
Application-Replay Attack on Java Cards:
When the Garbage Collector Gets Confused

Guillaume Barbu1,2, Philippe Hoogvorst1, and Guillaume Duc1

1 Institut Télécom / Télécom ParisTech, CNRS LTCI,
Département COMELEC,

46 rue Barrault, 75634 Paris Cedex 13, France

2 Oberthur Technologies, Innovation Group,
Parc Scientifique Unitec 1 - Porte 2,

4 allée du Doyen George Brus, 33600 Pessac, France

Abstract. Java Card 3.0 specifications have brought many new features
in the Java Card world, amongst which a true garbage collection mech-
anism. In this paper, we show how one could use this specific feature
to predict the references that will be assigned to object instances to be
created. We also exploit this reference prediction process in a combined
attack. This attack stands as a kind of ”application replay” attack, taking
advantage of an unspecified behavior of the Java Card Runtime Environ-
ment (JCRE) on application instance deletion. It reveals quite powerful,
since it potentially permits the attacker to circumvent the application
firewall: a fundamental and historical Java Card security mechanism.
Finally, we point out that this breach comes from the latest specifica-
tion update and more precisely from the introduction of the automatic
garbage collection mechanism, which leads to a straightforward counter-
measure to the exposed attack.

Key words: Java Card, Combined Attack, Garbage Collection, Application
Firewall.

1 Introduction

To follow the emergence of new communication technologies, new Java Card
specifications have recently been released: Java Card 3.0. This new standard
comes in two editions: Classic and Connected. The Classic edition stands as
an evolution of previous versions of Java Card. The Connected edition repre-
sents the real novelty of this version, adding numerous features in the Java Card
world such as an embedded web server, the multithreading support, enhanced
security policy facilities, an extended API (Application Programming Interface).
All along this paper, we will focus on one of the new features introduced by the
Java Card 3.0 specifications: a true automatic garbage collection mechanism.
This particular feature is one of the rare novelty to be present in both editions
of the specifications.

2

The contribution of this paper is twofold. First, we introduce the concept of
reference prediction, taking advantage of the garbage collection. In addition, we
show how an attacker with fault injection capacity could, under certain assump-
tions, use this concept to circumvent the application firewall through a so-called
replay attack.

The remainder of this paper is organized as follows: In Section 2, we introduce
the principle of reference prediction on Java Card platforms. In Section 3, we
describe the application firewall mechanism and expose the application-replay
attack under a given implementation assumption. Finally, we discuss the issues
raised by the predictability of object references and the different countermeasures
that could be implemented in Section 4.

2 Java Card Reference Prediction

This section introduce the notions of Java reference and garbage collection and
state the assumptions under which this work is based. Finally, we describe the
process we put into practice to achieve this prediction on the tested platforms.

2.1 Reference Assignment

The Java Card Virtual Machine (JCVM) aims at providing an abstraction layer
between the hardware device and Java Card applications. This abstraction is
the basement of the write once - run everywhere philosophy of the Java lan-
guage. On object instantiation, the JCVM is then responsible for allocating the
memory to store this object and assigning it a Java reference, possibly the allo-
cated memory address or a value abstracting this address. Regardless of its exact
implementation, we assume in the remainder of this article that these Java ref-
erences are assigned following a straightforward linear process. That is to say,
the next reference to be assigned is the smallest reference that is not already
assigned.

Formally, with (ri)1≤i≤n the previously allocated references, a new reference
rn+1 is allocated such that:

rn+1 = min{ri s.t. ∀ rj < ri, rj is used} (1)

We believe this assumption is not very restrictive since we have successfully
tested it on different cards from different manufacturers and different versions
of Java Card with the method given in Section 2.3.

For the sake of simplicity we will consider in the remainder of this article
that a reference is a value abstracting the physical address of an object. Thus
we do not need to consider the size of each object.

3

2.2 Garbage Collection

The principle of garbage collection is not a novelty, even in the Java Card con-
text. Indeed, Java Card 2.2 proposes (optionally) a memory reclaiming process
through the method JCSystem.requestObjectDeletion() [1]. However, this
method only schedules the object deletion service prior to the next invocation
of the Applet.process() method. That is to say, unreferenced objects are not
actually deleted on the method’s call.

