can be

detected by comparing layout images and GDSII file. This

technique cannot detect HTH inserted in specification or RTL

level but it can be combined with others detection techniques

to ensure the security of the full fabrication process.

Checking for the genuineness of an observed picture (such

as the lefthand side of Fig. 4) against a known template (such

as the layout at the righthand side of Fig. 4) can benefit

from better decision strategies than a simple correlation.

Indeed, the layout is rich of particular features. Thus, for

instance, minutæ analyses for fingerprint recognition can be

used advantageously (using routing zigzags for instance); those

techniques are also interesting insofar as they allow to tune

the false acceptance/rejection rate(s). However, application of

minutæ-like features in context of HTH is an open research

topic. In our case, as we do not want to accept as genuine

a trojaned circuit, we intend to configure the technique to

minimize its false acceptance rate.

4In particular, our experiments with the Cadence Encounter place-and-route
tool show that even if there is “physically” some room for the insertion of the
HTH, the routing-aware placer and the router itself can fail. This is because
space on the die is not the limitating factor for the HTH, but rather the
availability of free routing tracks.

Besides, we could also profit of advanced techniques such

as those used in steganalysis to detect a piece of information

(the HTH) hidden in noise (the genuine layout).

Acknowledgments

This project has been funded by the French Government,

under grant FUI #14 HOMERE (Hardware trOjans : Menaces

et robustEsse des ciRcuits intEgrés). We acknowledge in-

teresting inputs from the other members of the consortium,

in particular Julien Francq (Cassidan Cyber Security) and

Denis Réal (DGA). Also, while preparing the camera-ready

version of the paper, we appreciated the positive inputs from

Nicolas Bruneau, Guillaume Duc, Zakaria Najm, Pablo Rauzy

and Youssef Souissi (crypto group of TELECOM-ParisTech).

Besides, we are grateful to Yves Mathieu for the setup of

the Calibre LITHO view tool, to Antoine Khy and Fabien

Thomas-Brans for pictures, and to the CMP [13] staff (es-

pecially Kholdoun Torki and Jean-François Paillotin) for an

excellent support in the fabrication with STMicroelectronics

HCMOS9GP technology and the after-sale maintenance of the

SecMat-v2 ASIC [17, Fig. 1]. Eventually, we are grateful to

Prof. David Naccache for the suggestion about a DFA-based

hardware trojan that would trigger only on some plaintexts.

References

[1] Miron Abramovici and Paul Bradley. Integrated circuit security: new
threats and solutions. In Frederick T. Sheldon, Greg Peterson, Axel W.
Krings, Robert K. Abercrombie, and Ali Mili, editors, CSIIRW, page 55.
ACM, 2009.

[2] Sally Adee. The Hunt For The Kill Switch. IEEE Spectr., 45(5):34–39,
May 2008.

[3] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and
Berk Sunar. Trojan Detection using IC Fingerprinting. In Proceedings

of the 2007 IEEE Symposium on Security and Privacy, SP ’07, pages
296–310, Washington, DC, USA, 2007. IEEE Computer Society.

[4] Subidh S. Ali, Rajat Subhra Chakraborty, Debdeep Mukhopadhyay, and
Swarup Bhunia. Multi-level attacks: An emerging security concern
for cryptographic hardware. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2011, pages 1–4, march 2011.
[5] Mainak Banga and Michael S. Hsiao. A Novel Sustained Vector

Technique for the Detection of Hardware Trojans. In Proceedings of

the 2009 22nd International Conference on VLSI Design, VLSID ’09,
pages 327–332, Washington, DC, USA, 2009. IEEE Computer Society.

[6] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug attacks. In CRYPTO,
volume 5157 of LNCS, pages 221–240. Springer, 2008. Santa Barbara,
CA, USA.

[7] Johannes Blömer and Jean-Pierre Seifert. Fault Based Cryptanalysis
of the Advanced Encryption Standard (AES) Financial Cryptography.
In Rebecca Wright, editor, Financial Cryptography, volume 2742 of
Lecture Notes in Computer Science, pages 162–181. Springer Berlin /
Heidelberg, 2003.

[8] Gedare Bloom, Bhagirath Narahari, and Rahul Simha. OS Support for
Detecting Trojan Circuit Attacks. In Mohammad Tehranipoor and Jim
Plusquellic, editors, HOST, pages 100–103. IEEE Computer Society,
2009.

