On the intersection of critical percolation clusters and other tree-like random graphs - Institut de Mathématiques de Marseille 2014-
Pré-Publication, Document De Travail Année : 2024

On the intersection of critical percolation clusters and other tree-like random graphs

Résumé

We study intersection properties of two or more independent tree-like random graphs. Our setting encompasses critical, possibly long range, Bernoulli percolation clusters, incipient infinite clusters, as well as critical branching random walk ranges. We obtain sharp excess deviation bounds on the number of intersection points of two or more clusters, under minimal assumption on the two-point function. The proofs are based on new bounds on the n-point function, in case of critical percolation, and on the joint moments of local times of branching random walks.

Fichier principal
Vignette du fichier
intersection2.pdf (486.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04807740 , version 1 (27-11-2024)

Identifiants

  • HAL Id : hal-04807740 , version 1

Citer

Amine Asselah, Bruno Schapira. On the intersection of critical percolation clusters and other tree-like random graphs. 2024. ⟨hal-04807740v1⟩
0 Consultations
0 Téléchargements

Partager

More