The real novelty in the latest version of the Java Card standard is that
garbage collection is automatically triggered when memory space becomes in-
sufficient, or on specific event such as card reset for instance. Furthermore, the
System.gc() [2] method can be called at any time within an application and
runs the garbage collector. Unlike the JCSystem.requestObjectDeletion()
method, when control returns from the System.gc() method, the garbage col-
lector should have actually been executed and reclaimed unused memory.

We will not go into further details in the garbage collection mechanism and
will only consider that the garbage collector implementation ensures that it will
reclaim the memory used by objects that are not accessible anymore (unrefer-
enced). The important point to bare in mind is rather the evolution of the Java
Card specifications regarding this functionality.

2.3 Reference Prediction

We can now introduce one of the contribution of our work, the reference pre-
diction process. As this process relies on a particular type confusion, we recall
the previous works achieved on this particular topic before giving a complete
description of the process.

Previous Works on Type Confusion. Type safety is one of the cornerstone
of the Java language security. Most of the literature presenting potential attacks
on Java Card (or even on Java SE [3]) use type confusion at some point in the
attack path.

Until 2009, attackers have to count on bugs on specific mechanisms or to load
an ill-formed application thanks to .CAP file manipulation to provoke a type con-
fusion [4–6]. The release of the Java Card 3.0 Connected Edition has rendered
this path theoretically impracticable making the On-Card Bytecode Verification
(OCBV) of application mandatory. The use of fault attacks has then emerged as
a quite efficient technique to reach this point, as exposed in a couple of recent
publications [7–12].

In [7], Barbu et al. describe a way to forge object’s reference thanks to a type
confusion (e.g. Object o = 0x12345678;). For that matter, they achieve a phys-
ical fault injection during a checkcast execution in order to render it successful

4

and provoke a type confusion between two instances of different classes. The first
class holding an Object class field, and the other an integral class field (short
or int depending on the size of an object’s reference). Getting the reference of
an object is then as easy as reading an integral field. Similarly, forging the ref-
erence of the Object field is then as easy as assigning a value to the integral field.

In the remainder of this paper we will consider that an adversary has the
ability to read and forge references.

How to get the reference of an object ? The aim of this section is to expose
a process to predict the values by which object instances to be created will be
referred to. As the previous section lets guess, this process involves the memory
allocation and reclaiming mechanisms. But the first requirement for this process
is to be able to learn the value of an object’s reference.

In the context of Java Card 3.0, this question is answered within the API
specification [2] (at least, one answer is suggested).

Quote 1. ”As much as is reasonably practical, the hashCode method defined by
class Object does return distinct integers for distinct objects. (This is typically
implemented by converting the internal address of the object into an integer,
but this implementation technique is not required by the JavaTMprogramming
language.)”

This suggestion can be argued by the fact that two instances of the Object class
will only differ by their internal addresses (or Java references if these two con-
cepts are not merged within the considered platform). It is then consistent to
use it to distinguish such objects.

On Java Card 2.x.y platforms (as well as on Java Card 3.0 platforms that
do not implement the hashCode method as suggested) the following approach
including type confusion has to be considered as described in Listing 1.1.

Assuming that it is possible to learn the reference of an object instance
appears then reasonable.

How to predict the reference of an object ? Under the linear reference
assignment assumption, the prediction process is described by Algorithm 1.

With regards to (1), on step 1 the allocated reference rk is s.t.

rk = min{ri s.t. ∀ rj < ri, rj is used} (2)

After, step 2 and 3, we know that rk is not used anymore.
The following allocated reference rl will be s.t.

rl = min{ri s.t. ∀ rj < ri, rj is used} (3)

5

Listing 1.1. Getting the reference of an object
/∗∗
∗ Class A ho ld s an Object f i e l d : o
∗ Class B ho ld s an i n t e g r a l f i e l d : r e f
∗ A a and B b are pu b l i c f i e l d s o f the c l a s s .
∗/

public void i n i tCon fu s i on () {
A a = new A() ;
// Need a f a u l t i n j e c t i o n at runtime to avoid
// a ClassCastExcept ion throwing .
B b = (B) (Object) a ;