[9] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Impor-
tance of Checking Cryptographic Protocols for Faults. In Proceedings

of Eurocrypt’97, volume 1233 of LNCS, pages 37–51. Springer, May
11-15 1997. Konstanz, Germany. DOI: 10.1007/3-540-69053-0 4.

[10] Sébastien Briais, Jean-Michel Cioranesco, Jean-Luc Danger, Sylvain
Guilley, David Naccache, and Thibault Porteboeuf. Random active
shield. In Guido Bertoni and Benedikt Gierlichs, editors, FDTC, pages
103–113. IEEE, 2012.

[11] Rajat Subhra Chakraborty, Somnath Paul, and Swarup Bhunia. On-
demand transparency for improving hardware trojan detectability. In
Mohammad Tehranipoor and Jim Plusquellic, editors, HOST, pages 48–
50. IEEE Computer Society, 2008.

[12] Rajat Subhra Chakraborty, Francis G. Wolff, Somnath Paul, Christos A.
Papachristou, and Swarup Bhunia. MERO: A Statistical Approach for
Hardware Trojan Detection. In Christophe Clavier and Kris Gaj, editors,
CHES, volume 5747 of Lecture Notes in Computer Science, pages 396–
410. Springer, 2009.

[13] Circuits Multi-Projets (CMP). Website: http://cmp.imag.fr.

[14] Common Criteria Consortium. Common Criteria (aka CC) for Informa-
tion Technology Security Evaluation (ISO/IEC 15408), 2013.
Website: http://www.commoncriteriaportal.org/.

[15] Common Criteria. Application of Attack Potential to Smartcards,
Mandatory Technical Document, Version 2.7, Revision 1, CCDB-
2009-03-001, March 2009. http://www.commoncriteriaportal.org/files/
supdocs/CCDB-2009-03-001.pdf.

[16] Jean-François Gallais, Johann Großschädl, Neil Hanley, Markus Kasper,
Marcel Medwed, Francesco Regazzoni, Jörn-Marc Schmidt, Stefan
Tillich, and Marcin Wójcik. Hardware trojans for inducing or amplifying
side-channel leakage of cryptographic software. In Liqun Chen and Moti
Yung, editors, INTRUST, volume 6802 of Lecture Notes in Computer

Science, pages 253–270. Springer, 2010.

[17] Sylvain Guilley, Laurent Sauvage, Jean-Luc Danger, Nidhal Selmane,
and Renaud Pacalet. Silicon-level Solutions to Counteract Passive and
Active Attacks. In Luca Breveglieri, Shay Gueron, Israel Koren, David
Naccache, and Jean-Pierre Seifert, editors, FDTC, pages 3–17. IEEE
Computer Society, 2008.

[18] Silicon Investigations. Company website: http://www.
siliconinvestigations.com/.

[19] Susmit Jha and Sumit Kumar Jha. Randomization Based Probabilistic
Approach to Detect Trojan Circuits. In Proceedings of the 2008 11th

IEEE High Assurance Systems Engineering Symposium, HASE ’08,
pages 117–124, Washington, DC, USA, 2008. IEEE Computer Society.

[20] Yier Jin and Y Makris. Hardware trojan detection using path delay
fingerprint. In Hardware-Oriented Security and Trust, 2008. HOST 2008.

IEEE International Workshop on, pages 51–57, 2008.

[21] Marc Joye and Michael Tunstall. Fault Analysis in Cryptography.
Springer LNCS, March 2011. http://joye.site88.net/FAbook.html. DOI:
10.1007/978-3-642-29656-7 ; ISBN 978-3-642-29655-0.

[22] Markus Kasper, Amir Moradi, Georg T. Becker, Oliver Mischke, Tim
Güneysu, Christof Paar, and Wayne Burleson. Side channels as building
blocks. J. Cryptographic Engineering, 2(3):143–159, 2012.

[23] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power
Analysis. In Proceedings of CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer-Verlag, 1999.

[24] Oliver Kömmerling and Markus G. Kuhn. Design Principles for Tamper-
Resistant Smartcard Processors. In WOST ’99 (USENIX Workshop on

Smartcard Technology), pages 9–20, Berkeley, CA, USA, May 10-11
1999. USENIX Association. Chicago, Illinois, USA (On-line paper).
ISBN: 1-880446-34-0.

[25] Jie Li and John Lach. At-speed delay characterization for IC authen-
tication and Trojan Horse detection. In Proceedings of the 2008 IEEE

International Workshop on Hardware-Oriented Security and Trust, HST
’08, pages 8–14, Washington, DC, USA, 2008. IEEE Computer Society.

