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ABSTRACT

Many existing works related to lossy-to-lossless image compression
are based on the lifting concept. In this paper, we present a sparse op-
timization technique based on recent convex algorithms and applied
to the prediction filters of a two-dimensional non separable lifting
structure. The idea consists of designing these filters, at each resolu-
tion level, by minimizing the sum of the ℓ1-norm of the three detail
subbands. Extending this optimization method in order to perform
a global minimization over all resolution levels leads to a new opti-
mization criterion taking into account linear dependencies between
the generated coefficients. Simulations carried out on still images
show the benefits which can be drawn from the proposed optimiza-
tion techniques.

Index Terms— adaptive lifting scheme, image coding, opti-
mization, ℓ1 minimization techniques, sparse representations.

1. INTRODUCTION

The discrete wavelet transform has been recognized to be an effi-
cient tool in many image processing fields, including denoising and
compression [1]. In this respect, the second generation of wavelets
provides very efficient transforms, based on the concept of Lifting
Scheme (LS) developed by Sweldens [2]. It was shown that interest-
ing properties are offered by such structures. In particular, LS guar-
antees a lossy-to-lossless reconstruction required in some specific
applications such as medical imaging or remote sensing imaging [3].
Besides, it is a suitable tool for scalable reconstruction, which is a
key issue for telebrowsing applications [4, 5].
A generic LS applied to a 1D signal consists of three modules re-
ferred to as split, predict and update. Generally, for 2D signals, the
LS is handled in a separable way by cascading vertical and horizontal
1D filtering operators. It is worth noting that a separable LS may not
appear always very efficient to cope with the two-dimensional char-
acteristics of edges which are neither horizontal nor vertical [6]. To
this respect, several research works have been devoted to the design
of Non Separable Lifting Schemes (NSLS) in order to offer more
flexibility in the design of the prediction filter [7, 8, 9, 10]. Thus,
instead of using samples from the same rows (resp. columns) while
processing the image along the lines (resp. columns), 2D NSLS pro-
vide more choices in the selection of the samples by using horizon-
tal, vertical and oblique directions. Moreover, in a coding frame-
work, the performance of these LS depends on the choice of the
prediction and update operators. For this reason, a great attention
was paid to the optimization of all the involved filters in order to

build content-adaptive schemes. Only a few works have discussed
the problem for the update filter. The state-of-the-art method con-
sists of designing the update operator so that the reconstruction error
is minimized when the detail coefficients are canceled [11, 12]. Re-
cently, we have designed an update filter that aims at reducing the
aliasing effects [13]. It was designed by minimizing the difference
between its output and the output of an ideal low-pass filter. Be-
sides, most existing works have been focused on the optimization
of the prediction filters. In [8], these filters are designed by min-
imizing the entropy of the detail coefficients. This optimization is
performed in an empirical manner using the Nelder-Mead simplex
algorithm since the entropy is an implicit function of the prediction
filter. However, such a heuristic algorithm presents two major draw-
backs. First, its convergence may be achieved at a local minimum of
entropy. Second, it is computationally intensive. To overcome these
problems, a simpler criterion, measuring the variance of the detail
signal (i.e. its ℓ2-norm), has been often used to optimize the predic-
tion filters [12, 14]. With the ultimate goal of promoting sparsity in
a transform domain, we have recently proposed sparse optimization
criteria for the design of these filters. We have focused on the use of
ℓ1 and weighted ℓ1 criteria [15]. It is worth pointing out here that the
aforementioned optimizations are generally performed by applying
the criterion on the current resolution level of the decomposition. In
this paper, we propose a significant improvement of our recent opti-
mization technique by minimizing a criterion evaluated over all the
resolution levels and by employing a Douglas-Rachford algorithm in
a product space [16]. This method is shown to provide better coding
performance in terms of quality of reconstruction (up to 0.35 dB)
and bitrate savings (up to -11%).
The outline of the paper is as follows. In Sec. 2, we introduce the
sparse optimization problem for the design of the prediction filters
involved in a 2D non separable lifting structure. The global opti-
mization strategy is described in Sec. 3. Finally, in Sec. 4, experi-
mental results are given and some conclusions are drawn in Sec. 5.

2. ADAPTIVE LIFTING STRUCTURE

2.1. 2D Non-separable lifting structure

In this paper, we consider a 2D NSLS composed of three predic-
tion lifting steps followed by an update lifting step (see Fig. 1 for
the analysis part). The interest of this structure is twofold. First, it
allows us to reduce the number of lifting steps and rounding oper-
ations. A theoretical analysis has been conducted in [17] showing
that NSLS improves the coding performance due to the reduction of



rounding effects. Furthermore, any separable prediction-update (P-
U) LS structure has its equivalent in this form [10, 17].
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Fig. 1. NSLS decomposition structure.