}
public short getRe fe rence (Object o) {

// Type confus ion has ”merged” a . o and b . r e f
a . o = o ;
return b . r e f ;

}

Algorithm 1: ReferencePrediction()

Delete current unreachable object instances: System.gc();0

Create a new object instance: Object o = new Object();1

Get the reference of this instance: ref = getReference(o);2

Make this object unreachable: o = null;3

Delete this unreferenced object: System.gc();4

The next assigned reference will be ref5

Consequently, from (2), we know that,

rl = rk (4)

The successive object instantiation and deletion allow us to discover the next
available reference, since it is the one that has just been released. Actually, this
behavior has been previously observed by Hogenboom et al. [13] in the context
of another mechanism leading to memory reclaiming on a Java Card 2.1.1: trans-
action aborting.

This can be easily tested on any platform supporting the Java Card 3 speci-
fications by running the code in Listing 1.2.

Under the assumptions previously stated, we can now consider that we are
able of reading/writing the reference of an object, but also that we can predict
the reference of future object instances.

6

Listing 1.2. Testing the prediction process
System . gc () ; // F i r s t c a l l to the garbage c o l l e c t o r to

// d e l e t e curren t unreachab le r e f e r en c e s .

o1 = new Object () ; // Assign a new re f e r ence to o1 and s t o r e
h1 = o1 . hashCode () ; // the va lue o f t h i s r e f e r ence in h1 .

o1 = null ; // Set o1 to n u l l and c a l l the garbage
System . gc () ; // c o l l e c t o r to a c t u a l l y d e l e t e i t .

o2 = new Object () ; // Assign a new re f e r ence to o2 and s t o r e
h2 = o2 . hashCode () ; // the va lue o f t h i s r e f e r ence in h2 .

i f (h1 == h2) // Compare s t o r ed r e f e r enc e s . . .
// The assumption i s v e r i f i e d .

else
// The assumption i s not v e r i f i e d .

3 Application Replay to Circumvent the Application
Firewall

This section exposes how the ability of predicting and forging references can be
used to circumvent the application context isolation through a so-called replay
attack.

3.1 Java Card Context Isolation : the Application Firewall

Java platforms (Java Standard Edition and Java Micro Edition for instance) usu-
ally execute one application per virtual machine instance. One difference of the
Java Card platform is that it executes a single instance of the virtual machine.
Therefore, it must ensure each hosted application that other applications will
not access its own data or code within this single virtual machine instance. For
that purpose, the specifications mandate the implementation of an application
firewall, isolating each application as well as the Java Card Runtime Environ-
ment. Figure 1 depicts the context isolation mechanism and the firewall crossing
permission in the platform.

Application Firewall Implementation. A possible implementation of the
context isolation would be to assign each application group a context identifier.
When an application creates an object, this object would then inherit the con-
text identifier of its ”maker”. Then access across context can be easily checked
by comparing the accessing context identifier and the accessed context identifier.

7

Fig. 1. Contexts within the Java Card platform’s object system (as per [14])

If the context identifiers are matching, access is granted, else the firewall deny
the access and a SecurityEcxeption is thrown.

Such an implementation appears quite suitable in a constrained system. It
does not consume too much memory (one 8/16/32-bit word per object to protect
it), the access decision is simple (a word comparison) and it does not constrain
the number of objects an application can hold. Actually, some experiments based
on ill-formed applet loading on Java Cards 2.X.Y from different card manufac-
turers and on the C reference implementation provided within the Java Card
2.2.2 Development Kit 3 has proven this implementation is (at least has been)
used. We will consider such an implementation in the remainder of this article.

This implementation choice leads to a first question:

Question 1. Where does the context identifier comes from ?

Many answers could be given to that question (a random value, an internal
counter, the hash of that application’s name, ...). However, the important thing
is to ensure that two application instances living at the same time in the card
does not have the same context identifier. Hence the answer to this question has
only a limited interest from an attacker’s point of view. We will come back to
that point in Section 3.3.