[26] Bradley Hopkins Mark Beaumont and Tristan Newby. Hardware Trojans
- Prevention, Detection, Countermeasures. http://www.dtic.mil/cgi-bin/
GetTRDoc?AD=ADA547668.

[27] David R. McIntyre, Francis G. Wolff, Christos A. Papachristou, and
Swarup Bhunia. Dynamic evaluation of hardware trust. In Proceedings

of the 2009 IEEE International Workshop on Hardware-Oriented Secu-

rity and Trust, HST ’09, pages 108–111, Washington, DC, USA, 2009.
IEEE Computer Society.

[28] NIST/ITL/CSD. Advanced Encryption Standard (AES). FIPS PUB 197,
Nov 2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[29] Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack
Technique against SPN Structures, with Application to the AES and
Khazad. In CHES, volume 2779 of LNCS, pages 77–88. Springer,
September 2003. Cologne, Germany.

[30] SEMATECH Surface Preparation and Cleaning Conference (SPCC).
Conference website: http://www.sematech.org/meetings/spcc/past.htm.

[31] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis
(EMA): Measures and Counter-Measures for Smard Cards. In I. Attali
and T. P. Jensen, editors, Smart Card Programming and Security (E-

smart 2001), volume 2140 of LNCS, pages 200–210. Springer-Verlag,
September 2001. Nice, France. ISSN 0302-9743.

[32] Reza Rad, Jim Plusquellic, and Mohammad Tehranipoor. Sensitivity
analysis to hardware Trojans using power supply transient signals. In

Proceedings of the 2008 IEEE International Workshop on Hardware-

Oriented Security and Trust, HST ’08, pages 3–7, Washington, DC,
USA, 2008. IEEE Computer Society.

[33] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. New
design strategy for improving hardware Trojan detection and reducing
Trojan activation time. In Hardware-Oriented Security and Trust, 2009.

HOST ’09. IEEE International Workshop on, pages 66–73, 2009.
[34] Martin Schobert. GNU software degate. Webpage: http://www.degate.

org/.
[35] Sergei Skorobogatov and Christopher Woods. Breakthrough silicon

scanning discovers backdoor in military chip. In Proceedings of the 14th

international conference on Cryptographic Hardware and Embedded

Systems, CHES’12, pages 23–40, Berlin, Heidelberg, 2012. Springer-
Verlag.

[36] Mohammad Tehranipoor and Farinaz Koushanfar. A Survey of Hardware
Trojan Taxonomy and Detection. IEEE Des. Test, 27(1):10–25, January
2010.

[37] Mohammad Tehranipoor and Cliff Wang, editors. Introduction to

Hardware Security and Trust. Springer, 2012. ISBN 978-1-4419-8079-3.
[38] Randy Torrance and Dick James. The State-of-the-Art in IC Reverse

Engineering. In CHES, volume 5747 of LNCS, pages 363–381. Springer,
September 6-9 2009. Lausanne, Switzerland.

[39] Randy Torrance and Dick James. The state-of-the-art in semiconductor
reverse engineering. In Design Automation Conference (DAC), 2011

48th ACM/EDAC/IEEE, pages 333–338, 2011.
[40] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. Differential

Fault Analysis of the Advanced Encryption Standard Using a Single
Fault. In Claudio Agostino Ardagna and Jianying Zhou, editors, WISTP,
volume 6633 of Lecture Notes in Computer Science, pages 224–233.
Springer, 2011.

[41] U.S. Department Of Defense. Defense science board task force on
high performance microchip supply. http://www.acq.osd.mil/dsb/reports/
2005-02-HPMS Report Final.pdf.

[42] Xiaoxiao Wang, Mohammad Tehranipoor, and Jim Plusquellic. Detect-
ing malicious inclusions in secure hardware: Challenges and solutions.
In Proceedings of the 2008 IEEE International Workshop on Hardware-

Oriented Security and Trust, HST ’08, pages 15–19, Washington, DC,
USA, 2008. IEEE Computer Society.

http://cmp.imag.fr
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/files/supdocs/CCDB-2009-03-001.pdf
http://www.commoncriteriaportal.org/files/supdocs/CCDB-2009-03-001.pdf
http://www.siliconinvestigations.com/
http://www.siliconinvestigations.com/
http://joye.site88.net/FAbook.html
http://www.usenix.org/publications/library/proceedings/smartcard99/full_papers/kommerling/kommerling_html/
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA547668
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA547668
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.sematech.org/meetings/spcc/past.htm
http://www.degate.org/
http://www.degate.org/
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf
http://www.acq.osd.mil/dsb/reports/2005-02-HPMS_Report_Final.pdf