Let x denote the input image to be coded. At each resolution level j
and each pixel location (m,n), the approximation coefficient is de-
noted by xj(m,n) and the associated four polyphase components
by x0,j(m,n) = xj(2m, 2n), x1,j(m,n) = xj(2m, 2n + 1),
x2,j(m,n) = xj(2m+1, 2n), and x3,j(m,n) = xj(2m+1, 2n+

1). Furthermore, we denote by P
(HH)
j , P

(LH)
j , P

(HL)
j and Uj

the three prediction and the update filters employed to generate the
detail coefficients x

(HH)
j+1 oriented diagonally, x(LH)

j+1 oriented ver-

tically, x(HL)
j+1 oriented horizontally, and the approximation coeffi-

cients xj+1. Once the considered NSLS structure is defined, we
now focus on the optimization of its lifting operators.

2.2. ℓ1 and weighted ℓ1 minimization technique

Based on the requirement of sparse detail coefficients, we propose
the use of an ℓ1-based criterion in place of the usual ℓ2-based mea-
sure (variance of the prediction error). For this reason, we have
firstly optimized the prediction filters by minimizing at each reso-
lution level j the following ℓ1 criterion:

∀ o ∈ {HL,LH,HH}, ∀ i ∈ {1, 2, 3},

J̃ (o)
j,ℓ1

(p
(o)
j ) =

Mj∑
m=1

Nj∑
n=1

∣∣∣xi,j(m,n)− (p
(o)
j )⊤X

(o)
j (m,n)

∣∣∣ (1)

where xi,j(m,n) is the (i + 1)th polyphase component to be pre-
dicted, X(o)

j (m,n) is the reference vector containing the samples

used in the prediction step, p(o)
j is the prediction operator vector to

be optimized, Mj and Nj corresponds to the dimensions of the input
subband xj+1. Although the criterion in (1) is convex, a major diffi-
culty that arises in solving this problem stems from the fact that the
function to be minimized is not differentiable. For this reason, we
resort to the class of proximal optimization algorithms which have
been proposed to solve nonsmooth minimization problems like (1)
[16]. More precisely, we employ the Douglas-Rachford algorithm
which is an efficient optimization tool in this context [18].
Moreover, it can be noticed from Fig. 1 that the diagonal detail signal
x
(HH)
j+1 is also used through the second and the third prediction steps

to compute the vertical and the horizontal detail signals respectively.
As a result, it would be interesting to optimize the prediction filter

p
(HH)
j by minimizing the following weighted sum of the ℓ1-norm of

the three detail subbands x(o)
j+1:

J̃j,wℓ1(p
(HH)
j ) =

∑
o∈{HL,LH,HH}

Mj∑
m=1

Nj∑
n=1

1

α
(o)
j+1

∣∣∣x(o)
j+1(m,n)

∣∣∣ (2)

where α
(o)
j+1 can be estimated by using a classical maximum likeli-

hood estimate [19]. It can be noticed that (2) is related to the approx-
imation of the entropy of an i.i.d Laplacian source. After expressing
for each orientation o ∈ {HH,HL,LH} the signal x(o)

j+1 as a func-

tion of the filter p
(HH)
j (by assuming that p(LH)

j and p
(HL)
j are

known), we can also use the Douglas-Rachford algorithm, reformu-
lated in a three-fold product space [16], to minimize the proposed
weighted criterion (2). It is important to note here that the opti-
mization of the filter p(HH)

j depends on the coefficients of the filters

p
(HL)
j and p

(LH)
j since the weighted sum of the ℓ1-norm of the three

detail subbands is minimized. On the other hand, the optimization
of the filters p(HL)

j and p
(LH)
j depends also on the optimization of

the filter p
(HH)
j since x

(HH)
j+1 is used as a reference signal in the

second and the third prediction steps. For this reason, a joint op-
timization method needs to be used, which alternates between op-
timizing the different filters and redefining the weights. More pre-
cisely, the main idea of this method starts with an initialization step
where each prediction filter p

(o)
j is separately optimized by mini-

mizing J̃ℓ1(p
(o)
j ), and the resulting weighting terms are then com-

puted. After that, we iteratively repeat the following two steps: re-
optimize the filters p(HH)

j , p(LH)
j and p

(HL)
j by minimizing respec-

tively J̃j,wℓ1(p
(HH)
j ), J̃ (LH)

j,ℓ1
(p

(LH)
j ) and J̃ (HL)

j,ℓ1
(p

(HL)
j ), and up-

date the weighting terms. Note that the convergence of the proposed
joint optimization algorithm is achieved during the early iterations
(after about 7 iterations) [15].