3 JCDK available at http://download.oracle.com/otn-
pub/java/java card kit/2.2.2/java card kit-2 2 2-linux.zip

8

3.2 Application Instance Deletion

Java Card platforms allow the post-issuance loading of application. With this
capacity comes also that of unloading application. To sum up, an application
will then go through the following cycle during its life:

1. Application module loading.
2. Application instance creation.
3. Application execution.
4. Application instance deletion.
5. Application module unloading.

The step we are particularly interested in is the application instance deletion.
In order not to depend on any implementation specific mechanism, we will only
consider this process according to the specifications.

Java Card 2.2.2. On Java Card 2.2.2, applet instance deletion is processed by
an entity referred to as the Applet Deletion Manager (ADM). The behavior of
the ADM is specified in the JCRE specification. In particular, it is stated that:

Quote 2. “Applet instance deletion involves the removal of the applet object
instance and the objects owned by the applet instance and associated Java Card
RE structures.”

Consequently, all objects owned by the applet instance should be actually deleted
within the deletion process.

Java Card 3.0. On Java Card 3.0, applet instance deletion is processed by the
Card Management Facility (CMF). The behavior of the CMF is specified in the
JCRE specification. In particular, it is stated that:

Quote 3. ”An application instance is successfully deleted when all objects owned
by the application instance are inaccessible on the card.”

Quote 4. ”Upon successful deletion, [the card management facility] fires an
application instance deletion event - event:///standard/app/deleted - with
the application instance URI as the event source to all registered listeners.”

The important point to notice here is that what happens between the application
instance deletion, the event firing and the actual notification of potential event
listeners is not addressed in the specifications. This is indeed the starting point
of the attack described in the following section.

3.3 ”Application-Replay” Attack on a Java Card 3.0

The previous section has highlighted a difference between the application in-
stance deletion processes on Java Card 2.2.2 and 3.0. Indeed the later does not
mandate that object instances belonging to an application instance are deleted

9

together with the application instance. This lead us to think that the mandatory
deletion of objects on Java Card 2.2.X has not been thought as a security mecha-
nism, but rather as a functional one. Actually, since the garbage collection is not
mandatory on Java Card 2.2.X platforms, one has to explicitly delete objects
that are not used anymore. Else they will still be consuming memory for the
whole card lifetime. This explains the disappearing of this statement in the Java
Card 3.0 specifications since the garbage collector ensures that those objects will
be deleted eventually. The application-replay attack detailed hereafter is then
limited to Java Card 3.0 platforms.

The remainder of this section describe a possible attack scenario divided into
two steps:

– First, the attacker needs to prevent the deletion of the targeted application’s
objects;

– Then, the attacker must find a way to access these objects despite the ap-
plication firewall.

Illegal Memory Consumption. The aim of this first step of the attack is,
for the adversary’s application, to gain references to objects belonging to the
targeted application, even though this application gets deleted.

Let us first put together the different pieces of information gleaned so far.
We know from Quote 3 that the CMF should consider an application instance
deletion successful when all objects it owned are inaccessible. This means these
objects are garbage-collectable, but not necessarily that they have been garbage-
collected. In addition, we know from Quote 4 that the CMF will fire an event on
successful deletion. Finally, we know how to predict and forge object references
from Section 2.

Bounding Object Instances Owned by Another Application Instance. Consider
now two applications called Forgery and Target, respectively the adversary’s
and the targeted application. We assume that Forgery is loaded and instanti-
ated. That is to say, its binary representation is on-card and it has been initial-
ized. On the other hand, we assume that that Target is only loaded. That is
to say its binary representation is on-card but it has not been initialized. Fur-
thermore, we let Forgery register an event listener to be notified of application
instance deletions (say on the URI event:///standard/app/deleted/*).

The Forgery application instance can then guess the starting and ending
bounds of the Target application instance to be, following these steps:

1. Call the garbage collector.
2. Predict the next reference (let us call it start).
3. Let Target be instantiated.
4. Instantiate an object to get the ”current” reference and deduce the last

reference instantiated by Target (let us call it end).