Appendix A

Example of DFA on AES Infected Hardware Trojan Horse

on SASEBO-GII

We implemented a HTH in an AES coprocessor to facilitate

Piret’s DFA. The HTH gets activated when the switch is on

and the first two bytes of the plaintext are equal to 0xff; it

is thus an instantiation of the generic HTH depicted in Fig. 3

with parameter N set to 16. This configuration leads us to a

unique key in a total of 4 encryptions. The key used in our

example is same as in Appendix B of the AES standard [28].

The design is tested on a SASEBO-GII board running on the

Virtex-5 FPGA.

Table IV
Cost and Performance Overhead of the Inserted HTH of Size N = 16

Design LUT BRAM Frequency

HTH Free AES 1851 0 222.477 MHz

HTH Infected AES 1861 0 218.722 MHz

Overhead 0.5% 0 1.6%

Tab IV compares the cost and performance of a HTH as

described before which gets activated when the first two bytes

of the plaintext are equal to 0xff i.e. N = 16. The HTH is

very small i.e. only 10 LUTs and causes speed degradation

of 1.6% (indeed, our HTH adds one XOR gate on the critical

path). This configuration helps us to easily implement Piret’s

Attack. Recall that the signal activation cond[0] is an

input of the trigger part of the HTH; thus both a faulted and a

fault-free ciphertext can be obtained (which is required for the

DFA of Piret and Quisquater). In Tab V, we give the transcript

of an example of the Piret’s Attack on an AES implementation

with our inserted HTH.

Table V
Piret’s attack on the trojaned AES, revealing the last round key

--Encryption 1--

--Input Plaintext Message--

fffff6a8885a308d313198a2e0370734

--Wrong Ciphered Message--

dabb96f24f04b523a11bbf02cc4828d5

--Correct Ciphered Message--

0316ca805c0797b5cd6a2341eec89aae

--Encryption 2--

--Input Plaintext Message--

ffff03a8885a308d313198a2e0370734

--Faulty Ciphered Message--

73f9bfae29c49f1d0256ed3ef0e470da

--Correct Ciphered Message--

acd6874cf0f73af0fab66d2a21d6fc96

--Launching Piret’s DFA--

+++++++++++++++++++++++++

operating on column :0

+++++++++++++++++++++++++

MATCHED 2 Bytes

MATCHED 3 Bytes

MATCHED Column 0

+++++++++++++++++++++++++

operating on column :1

+++++++++++++++++++++++++

MATCHED 2 Bytes

MATCHED 3 Bytes

MATCHED Column 1

+++++++++++++++++++++++++

operating on column :2

+++++++++++++++++++++++++

MATCHED 2 Bytes

MATCHED 3 Bytes

MATCHED Column 2

+++++++++++++++++++++++++

operating on column :3

+++++++++++++++++++++++++

MATCHED 2 Bytes

MATCHED 3 Bytes

MATCHED Column 3

List of possible key 10:columns0(1)

d0630c89

List of possible key 10:columns1(1)

c9140cc8

List of possible key 10:columns2(1)

e1eef9a6

List of possible key 10:columns3(1)

b63f25a8

Retrieved Round 10 key:

d0|c9|e1|b6|

14|ee|3f|63|

f9|25|0c|0c|

a8|89|c8|a6|

(a) (b)

Figure 8. Pixelwise difference of AES layouts with 50% core utilization rate for Original layout and Infected Layout with (a) 1 AND gate, (b) 128 AND
gate.

(a) (b)

Figure 9. Grid-wise RNCC of AES layouts for with 50% core utilization rate for Original layout and Infected Layout with (a) 1 AND gate, (b) 128 AND
gate.

(a) (b)

Figure 10. Grid-wise RNCC of AES layouts for with 95% core utilization rate for Original layout and Infected Layout with (a) 1 AND gate, (b) 128 AND
gate.

Trojaned GDSII Picture Genuine GDSII

Added by

the Trojan

≈ 6≈

>|NCC| = 1.56% |NCC| = 0.67%

Figure 11. Cross-correlation based comparison between trojaned (lefthand side) / genuine (righthand side) GDSII and an actual picture, a microscope image
of an AES area where the inserted HTH shows up (center). The designer checking for the presence of a purported HTH only knows the genuine GDSII and
the picture.