3. GLOBAL MULTIRESOLUTION ℓ1 MINIMIZATION

So far, we have optimized the prediction filters p
(o)
j by minimiz-

ing a criterion related directly to their respective outputs x
(o)
j+1. As

previously mentioned, in other approaches, the lifting operators are
also designed at each resolution level by optimizing a criterion de-
fined at the current level. However, such an optimization procedure
presents the following drawback: in a multiresolution representation
where the decomposition structure given by Fig. 1 is applied iter-
atively on the approximation coefficients, it can be noticed that the
detail coefficients x

(o)
j+1(m,n), resulting from the optimization of

the filters p(o)
j are also used to compute the detail coefficients at the

coarser resolution levels. Thus, the optimization of the coefficients
at the j-th resolution level will also affect the detail coefficients at
the (j+1)-th level. Due to this fact, the solution p

(o)
j resulting from

the previous optimization method may be suboptimal. To circum-
vent this problem, we propose to optimize each prediction filter by
minimizing a global criterion computed over all the resolution lev-
els. More precisely, instead of minimizing the sum of the ℓ1-norm
of the three detail subbands (see Eq. (2)) , we will consider the min-
imization of the following criterion:

Jwℓ1(p) =

J∑
j′=1

∑
o′∈{HL,LH,HH}

∑
m,n

1

α
(o′)
j′

∣∣∣x(o′)
j′ (m,n)

∣∣∣ (3)

where J corresponds to the number of resolution levels and p =(
p
(o)
j

)
j,o

. Hence, the proposed minimization problem leads to a



joint optimization procedure for the prediction filters p
(o)
j (i.e. 3J

unknowns). This problem is addressed by an alternating optimiza-
tion approach. In order to apply the proposed optimization method,
we express the detail signal x(o′)

j′ (m,n) in Eq. (3) as a function of

the filter p(o)
j to be optimized. To this end, the filters at each resolu-

tion level j and orientation o will be re-indexed by q ∈ {1, . . . , 3J}.

According to Fig. 1, let
(
x
(q)
i (m,n)

)
i∈{0,1,2,3}

be the four outputs

obtained from the inputs
(
x̃
(q−1)
i (m,n)

)
i∈{0,1,2,3}

at the q-th pre-

diction step:

x̃
(q−1)
i (m,n) =

{
xi,j(m,n), if q = 3j + 1

x
(q−1)
i (m,n), otherwise.

(4)

Then, it can be shown that:

∀ o′ ∈ {HH,LH,HL}, ∀ j′ > j

x
(o′)
j′ (m,n) = y

(o′,q)
j′ (m,n)− (p

(o)
j )⊤x

(o′,q)
j′ (m,n) (5)

where

y
(o′,q)
j′ (m,n) =

∑
i′∈Ii

∑
k,l

h
(o′,q)
i′,j′ (k, l)x

(q)
i′ (m− k, n− l)

+
∑
k,l

h
(o′,q)
i,j′ (k, l)x̃

(q−1)
i (m− k, n− l), (6)

x
(o′,q)
j′ (m,n) =

(∑
k,l

h
(o′,q)
i,j′ (k, l)x̃

(q−1)
i′ (m− k − r, n− l− s)

)
(r,s)∈P(o)

j

i′∈Ii
(7)

with i = 3(j + 1) + 1− q and Ii = {0, 1, 2, 3}\{i}.
It is important to note that, in practice, the computation of y(o′,q)

j′ (m,n)

and x
(o′,q)
j′ (m,n) for the q-th prediction step does not require to find

the explicit expressions of the impulse response h
(o′,q)
i,j′ since these

signals can be determined numerically as follows:
• The first term (resp. the second one) in the expression of
y
(o′,q)
j′ (m,n) in Eq. (6) can be found by computing x

(o′)
j′ (m,n)

from the components
(
x
(q)

i′ (m,n)
)
i′∈Ii

while setting x
(q)
i (m,n) =

0 (resp. while setting x
(q)

i′ (m,n) = 0 for i′ ∈ Ii and x
(q)
i (m,n) =

x̃
(q−1)
i (m,n)).

• The vector x
(o′,q)
j′ (m,n) in Eq. (7) can be found as follows.