10

The Forgery application then knows that the references of Target’s objects are
s.t. ∀ri ∈ Target, start ≤ ri ≤ end.

Preventing the Deletion of Objects on Application Instance Deletion. The at-
tacker can then request the Target application instance deletion. During the
deletion process, the card management facility will ensure that all objects be-
longing to this application instance are not referenced anymore. We emphasize
the fact that these objects are not necessarily deleted as long as the garbage
collector is not executed.

On notification of the application instance successful deletion, the Forgery
application can then forge object’s references in an array of end−start objects
to values between start and end − 1. This is achieved through a type confu-
sion similar to that exposed in Listing 1.1, considering the confused object is
an instance field4. By doing so, the attacker prevents these objects from being
actually garbage collected, so-to-speak consuming their references.

At this point, the attacker’s application instance hold references to objects
that do not belong to it. Trying to access these objects in that application would
then irremediably lead to a SecurityException throwing. The following section
adapts the principle of the replay attack to overcome this.

Application Firewall Circumvention. The adversary’s application holds ref-
erences belonging to a deleted application instance. The only way to access these
references would then be to collaborate with a new application instance imper-
sonating the deleted one.

It becomes obvious now that the answer to Question 1 would then only be
useful to help answering the real critical question:

Question 2. Can a new application instance be given the same context identifier
as a former (deleted) application instance ?

If we cannot give an accurate answer to Question 1 without knowing the exact
implementation of the platform, this last question could be answered by experi-
mentation. Given that no Java Card 3.0 platforms have been publicly released so
far we have not been able to test this particular behavior on various Java Card
3.0 platforms. Nevertheless, we have run our experimentation on different cards
implementing different versions of the Java Card 2 specifications with mostly
positive results. Let us assume now that the answer to the last question was
”Yes”.

The attacker would then only have to instantiate a new application, ”send”
the forged objects from Forgery to that new application and try to access them.
4 Consequently a single fault injection is necessary for all reference forgeries.

11

This operation can be repeated until no SecurityException is thrown, which
means that the new application has been assigned the same context identifier
as the original Target application instance. That is to say, the new application
impersonates the previous Target’s application instance.

The last difficulty resides in the ”sending” of the forged objects from Forgery
to the new application, since Forgery is not authorized to use these objects by
the application firewall. This is why we considered in 3.3 an array of forged
objects (the array itself is then still legally usable by Forgery). A mere library
permits then to store this array from Forgery and access its content from the
new application without having to pass through the application firewall.

Eventually, the new application instance has then full access to the objects
created by the Target’s application instance. The application firewall has been
circumvented.

So far, this article has proven the possibility to circumvent the Java Card ap-
plication firewall, under certain assumptions. Nevertheless, the following section
shows that this attack can be thwarted with an adequate implementation.

4 Analysis and Countermeasures

The attack describe in the previous section relies on two key elements:

– a “lazy” application instance deletion process.
– the attacker’s ability to provoke a type flaw and to forge an object’s reference.

Object Deletion. This basement of our attack lies in Quote 3, i.e. the card
manager only ensures that objects owned by the application instance to be
deleted are not accessible anymore. In a way, the specifications encourage im-
plementors to give in to the temptation to rely on automatic garbage collection
for the effective deletion of these objects.

Thus, it is assumed that the garbage collection will be executed later and
that it will delete all inaccessible objects. But between the successful deletion
event is fired and the next garbage collection is requested, many things can hap-
pen, as exposed within the previous section.
It appears then necessary that the application instance deletion process ensures
not only that the objects previously owned by the application to be deleted are
inaccessible but also that they are actually deleted when the application instance
is deleted. This is indeed what prevents the attack from succeeding on Java Card
2.X platforms, although it seems to us that this has not been specified to enforce
security.

12

This possible breach may be easily taken care of within the implementation
of the CMF. Nevertheless, JC3 platforms intending to be considered as secure
systems, we go as far as to recommend that mandatory deletion of objects be-
longing to a deleted application instance should be added in the next update of
the Java Card 3.0 specifications.