For each i′ ∈ Ii, the computation of
∑

k,l h
(o′,q)
i,j′ (k, l)x̃

(q−1)

i′ (m −
k, n − l) requires to compute x

(o′)
j′ (m,n) by setting x

(q)
i (m,n) =

x̃
(q−1)

i′ (m,n) and x
(q)

i′′ (m,n) = 0 for i′′ ∈ Ii. The result of this
operation has to be considered for different shift values (r, s) (as
can be seen in Eq. (7)). Once the different terms have been defined,
one can still employ the Douglas-Rachford algorithm in a product
space to minimize the proposed criterion.

4. EXPERIMENTAL RESULTS

Since we are interested in the optimization of the different filters
involved in a NSLS (which is equivalent to the 2D structure of any
P-U LS), we will consider the 5/3 transform also known as the (2,2)
wavelet transform. In what follows, this method will be designated
by “NSLS(2,2)”. In order to show the benefits of the proposed
optimization methods, we provide the results for the following de-
compositions carried out over three resolution levels. The first one

corresponds to the state-of-the-art prediction optimization method
based on the minimization of the ℓ2 norm of the detail coefficients
[12, 14]. This method will be denoted by “NSLS(2,2)-OPT-L2”.
In the second method, we jointly optimize the prediction filters by
using the weighted ℓ1 minimization technique (see Eqs. (1)-(2)).
In the following, this method will be designated by “NSLS(2,2)-
OPT-WL1”. Finally, the proposed extension of this method, where
a global weighted ℓ1 criterion is defined over all the resolution
levels (see Eq. (3)), will be denoted by “NSLS(2,2)-GLOBAL-
OPT-WL1”. Fig. 3 displays the scalability in quality of the recon-
struction procedure by providing the variations of the PSNR versus
the bitrate for the “peppers” image using JPEG2000 as an entropy
codec. These plots show that promoting sparsity criteria by using
a weighted ℓ1 criterion (“NSLS(2,2)-OPT-WL1”) achieves a gain
of about 0.25 dB compared to the conventional ℓ2 minimization
technique (“NSLS(2,2)-OPT-L2”). Furthermore, an improvement
of about 0.3 dB is further obtained by using the proposed global
weighted ℓ1 minimization approach. Fig. 2 displays a zoom applied
on the reconstructed images at 0.07 bpp. The quality of these images
is evaluated in terms of PSNR and SSIM metrics. Finally, in order to
measure the relative gain of the proposed optimization method, we
used the Bjontegaard metric [20]. The results are shown in Tables
1 and 2 for low bitrate, middle bitrate and high bitrate correspond-
ing respectively to the four bitrate points {0.15, 0.2, 0.25, 0.3},
{0.5, 0.55, 0.6, 0.65} and {0.9, 0.95, 1, 1.05} bpp. Table 1 (resp.
2) gives the gain of the method “NSLS(2,2)-OPT-WL1” (resp.
“NSLS(2,2)-GLOBAL-OPT-WL1”) compared with ‘NSLS(2,2)-
OPT-L2”. Note that a bitrate saving with respect to the reference
method corresponds to negative values. It can be observed that the
proposed global minimization approach can outperform the classi-
cal ℓ2 (resp. weighted ℓ1) minimization technique up to -16% and
0.6 dB (resp. -11% and 0.35 dB) in terms of bitrate saving and
quality of reconstruction. Moreover, we should note that, for some
images, the global weighted ℓ1 criteria resulting from the minimiza-
tion over all the resolution levels and from the minimization at each
resolution level take close values. In these cases, we obtain a slight
improvement in terms of bitrate.

5. CONCLUSION

In this paper, we have presented different optimization methods for
the design of the prediction filters in a non separable lifting struc-
ture. A sparse optimization technique, involving the minimization
of a global criterion defined over all the resolution levels, has been
proposed. Experiments have shown the benefits of the proposed
method. Ongoing research aims at extending this optimization ap-
proach to LS with more than two stages like the P-U-P and P-U-P-U
structures.

Table 1. The average PSNR differences and the bitrate saving. The
gain of “NSLS(2,2)-OPT-WL1” w.r.t “NSLS(2,2)-OPT-L2”.

bitrate saving (in %) PSNR gain (in dB)
Images low middle high low middle high
Elaine -6.40 -5.33 -3.29 0.14 0.12 0.15
Castle -7.10 -7.15 -6.09 0.30 0.48 0.62
Straw -1.80 -5.03 -3.33 0.08 0.23 0.19
Peppers -6.72 -5.53 -8.64 0.25 0.19 0.36
Average -5.50 -5.76 -5.34 0.19 0.25 0.33
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