Ensuring Type Safety. Yet, the type confusion is the technical root of our
attack. Without the type confusion, we would have not been able to recover the
undeleted objects. Actually, even on platforms supporting OCBV, such a type
flaw can be caused by various fault injections. Barbu et al. take advantages of a
faulty checkast execution, while Vetillard et al. manages to turn an instruction
into a nop, thus making an instruction from a parameter and provoking an early
method return. At CARDIS’11, Barbu et al. presented another way to provoke
a type confusion through a faulty operand stack as well as a countermeasure to
ensure the operand stack integrity. However this does not prevent the success of
the previously cited attacks. Furthermore, other paths to type confusion might
be discovered.

The study of the different ways to provoke a type confusion through physical
perturbations, as well as the design of countermeasures ensuring type safety in
the presence of faults is an ongoing work.

5 Conclusion

In this paper, we have introduced the principle of reference prediction on Java
Card platforms and exposed an attack based on the Java Card 3.0 specifications
leading to the circumvention of the application firewall.

This work has been based on several assumptions concerning the implementa-
tion of the attacked platform which implicitly sketches possible countermeasures
(type safety enforcement, actual deletion of objects, unpredictable reference as-
signment, uniqueness of firewall identifiers). Although we did not put into prac-
tice the complete attack path on a Java Card 3.0 platform, we have been able to
test successfully the different assumptions required to achieved it on Java Card
2.X platforms from different origins.

Finally, this work outlines a possible weakness in the Java Card 3.0 spec-
ifications. Although the exposed attack scenario may appear unlikely on the
field, we believe it should be taken into consideration in a future update of the
specifications.

References

1. Sun Microsystems Inc.: Application Programming Interface, Java Card Platform
Version 2.2.2 (2006)

13

2. Sun Microsystems Inc.: Application Programming Interface, Java Card Platform
Version 3.0.1 Connected Edition (2009)

3. Govindavajhala, S., Appel, A.W.: Using Memory Errors to Attack a Virtual Ma-
chine. In: SP’03 : Proceedings of the 2003 IEEE Symposium on Security and
Privacy, Washington, DC (2003) 154

4. Witteman, M.: Java Card Security. In: Information Security Bulletin. Volume 8.
(2003) 291–298

5. Mostowski, W., Poll, E.: Malicious Code on Java Card Smartcards: Attacks and
Countermeasures. In: Smart Card Research and Advanced Application Conference
(CARDIS08). LNCS, Springer Verlag (2008) 1–16

6. Iguchi-Cartigny, J., Lanet, J.L.: Developping a Trojan Applet in a Smart Card.
Journal in Computer Virology (2010)

7. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card Combining Fault and
Logical Attacks. In: Smart Card Research and Advanced Application Conference
(CARDIS10). Volume 6035 of LNCS., Springer Verlag (2010) 148–163

8. Vetillard, E., Ferrari, A.: Combined Attacks and Coutermeasures. In: Smart
Card Research and Advanced Application Conference (CARDIS10). Volume 6035
of LNCS., Springer Verlag (2010) 133–147

9. Sere, A., Lanet, J.L., Iguchi-Cartigny, J.: Checking the Paths to Identify Mutant
Application on Embedded Systems. In: SecTech 2010, International Conference on
Security Technology. Volume 6485 of LNCS., Springer Verlag (2010) 459–468

10. Barbu, G., Duc, G., Hoogvorst, P.: Java Card Operand Stack: Fault Attacks,
Combined Attacks and Countermeasures. In: Smart Card Research and Advanced
Application Conference (CARDIS11), to be published. (2011)

11. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Smart Card Research and Advanced
Application Conference (CARDIS11), to be published. (2011)

12. Sere, A., Lanet, J.L., Iguchi-Cartigny, J.: Evaluation of Countermeasures Against
Fault Attacks on Smart Cards. International Journal of Security and Its Applica-
tions (5) 49–61

13. Hogenboom, J., Mostowski, W.: Full memory read attack on a java card. In: 4th
Benelux Workshop on Information and System Security Proceedings (WISSEC’09).
(2009)

14. Sun Microsystems Inc.: Runtime Environment Specification, Java Card Platform
Version 3.0.1 Connected Edition. (2009)

